Skip to main content

Late Transition Metal Catalysts for the Copolymerization of Olefins and Polar Monomers

  • Chapter
  • First Online:
Topics in Organometallic Chemistry

Part of the book series: Topics in Organometallic Chemistry

Abstract

The evolution of olefin polymerization catalysis since Karl Ziegler’s and Giulio Natta’s Nobel Prize-winning discoveries in the mid-1950s has involved a prolific interplay of polymer science and organometallic chemistry and led to the development and commercial deployment of catalysts that rival the activities of enzymes and systems, yielding polyolefins possessing structures and physical properties that allow them to be applied in countless applications worldwide. In contrast, commercial processes for the copolymerization of ethylene with polar monomers such as acrylate and vinyl acetate still exclusively employ free radical processes. This chapter reviews recent developments in the catalytic copolymerization of ethylene and these polar comonomers, including well-defined, single-component catalysts capable of copolymerizing (for example) acrylates and vinyl ethers to high molecular weight, linear, random copolymers.

1. Introduction

2. Copolymerization of Ethylene with Polar Comonomers

3. Linear, Random Copolymers of Ethylene and Polar Comonomers

4. Conclusion

References

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Padwa AR (1989) Prog Polym Sci 14:811

    Article  CAS  Google Scholar 

  2. Patil AO, Schulz DN, Novak BM (1998) Functional polymers: modern synthetic methods and novel structures. ACS Symposium Series, vol 704. American Chemical Society, Washington, DC

    Google Scholar 

  3. Killian CM (2001) Chem Eng News 79(43):35–36

    Google Scholar 

  4. Boffa LS, Novak BM (2000) Chem Rev 100:1479–1495

    Article  PubMed  CAS  Google Scholar 

  5. Ittel SD, Johnson LK, Brookhart M (2000) Chem Rev 100:1160–1205

    Article  CAS  Google Scholar 

  6. Drent E, van Broekhoven JAM, Doyle MJ, Wong PK (1995) In: BritzingerGRZiegler catalysts. Springer, Berlin Heidelberg New York, pp 481–496

    Google Scholar 

  7. SRI International (2002) SRI International receives polymer patent portfolios from Shell Oil Company. SRI, Menlo Park, CA www.sri.com/news/releases/07-01-02.htmlLast accessed 9 Sept 2008

  8. SRI International (2006) SRI International licenses high performance polymer technology to Asahi Kasei Fibers. SRI, Menlo Park, CA http://www.sri.com/news/releases/101106.html. Last accessed 9 Sept 2008

  9. SRI International (2002) Carilon thermoplastic polymers. SRI Menlo Park, CA www.sri.com/rd/carilon.pdf. Last accessed 9 Sept 2008

    Google Scholar 

  10. McMillan FM (1979) The chain straighteners. Macmillan, London

    Google Scholar 

  11. SRI International (2000) Chemical economics handbook SRI, Menlo Park, CA 1999

    Google Scholar 

  12. Ewen J (1997) Scientific American, May 1997, pp 86–91

    Google Scholar 

  13. Hagman JF, Crary JW (1985) In: Mark HF, Bikales NM, Overberger CG, Menges G, Kroschwitz JI (eds) Encyclopedia of polymer science and engineering, vol 1. Wiley-Interscience, New York, p 325

    Google Scholar 

  14. Boor J (1979) Ziegler–Natta catalysts and polymerizations. Academic, New York

    Google Scholar 

  15. Chung TC, Rhubright D (1993) Macromolecules 26:3019

    Article  CAS  ADS  Google Scholar 

  16. Hamada Y, