Skip to main content

Ionic Liquids in Palladium-Catalyzed Cross-Coupling Reactions

  • Chapter
  • First Online:

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 51))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Angell CA, Ansari Y, Zhao Z (2012) Ionic liquids: past, present and future. Faraday Discuss 154:9–27

    Google Scholar 

  2. de Mejere A, Diederich F (eds) (2004) Metal-catalysed cross-coupling reactions. Wiley, Weinheim, and references therein

    Google Scholar 

  3. Nicolaou KC, Bulger PG, Sarlah D (2005) Palladium-catalyzed cross-coupling reactions in total synthesis. Angew Chem Int Ed 44:4442–4449

    CAS  Google Scholar 

  4. Negishi E (2007) Transition metal-catalyzed organometallic reactions that have revolutionized organic synthesis. Bull Chem Soc Jpn 80:233–257

    CAS  Google Scholar 

  5. Corbet JP, Mignani G (2006) Selected patented cross-coupling reaction technologies. Chem Rev 106:2651–2710, and references therein

    CAS  Google Scholar 

  6. Deeth RJ, Smith A, Hii KK, Brown JM (1998) The Heck olefination reaction a DFT study of the elimination pathway. Tetrahedron Lett 39:3229–3232

    CAS  Google Scholar 

  7. Ludwig JM, Strömberg S, Svensson M, Åkermark B (1999) An exploratory study of regiocontrol in the Heck type reaction influence of solvent polarity and bisphosphine ligands. Organometallics 18:970–975

    CAS  Google Scholar 

  8. Amatore C, Jutand A (1999) Mechanistic and kinetic studies of palladium catalytic systems. J Organomet Chem 576:254–278

    CAS  Google Scholar 

  9. von Schenck H, Åkermark B, Svensson M (2003) Electronic control of the regiochemistry in the Heck reaction. J Am Chem Soc 125:3503–3508

    Google Scholar 

  10. Hills ID, Fu GC (2004) Elucidating reactivity differences in palladium-catalyzed coupling processes: the chemistry of palladium hydrides. J Am Chem Soc 126:13178–13179

    CAS  Google Scholar 

  11. Fristrup P, Le Quement S, Tanner D, Norrby PO (2004) Reactivity and regioselectivity in the Heck reaction: Hammett study of 4-substituted styrenes. Organometallics 23:6160–6165

    CAS  Google Scholar 

  12. Singh R, Sharma M, Mamgain R, Rawat DS (2008) Ionic liquids: a versatile medium for palladium-catalyzed reactions. J Braz Chem Soc 19:357–379

    CAS  Google Scholar 

  13. Trzeciak AM, Ziòlkowski JJ (2007) The role of ionic liquids in palladium-catalyzed C–C bond-forming reactions. In: Yamamoto K (ed) Advances organometallic chemistry research. Nova Science Publishers, New York

    Google Scholar 

  14. Bellina F, Chiappe C (2010) The Heck reaction in ionic liquids: progress and challenges. Molecules 15:2211–2245

    CAS  Google Scholar 

  15. Prechtl MHG, Scholten JD, Dupont J (2010) Carbon-carbon cross coupling reactions in ionic liquids catalysed by palladium metal nanoparticles. Molecules 15:3441–3461

    CAS  Google Scholar 

  16. Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Cat A: Gen 373:1–56

    CAS  Google Scholar 

  17. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis 2. Chem Rev 111:3508–3576

    CAS  Google Scholar 

  18. Heck RF (1991) TITOLO? In: Trost BM, Fleming I (eds) Comprehensive organic synthesis, vol 4. Pergamon, Oxford

    Google Scholar 

  19. Herrmann WA (1996) TITOLO? In: Cornils B, Herrmann WA (eds) Applied homogeneous catalysis with organometallic compounds. VCH, Weinheim

    Google Scholar 

  20. de Meijere A, Meyer FE (1994) TITOLO? Angew Chem Int Ed Engl 33:2379–2411

    Google Scholar 

  21. Cabri W, Candiani I (1995) Recent developments and new perspectives in the Heck reaction. Acc Chem Res 28:2–7

    CAS  Google Scholar 

  22. Crisp GT (1998) Variations on a theme – recent developments on the mechanism of the Heck reaction and their implications for synthesis. Chem Soc Rev 27:427–436

    CAS  Google Scholar 

  23. Genet JP, Savignac MJ (1999) Recent developments of palladium(0) catalyzed reactions in aqueous medium. J Organomet Chem 576:305–317

    Google Scholar 

  24. Whitcombe NJ, Hii KK, Gibson SE (2001) Advances in the Heck chemistry of aryl bromides and chlorides. Tetrahedron 57:7449–7476

    CAS  Google Scholar 

  25. Herrmann WA, Öfele K, Preysing D, Schneider SK (2003) Phospha-palladacycles and N-heterocyclic carbene palladium complexes: efficient catalysts for CC-coupling reactions. J Organomet Chem 687:229–248

    CAS  Google Scholar 

  26. Blaser H-U, Indolese A, Naud F, Nettekoven U, Schnyder A (2004) Industrial R&D on catalytic CC and CN coupling reactions: a personal account on goals, approaches and results. Adv Synth Catal 346:1583–1598

    CAS  Google Scholar 

  27. Christmann U, Vilar R (2005) Monoligated palladium species as catalysts in cross-coupling reactions. Angew Chem Int Ed 44:366–374

    CAS  Google Scholar 

  28. Dominguez B, Iglesia B, de Lera AR (1998) Tetraenylstannanes in the synthesis of retinoic acid and its ring-modified analogues. J Org Chem 63:4135–4139

    CAS  Google Scholar 

  29. Lipshutz BH, Ullman B, Lindsley C, Pecchi S, Buzard DJ, Dickson D (1998) A new bromo trienyne: synthesis of all-E, conjugated tetra-, penta-, and hexaenes common to oxo polyene macrolide antibiotics. J Org Chem 63:6092–6093

    CAS  Google Scholar 

  30. Pinto A, Jia Y, Neuville L, Zhu J (2007) Palladium-catalyzed enantioselective domino Heck–cyanation sequence: development and application to the total synthesis of esermethole and physostigmine. Chem Eur J 13:961–967

    CAS  Google Scholar 

  31. Mizoroki T, Mori K, Ozaki A (1971) Arylation of olefin with aryl iodide catalyzed by palladium. Bull Chem Soc Jpn 44:581–581

    CAS  Google Scholar 

  32. Heck RF, Nolley JP Jr (1972) Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J Org Chem 37:2320–2322

    CAS  Google Scholar 

  33. Dounay AB, Overman LE (2003) The asymmetric intramolecular Heck reaction in natural product total synthesis. Chem Rev 103:2945–2963

    CAS  Google Scholar 

  34. Beletskaya IP, Cheprakov AV (2000) The Heck reaction as a sharpening stone of palladium catalysis. Chem Rev 100:3009–3066

    CAS  Google Scholar 

  35. Balanta A, Godard C, Claver C (2011) Pd nanoparticles for C–C coupling reactions. Chem Soc Rev 40:4973–4985

    CAS  Google Scholar 

  36. Grasa GA, Viciu MS, Huang J, Nolan SP (2001) Amination reactions of aryl halides with nitrogen-containing reagents mediated by palladium/imidazolium salt systems. J Org Chem 66:7729–7737

    CAS  Google Scholar 

  37. Gstöttma CWK, Böhm VPW, Herdtweck E, Grosche M, Herrmann WA (2002) A defined N-heterocyclic carbene complex for the palladium-catalyzed suzuki cross-coupling of aryl chlorides at ambient temperatures. Angew Chem Int Ed 41:1363–1365

    Google Scholar 

  38. Yin J, Rainka MP, Zhang X-X, Buchwald SL (2002) A highly active Suzuki catalyst for the synthesis of sterically hindered biaryls: novel ligand coordination. J Am Chem Soc 124:1162–1163

    CAS  Google Scholar 

  39. Beare NA, Hartwig JF (2002) Palladium-catalyzed arylation of malonates and cyanoesters using sterically hindered trialkyl- and ferrocenyldialkylphosphine ligands. J Org Chem 67:541–555

    CAS  Google Scholar 

  40. Selvakumar K, Zapf A, Beller M (2002) New palladium carbene catalysts for the Heck reaction of aryl chlorides in ionic liquids. Org Lett 4:3031–3033

    CAS  Google Scholar 

  41. Rohlich C, Kohler K (2010) Tetraalkylammonium-free Heck olefination of deactivated chloroarenes by using a macrocyclic catalyst precursor. Chem Eur J 16:2363–2365

    Google Scholar 

  42. Xu HJ, Zhao YQ, Zhou XF (2011) Palladium-catalyzed Heck reaction of aryl chlorides under mild conditions promoted by organic ionic bases. J Org Chem 76:8036–8041k

    CAS  Google Scholar 

  43. Bader RR, Baumeister P, Blaser HU (1996) Catalysis at Ciba-Geigy. Chimia 50:99–105

    CAS  Google Scholar 

  44. Jeffery T (1984) Palladium-catalysed vinylation of organic halides under solid–liquid phase transfer conditions. J Chem Soc Chem Commun 1287–1289

    Google Scholar 

  45. Jeffery T (1985) Highly stereospecific palladium-catalysed vinylation of vinylic halides under solid–liquid phase transfer conditions. Tetrahedron Lett 26:2667–2669

    CAS  Google Scholar 

  46. Jeffery T (1996) On the efficiency of the tetralkylammonium salts in the Heck type reactions. Tetrahedron 52:10113–10130

    CAS  Google Scholar 

  47. Beller M, Fischer H, Kühlein K, Reisinger C-P, Herrmann WA (1996) First palladium-catalyzed Heck reactions with efficient colloidal catalyst systems. J Organomet Chem 520:257–259

    CAS  Google Scholar 

  48. Reetz MT, Lohmer G, Schwickardi R (1998) A New catalyst system for the Heck reaction of unreactive aryl halides. Angew Chem Int Ed Engl 37:481–483

    CAS  Google Scholar 

  49. Herrmann WA, Elison M, Fisher J, Köcher C, Artus GRJ (1995) Metal complexes of N-heterocyclic carbenes as new structural principle for catalysts in homogeneous catalysis. Angew Chem Int Ed Engl 14:2371–2374

    Google Scholar 

  50. Kaufmann D, Nouroozian M, Henze H (1996) Molten salts as an efficient medium for palladium catalyzed C-C coupling reactions. Synlett 1091–1092

    Google Scholar 

  51. Herrmann WA, Böhm VPW (1999) Heck reaction catalyzed by phospha-palladacycles in non-aqueous ionic liquids. J Organomet Chem 572:141–145

    CAS  Google Scholar 

  52. Böhm VPW, Herrmann WA (2000) Coordination chemistry and mechanisms of metal-catalyzed C–C coupling reactions, part 12 nonaqueous ionic liquids: superior reaction media for the catalytic Heck-vinylation of chloroarenes. Chem Eur J 6:1017–1025

    Google Scholar 

  53. Calò V, Nacci A, Lopez L, Mannarini N (2000) Heck reaction in ionic liquids catalyzed by a Pd–benzothiazole carbene complex. Tetrahedron Lett 41:8973–8976

    Google Scholar 

  54. Bouquillon S, Gauchegui B, Estrine B, Hénin F, Muzart J (2001) Heck arylation of allylic alcohols in molten salts. J Organomet Chem 634:153–156

    CAS  Google Scholar 

  55. Reetz MT, Breinbauer R, Wanninger K (1996) Suzuki and heck reactions catalyzed by preformed palladium clusters and palladium/nickel bimetallic clusters. Tetrahedron Lett 37:4499–4502

    CAS  Google Scholar 

  56. Reetz MT, Lohmer G (1996) Propylene carbonate stabilized nanostructured palladium clusters as catalysts in Heck reactions. Chem Commun 1921–1922

    Google Scholar 

  57. Reetz MT, Maase M (1999) Redox-controlled size-selective fabrication of nanostructured transition metal colloids. Adv Mater 11:773–777

    CAS  Google Scholar 

  58. Reetz MT, Westermann E (2000) Phosphane-free palladium-catalyzed coupling reactions: the decisive role of Pd nanoparticles. Angew Chem Int Ed Engl 39:165–168

    CAS  Google Scholar 

  59. Trzeciak AM, Ciunik Z, Ziołkowski JJ (2002) Synthesis of palladium benzyl complexes from the reaction of PdCl2[P(OPh)3]2 with benzyl bromide and triethylamine: important intermediates in catalytic carbonylation. Organometallics 21:132–137

    CAS  Google Scholar 

  60. Battistuzzi G, Cacchi S, Fabrizi G (2002) A molten n-Bu4NOAc/n-Bu4NBr mixture as an efficient medium for the stereoselective synthesis of (E)- and (Z)-3,3-diarylacrylates. Synlett 439–442

    Google Scholar 

  61. Calò V, Nacci A, Monopoli A, Laera S, Cioffi N (2003) Pd nanoparticles catalyzed stereospecific synthesis of β-aryl cinnamic esters in ionic liquids. J Org Chem 68:2929–2933

    Google Scholar 

  62. Moreno-Mañas M, Pleixats R (2003) Formation of carbon–carbon bonds under catalysis by transition-metal nanoparticles. Acc Chem Res 36:638–643

    Google Scholar 

  63. Calò V, Nacci A, Monopoli A, Detomaso A, Iliade P (2003) Pd nanoparticle catalyzed heck arylation of 1,2-disubstituted alkenes in ionic liquids study on factors affecting the regioselectivity of the coupling process. Organometallics 22:4193–4197

    Google Scholar 

  64. Gniewek A, Trzeciak AM, Ziołkowski JJ, Kepinski L, Wrzyszcz J, Tylus W (2005) Pd-PVP colloid as catalyst for Heck and carbonylation reactions: TEM and XPS studies. J Catal 229:332–343

    CAS  Google Scholar 

  65. Calò V, Nacci A, Monopoli A, Cotugno P (2009) Heck ractions with palladium nanoparticles in ionic liquids: coupling of aryl chlorides with deactivated olefins. Angew Chem Int Ed 48:6101–6103

    Google Scholar 

  66. Cotugno P, Monopoli A, Ciminale F, Cioffi N, Nacci A (2012) Pd nanoparticle catalysed one-pot sequential Heck and Suzuki couplings of bromo-chloroarenes in ionic liquids and water. Org Biomol Chem 10:808–813

    CAS  Google Scholar 

  67. Carmichael AJ, Earle MJ, Holbrey JD, Mc Cormac PB, Seddon KR (1999) The Heck reaction in ionic liquids: a multiphasic catalyst system. Org Lett 1:997–1000

    CAS  Google Scholar 

  68. Xu L, Chen W, Xiao J (2000) Heck reaction in ionic liquids and the in situ identification of N-heterocyclic carbene complexes of palladium. Organometallics 19:1123–1127

    CAS  Google Scholar 

  69. Mo J, Xu L, Xiao J (2005) Ionic liquid promoted, highly regioselective Heck arylation of electron-rich olefins by aryl halides. J Am Chem Soc 127:751–760

    CAS  Google Scholar 

  70. Mo J, Xiao J (2006) The Heck reaction of electron-rich olefins with regiocontrol by hydrogen-bond donors. Angew Chem Int Ed 45:4152–4157

    CAS  Google Scholar 

  71. Wojtkówa W, Trzeciak AM, Choukroun R, Pellegatta JL (2004) Pd colloid-catalyzed methoxycarbonylation of iodobenzene in ionic liquids. J Mol Catal A: Chem 224:81–86

    Google Scholar 

  72. Deshmukh RR, Rajagopal R, Srinivasan KV (2001) Ultrasound promoted C–C bond formation: Heck reaction at ambient conditions in room temperature ionic liquids. Chem Commun 1544–1545

    Google Scholar 

  73. Cassol CC, Umpierre AP, Machado G, Wolke SI, Dupont J (2005) The role of Pd nanoparticles in ionic liquid in the Heck reaction. J Am Chem Soc 127:3298–3299

    CAS  Google Scholar 

  74. Consorti CS, Flores FR, Dupont J (2005) Kinetics and mechanistic aspects of the Heck reaction promoted by a CN-palladacycle. J Am Chem Soc 127:12054–12065

    CAS  Google Scholar 

  75. Scholten JD, Leal BC, Dupont J (2012) Transition metal nanoparticle catalysis in ionic liquids. ACS Catal 2:184–200

    CAS  Google Scholar 

  76. Gaikwad AV, Holuigue A, Thathagar MB, ten Elshof JE, Rothenberg G (2007) Ion- and atom-leaching mechanisms from palladium nanoparticles in cross-coupling reactions. Chem Eur J 13:6908–6913

    CAS  Google Scholar 

  77. Thathagar MB, ten Elshof JE, Rothenberg G (2006) Pd nanoclusters in CC coupling reactions: proof of leaching. Angew Chem Int Ed 45:2886–2890

    CAS  Google Scholar 

  78. Kumar R, Shard A, Bharti R, Thopate Y, Sinha AK (2012) Palladium-catalyzed dehydrative heck olefination of secondary aryl alcohols in ionic liquids: towards a waste-free strategy for tandem synthesis of stilbenoids. Angew Chem Int Ed 51:2636–2639

    CAS  Google Scholar 

  79. Wan Q-X, Liu Y (2009) The ionic palladium porphyrin as a highly efficient and recyclable catalyst for the heck reaction in solution under aerobic conditions. Catal Lett 128:487–492

    CAS  Google Scholar 

  80. Hagiwara H, Shimizu Y, Hoshi T, Suzuki T, Ando M, Ohkubo K, Yokoyama C (2001) Heterogeneous heck reaction catalyzed by Pd/C in ionic liquid. Tetrahedron Lett 42:4349–4351

    CAS  Google Scholar 

  81. Choudary BM, Madhi S, Chowdari NS, Kantam ML, Sreedhar B (2002) Layered double hydroxide supported nanopalladium catalyst for Heck-, Suzuki-, Sonogashira-, and stille-type coupling reactions of chloroarenes. J Am Chem Soc 124:14127–14136

    CAS  Google Scholar 

  82. Calò V, Nacci A, Monopoli A, Fornaro A, Sabbatini L, Cioffi N, Ditaranto N (2004) Heck reaction catalyzed by nanosized palladium on chitosan in ionic liquids. Organometallics 23:5154–5158

    Google Scholar 

  83. Lu X, Xie J, Chen B, Han J, She X, Pan X (2004) Pd/C-catalyzed Heck reaction in ionic liquid accelerated by microwave heating. Tetrahedron Lett 45:809–811

    Google Scholar 

  84. Kabachii LA, Aslanov YA, Kochev SY, Romanovsky BV, Valetsky PM, Volkov VV, Yatsenko AV, Zakharov VN (2008) Mesoporous soot-supported palladium as a heterogeneous catalyst for the Heck reaction in ionic liquids. Mendeleev Commun 18:334–335

    Google Scholar 

  85. Ma X, Zhou Y, Zhang J, Zhu A, Jiang T, Han B (2008) Solvent-free Heck reaction catalyzed by a recyclable Pd catalyst supported on SBA-15 via an ionic liquid. Green Chem 10:59–66

    CAS  Google Scholar 

  86. Dighe MG, Degani MS (2011) Microwave-assisted ligand-free, base-free Heck reactions in a task-specific imidazolium ionic liquid. ARKIVOC xi:189–197

    Google Scholar 

  87. Xiao JC, Twamley B, Shreeve JM (2004) An ionic liquid-coordinated palladium complex: a highly efficient and recyclable catalyst for the Heck reaction. Org Lett 6:3845–3847

    CAS  Google Scholar 

  88. Wang R, Piekarski MP, Shreeve J (2006) New types of pyrazolyl-functionalized 2-methylimidazolium-based ionic liquids and their palladium(II) complexes: highly efficient, recyclable catalysts for C–C coupling reactions. Org Biomol Chem 4:1878–1886

    CAS  Google Scholar 

  89. Wang R, Zeng Z, Twamley B, Piekarski MM, Shreeve JM (2007) Synthesis and characterization of pyrazolyl-functionalized imidazolium-based ionic liquids and hemilabile palladium(II) carbene complex catalyzed Heck reaction. Eur J Org Chem 655–661

    Google Scholar 

  90. Wang R, Twamley B, Shreeve JM (2006) A highly efficient, recyclable catalyst for C–C coupling reactions in ionic liquids: pyrazolyl-functionalized N-heterocyclic carbene complex of palladium(II). J Org Chem 71:426–429

    CAS  Google Scholar 

  91. Jin CM, Twamley B, Shreeve J (2005) Low-melting dialkyl- and bis(polyfluoroalkyl)-substituted 1,1′-methylene-bis(imidazolium) and 1,1′-methylenebis (1,2,4-triazolium) bis (trifluoromethanesulfonyl) amides: ionic liquids leading to bis(N-heterocyclic carbene) complexes of palladium. Organometallics 24:3020–3023

    CAS  Google Scholar 

  92. Wang R, Jin CM, Twamley B, Shreeve JM (2006) Syntheses and characterization of unsymmetric dicationic salts incorporating imidazolium and triazolium functionalities. Inorg Chem 45:6396–6403

    CAS  Google Scholar 

  93. Iranpoor N, Firouzabadi H, Azadi R (2007) An imidazolium-based phosphinite ionic liquid (IL-OPPh2) as a reusable reaction medium and PdII ligand in Heck reactions of aryl halides with styrene and n-butyl acrylate. Eur J Org Chem 2197–2201

    Google Scholar 

  94. Fei Z, Zhao D, Pieraccini D, Ang WH, Geldbach TJ, Scopelliti R, Chiappe C, Dyson PJ (2007) Development of nitrile-functionalized ionic liquids for C − C coupling reactions: implication of carbene and nanoparticle catalysts. Organometallics 26:1588–1598

    CAS  Google Scholar 

  95. Bellina F, Bertoli A, Melai B, Scalesse F, Signori F, Chiappe C (2009) Synthesis and properties of glycerylimidazolium based ionic liquids: a promising class of task-specific ionic liquids. Green Chem 11:622–629

    CAS  Google Scholar 

  96. Cai Y, Liu Y (2009) Efficient palladium-catalyzed Heck reactions mediated by diol-functionalized imidzolium ionic liquids. Cat Comm 10:1390–1393

    CAS  Google Scholar 

  97. Wang L, Li H, Li P (2008) Task-specific ionic liquid as base, ligand and reaction medium for the palladium-catalyzed Heck reaction. Tetrahedron 65:364–368

    Google Scholar 

  98. Li S, Li Y, Xie H, Zhang S, Xu J (2006) Bronsted guanidine acid–base ionic liquids: novel reaction media for the palladium catalyzed Heck reaction. Org Lett 8:391–394

    CAS  Google Scholar 

  99. Wan QX, Liu Y, Lu Y, Li M, Wu HH (2008) Palladium-catalyzed heck reaction in the multi-functionalized ionic liquid compositions. Catal Lett 121:331–336

    CAS  Google Scholar 

  100. Riisager A, Wasserscheid P, Hal R, Fehrmann R (2003) Continuous fixed-bed gas-phase hydroformylation using supported ionic liquid-phase (SILP) Rh catalysts. J Catal 219:452–455

    CAS  Google Scholar 

  101. Riisager A, Fehrmann R, Haumann M, Wasserscheid P (2006) Supported ionic liquids: versatile reaction and separation media. Topics Catal 40:91–102

    CAS  Google Scholar 

  102. Werner S, Szesni N, Kaiser M, Haumann M, Wasserscheid P (2012) A scalable preparation method for SILP and SCILL ionic liquid thin-film materials. Chem Eng Technol 35:1962–1967

    CAS  Google Scholar 

  103. Kernchen U, Etzold B, Korth W, Jess A (2007) Solid catalyst with ionic liquid layer (SCILL) – a new concept to improve selectivity illustrated by hydrogenation of cyclooctadiene. Chem Eng Technol 30:985–994

    CAS  Google Scholar 

  104. Steinruck HP, Libuda J, Wasserscheid P, Cremer T, Kolbeck C, Laurin M, Maier F, Sobota M, Schulz PS, Stark M (2011) Surface science and model catalysis with ionic liquid-modified materials. Adv Mater 23:2571–2587

    Google Scholar 

  105. Sobota M, Happel M, Amende M, Paape N, Wasserscheid P, Laurin M, Libuda J (2011) Ligand effects in SCILL model systems: site-specific interactions with Pt and Pd nanoparticles. Adv Mater 23:2617–2621

    CAS  Google Scholar 

  106. Wan L, Zhang Y, Xie C, Wang Y (2005) PEG-supported imidazolium chloride: a highly efficient and reusable reaction medium for the heck reaction. Synlett 12:1861–1864

    Google Scholar 

  107. Burguete MI, García-Verdugo E, Garcia-Villar I, Gelat F, Licence P, Luis SV, Sans V (2010) Pd catalysts immobilized onto gel-supported ionic liquid-like phases (g-SILLPs): a remarkable effect of the nature of the support. J Catal 269:150–160

    CAS  Google Scholar 

  108. Liu G, Hou M, Song J, Jiang T, Fan H, Zhang Z, Han B (2010) Immobilization of Pd nanoparticles with functional ionic liquid grafted onto cross-linked polymer for solvent-free heck reaction. Green Chem 12:65–69

    CAS  Google Scholar 

  109. Shi X, Han X, Ma W, Fan J, Wei J (2012) A PdCl2–ionic liquid brush assembly: an efficient and reusable catalyst for Mizoroki–Heck reaction in neat water. Appl Organom Chem 26:16–20

    Google Scholar 

  110. Brun N, Hesemann P, Laurent G, Sanchez C, Birot M, Deleuze H, Backov R (2013) Macrocellular Pd@ionic liquid@organo-Si(HIPE) heterogeneous catalysts and their use for Heck coupling reactions. New J Chem 37:157–168

    CAS  Google Scholar 

  111. Payagala T, Armstrong DW (2012) Chiral ionic liquids: a compendium of syntheses and applications (2005–2012). Chirality 24:17–53

    CAS  Google Scholar 

  112. Prechtl MHG, Scholten JD, Neto BAD, Dupont J (2009) Application of chiral ionic liquids for asymmetric induction in catalysis. Curr Org Chem 13:1259–1277

    CAS  Google Scholar 

  113. Gayet F, Marty J-D, Lauth de Viguerie N (2008) Palladate salts from ionic liquids as catalysts in the Heck reaction. ARKIVOC xvii:61–76

    Google Scholar 

  114. Kiss L, Kurtán T, Antus S, Brunner H (2003) Further insight into the mechanism of Heck oxyarylation in the presence of chiral ligands. ARKIVOC v:69–76

    Google Scholar 

  115. Pastre JC, Génisson Y, Saffon N, Dandurand J, Correia CRD (2010) Synthesis of novel room temperature chiral ionic liquids: application as reaction media for the heck arylation of aza-endocyclic acrylates. J Braz Chem Soc 21:821–836

    CAS  Google Scholar 

  116. Roszak R, Trzeciak AM, Pernak J, Borucka N (2011) Effect of chiral ionic liquids on palladium-catalyzed Heck arylation of 2,3-dihydrofuran. Appl Catal A 148:409–410

    Google Scholar 

  117. Morel A, Silarska E, Trzeciak AM, Pernak J (2013) Palladium-catalyzed asymmetric Heck arylation of 2,3-dihydrofuran – effect of prolinate salts. Dalton Trans 42:1215–1222

    CAS  Google Scholar 

  118. Calò V, Nacci A, Monopoli A, Ferola V (2007) Palladium-catalyzed Heck arylations of allyl alcohols in ionic liquids: remarkable base effect on the selectivity. J Org Chem 72:2596–2601

    Google Scholar 

  119. Lee JW, Shin JY, Chun YS, Jang HB, Song CE, Lee S (2010) Toward understanding the origin of positive effects of ionic liquids on catalysis: formation of more reactive catalysts and stabilization of reactive intermediates and transition states in ionic liquids. Acc Chem Res 43:985–994

    CAS  Google Scholar 

  120. Ruan J, Xiao J (2011) From α-arylation of olefins to acylation with aldehydes: a journey in regiocontrol of the Heck reaction. Acc Chem Res 44:614–626

    CAS  Google Scholar 

  121. Shaw BL (1998) Speculations on new mechanisms for Heck reactions. New J Chem 22:77

    CAS  Google Scholar 

  122. Amatore C, Jutand A (2000) Anionic Pd(0) and Pd(II) intermediates in palladium-catalyzed Heck and cross-coupling reactions. Acc Chem Res 33:314–321

    CAS  Google Scholar 

  123. de Vries J G (2006) A unifying mechanism for all high-temperature Heck reactions. The role of palladium colloids and anionic species. Dalton Trans 421–429

    Google Scholar 

  124. Shaw BL (1998) Chelating diphosphine–palladium(II) dihalides, outstandingly good catalysts for Heck reactions of aryl halides. Chem Commun 1863–1864

    Google Scholar 

  125. Phan NTS, Van Der Sluys M, Jones CW (2006) On the nature of the active species in palladium catalyzed Mizoroki–Heck and Suzuki–Miyaura couplings – homogeneous or heterogeneous catalysis, a critical review. Adv Synth Catal 348:609–679

    CAS  Google Scholar 

  126. Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95:2457–2483

    CAS  Google Scholar 

  127. Christopher JM, Paul JS, Welton T (2000) Palladium catalysed Suzuki cross-coupling reactions in ambient temperature ionic liquids. Chem Commun 1249–1250

    Google Scholar 

  128. Miyaura N, Yanagi T, Suzuki A (1981) The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases. Synth Commun 11:513–519

    CAS  Google Scholar 

  129. McLachlan F, Mathews CJ, Smith PJ, Welton T (2003) Palladium-catalyzed Suzuki cross-coupling reactions in ambient temperature ionic liquids: evidence for the importance of palladium imidazolylidene complexes. Organometallics 22:5350–5357

    CAS  Google Scholar 

  130. Rajagopal R, Jarikote DV, Srinivasan KV (2002) Ultrasound promoted Suzuki cross-coupling reactions in ionic liquid at ambient conditions. Chem Commun 616–617

    Google Scholar 

  131. McNulty J, Capretta A, Wilson J, Dyck J, Adjabeng G, Robertson A (2002) Suzuki cross-coupling reactions of aryl halides in phosphonium salt ionic liquid under mild conditions. Chem Commun 1986–1987

    Google Scholar 

  132. Miao W, Chan TH (2003) Exploration of ionic liquids as soluble supports for organic synthesis demonstration with a Suzuki coupling reaction. Org Lett 5:5003–5005

    CAS  Google Scholar 

  133. Zhao D, Fei Z, Geldbach TJ, Scopelliti R, Dyson PJ (2004) Nitrile-functionalized pyridinium ionic liquids: synthesis, characterization, and their application in carbon–carbon coupling reactions. J Am Chem Soc 126:15876–15882

    CAS  Google Scholar 

  134. Albrecht M, Stoeckli-Evans H (2005) Catalytically active palladium pyridylidene complexes: pyridinium ionic liquids as N-heterocyclic carbene precursors. Chem Commun 4705–4707

    Google Scholar 

  135. Gallo V, Mastrorilli P, Nobile CF, Paolillo R, Taccardi N (2005) Ionic liquids as reaction media for palladium-catalysed cross-coupling of Aryldiazonium tetrafluoroborates with potassium organotrifluoroborates. Eur J Inorg Chem 582–588

    Google Scholar 

  136. Yan N, Yang X, Fei Z, Li Y, Kou Y, Dyson PJ (2009) Solvent-enhanced coupling of sterically hindered reagents and aryl chlorides using functionalized ionic liquids. Organometallics 28:937–939

    CAS  Google Scholar 

  137. Lombardo M, Chiarucci M, Trombini C (2009) A recyclable triethylammonium ion-tagged diphenylphosphine palladium complex for the Suzuki–Miyaura reaction in ionic liquids. Green Chem 11:574–579

    CAS  Google Scholar 

  138. Escarcega-Bobadilla MV, Teuma E, Masdeu-Bulto AM, Gomez M (2011) New bicyclic phosphorous ligands: synthesis, structure and catalytic applications in ionic liquids. Tetrahedron 67:421–428

    CAS  Google Scholar 

  139. Jin M-J, Taher A, Kang H-J, Choi M, Ryoo R (2009) Palladium acetate immobilized in a hierarchical MFI zeolite-supported ionic liquid: a highly active and recyclable catalyst for Suzuki reaction in water. Green Chem 11:309–313

    CAS  Google Scholar 

  140. Wei J-F, Jiao J, Feng J-J, Lv J, Zhang X-R, Shi X-Y, Chen Z-G (2009) PdEDTA held in an ionic liquid brush as a highly efficient and reusable catalyst for Suzuki reactions in water. J Org Chem 74:6283–6286

    CAS  Google Scholar 

  141. Calò V, Nacci A, Monopoli A, Montingelli F (2005) Pd nanoparticles as efficient catalysts for Suzuki and stille coupling reactions of aryl halides in ionic liquids. J Org Chem 70:6040–6044

    Google Scholar 

  142. Fernandez F, Cordero B, Durand J, Muller G, Malbosc F, Kihn Y, Teuma E, Gomez M (2007) Palladium catalyzed Suzuki C–C couplings in an ionic liquid: nanoparticles responsible for the catalytic activity. Dalton Trans 5572–5581

    Google Scholar 

  143. Durand J, Teuma E, Malbosc F, Kihn Y, Gomez M (2008) Palladium nanoparticles immobilized in ionic liquid: an outstanding catalyst for the Suzuki C–C coupling. Catal Commun 9:273–275

    CAS  Google Scholar 

  144. Oda Y, Hirano K, Yoshii K, Kuwabata S, Torimoto T, Miura M (2010) Palladium nanoparticles in ionic liquid by sputter deposition as catalysts for Suzuki–Miyaura coupling in water. Chem Lett 39(10):1069–1071

    CAS  Google Scholar 

  145. Yu Y, Hu T, Chen X, Xu K, Zhang J, Huang J (2012) Pd nanoparticles on a porous ionic copolymer: a highly active and recyclable catalyst for Suzuki–Miyaura reaction under air in water. Chem Commun 47:3592–3594

    Google Scholar 

  146. Deshmukh KM, Qureshi ZS, Bhatte KD, Venkatesan KA, Srinivasan TG, Rao PRV, Bhanage BM (2012) One-pot electrochemical synthesis of palladium nanoparticles and their application in the Suzuki reaction. New J Chem 35:2747–2751

    Google Scholar 

  147. Planellas M, Pleixats R, Shafir A (2012) Palladium nanoparticles in Suzuki cross-couplings: tapping into the potential of tris-imidazolium salts for nanoparticle stabilization. Adv Synt Catal 354:651–662

    CAS  Google Scholar 

  148. Song H, Yan N, Fei Z, Kilpin KJ, Scopelliti R, Li X, Dyson PJ (2012) Evaluation of ionic liquid soluble imidazolium tetrachloropalladate pre-catalysts in Suzuki coupling reactions. Catal Today 183:172–177

    CAS  Google Scholar 

  149. Wang J, Xu B, Sun H, Song G (2013) Palladium nanoparticles supported on functional ionic liquid modified magnetic nanoparticles as recyclable catalyst for room temperature Suzuki reaction. Tetrahedron Lett 54:238–241

    Google Scholar 

  150. Stille JK (1986) The palladium-catalyzed cross-coupling reactions of organotin reagents with organic electrophiles. Angew Chem Int Ed Engl 25:508–524

    Google Scholar 

  151. Handy ST, Zhang X (2001) Organic synthesis in ionic liquids: the stille coupling. Org Lett 3:233–236

    CAS  Google Scholar 

  152. Cui YG, Biondi I, Chaubey M, Yang X, Fei ZF, Scopelliti R, Hartinger CG, Li YD, Chiappe C, Dyson PJ (2010) Nitrile-functionalized pyrrolidinium ionic liquids as solvents for cross-coupling reactions involving in situ generated nanoparticle catalyst reservoirs. Phys Chem Chem Phys 12:1834–1841

    CAS  Google Scholar 

  153. Chiappe C, Pieraccini D, Zhao D, Fei Z, Dyson PJ (2006) Remarkable anion and cation effects on stille reactions in functionalised ionic liquids. Adv Synth Catal 348:68–74

    CAS  Google Scholar 

  154. Vitz J, Mac DH, Legoupy S (2007) Ionic liquid supported tin reagents for stille cross coupling reactions. Green Chem 9:431–433

    CAS  Google Scholar 

  155. Sonogashira K (2002) In: Negishi E (ed) Handbook of organopalladium chemistry for organic synthesis. Wiley, New York

    Google Scholar 

  156. Chinchilla R, Najera C (2007) The Sonogashira reaction: a booming methodology in synthetic organic chemistry. Chem Rev 107:874–922

    CAS  Google Scholar 

  157. Fukuyama T, Shinmen M, Nishitani S, Sato M, Ryu I (2002) A copper-free Sonogashira coupling reaction in ionic liquids and its application to a microflow system for efficient catalyst recycling. Org Lett 4:1691–1694

    CAS  Google Scholar 

  158. Kmentová I, Gotov B, Gajda V, Toma S (2003) The Sonogashira reaction in ionic liquids. Monatsh Chem 134:545–547

    Google Scholar 

  159. Park B, Alper H (2004) Recyclable Sonogashira coupling reactions in an ionic liquid, effected in the absence of both a copper salt and a phosphine. Chem Commun 1306–1307

    Google Scholar 

  160. Corma A, Garcia H, Leyva A (2005) Comparison between polyethylenglycol and imidazolium ionic liquids as solvents for developing a homogeneous and reusable palladium catalytic system for the Suzuki and Sonogashira coupling. Tetrahedron 61:9848–9854

    CAS  Google Scholar 

  161. Li Y, Zhang J, Wang W, Miao Q, She X, Pan X (2005) Efficient synthesis of tribenzohexadehydro[12]annulene and its derivatives in the ionic liquid. J Org Chem 70:3285–3287

    CAS  Google Scholar 

  162. Sans V, Trzeciak AM, Luis S, Ziółkowski JJ (2006) PdCl2(P(OPh)3)2 catalyzed coupling and carbonylative coupling of phenylacetylenes with aryl iodides in organic solvents and in ionic liquids. Catal Lett 109:37–41

    CAS  Google Scholar 

  163. Blaszczyk I, Trzeciak AM, Ziolkowski JJ (2009) Catalytic activity of Pd(II) complexes with triphenylphosphito ligands in the Sonogashira reaction in ionic liquid media. Catal Lett 133:262–266

    CAS  Google Scholar 

  164. Rahman MT, Fukuyama T, Kamata N, Sato M, Ryu I (2006) Low pressure Pd-catalyzed carbonylation in an ionic liquid using a multiphase microflow system. Chem Commun 2236–2238

    Google Scholar 

  165. Rahman MT, Fukuyama T, Ryu I, Suzuki K, Yonemura K, Hughes PF, Nokihara K (2006) High throughput evaluation of the production of substituted acetylenes by the Sonogashira reaction followed by the Mizoroki–Heck reaction in ionic liquids, in situ, using a novel array reactor. Tetrahedron Lett 47:2703–2706

    CAS  Google Scholar 

  166. Hierso J-C, Boudon J, Picquet M, Meunier P (2007) The first catalytic method for Heck alkynylation of unactivated aryl bromides (copper-free Sonogashira) in an ionic liquid: 1 mol-% palladium/triphenylphosphane/pyrrolidine in [BMIM][BF4] as a simple, inexpensive and recyclable system. Eur J Org Chem 583–587

    Google Scholar 

  167. de Lima PG, Antunes OAC (2008) Copper-free Sonogashira cross coupling in ionic liquids. Tetrahedron Lett 49:2506–2509

    Google Scholar 

  168. Harjani JR, Abraham TJ, Gomez AT, Garcia MT, Singer RD, Scammells PJ (2010) Sonogashira coupling reactions in biodegradable ionic liquids derived from nicotinic acid. Green Chem 12:650–655

    CAS  Google Scholar 

  169. Iranpoor N, Firouzabadi H, Ahmadi Y (2012) Carboxylate-based, room-temperature ionic liquids as efficient media for palladium-catalyzed homocoupling and Sonogashira–Hagihara reactions of aryl halides. Eur J Org Chem 2:305–311

    Google Scholar 

  170. Zhang J, Đaković M, Popović Z, Wu H, Liu Y (2012) A functionalized ionic liquid containing phosphine-ligated palladium complex for the Sonogashira reactions under aerobic and CuI-free conditions. Catal Commun 17:160–163

    CAS  Google Scholar 

  171. Fukuyama T, Rahman MT, Maetani S, Ryu I (2011) Copper-free Sonogashira coupling reaction in phosphonium amino acid ionic liquids. Chem Lett 40:1027–1029

    CAS  Google Scholar 

  172. Pachon LD, Elsevier CJ, Rothenberg G (2006) Electroreductive palladium-catalysed Ullmann reactions in ionic liquids: scope and mechanism. Adv Synt Catal 348:1705–1710

    Google Scholar 

  173. Calo V, Nacci A, Monopoli A, Cotugno P (2009) Palladium-nanoparticle-catalysed Ullmann reactions in ionic liquids with aldehydes as the reductants: scope and mechanism. Chem Eur J 15:1272–1279

    CAS  Google Scholar 

  174. Monopoli A, Calò V, Ciminale F, Cotugno P, Angelici C, Cioffi N, Nacci A (2010) Glucose as clean and renewable reductant in the Pd-nanoparticles-catalyzed reductive homocoupling of bromo- and chloro-arenes in water. J Org Chem 75:3908–3911

    CAS  Google Scholar 

  175. Monopoli A, Nacci A, Calò V, Ciminale F, Cotugno P, Mangone A, Giannossa LC, Azzone P, Cioffi N (2010) Palladium/zirconium oxide nanocomposite as a highly recyclable catalyst for C–C coupling reactions in water. Molecules 15:4511–4525

    CAS  Google Scholar 

  176. Cheng J, Tang L, Xu J (2010) An economical, green pathway to biaryls: palladium nanoparticles catalyzed Ullmann reaction in ionic liquid/supercritical carbon dioxide system. Adv Synt Catal 352:3275–3286

    CAS  Google Scholar 

  177. Cheng J, Zhang G, Du J, Tang L, Xu J, Li J (2011) New role of graphene oxide as active hydrogen donor in the recyclable palladium nanoparticles catalyzed Ullmann reaction in environmental friendly ionic liquid/supercritical carbon dioxide system. J Mat Chem 21:3485–3494

    CAS  Google Scholar 

  178. Negishi E, King AO, Okukado N (1977) J Org Chem 42:1821–1823

    CAS  Google Scholar 

  179. Negishi E (1982) Palladium- or nickel-catalyzed cross coupling a new selective method for carbon–carbon bond formation. Acc Chem Res 15:340–348

    CAS  Google Scholar 

  180. Sirieix J, Oberger M, Betzemeier B, Knochel P (2000) Palladium catalyzed cross-couplings of organozincs in ionic liquids. Synlett 1613–1615

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Mastrorilli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mastrorilli, P., Monopoli, A., Dell’Anna, M.M., Latronico, M., Cotugno, P., Nacci, A. (2013). Ionic Liquids in Palladium-Catalyzed Cross-Coupling Reactions. In: Dupont, J., Kollár, L. (eds) Ionic Liquids (ILs) in Organometallic Catalysis. Topics in Organometallic Chemistry, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2013_64

Download citation

Publish with us

Policies and ethics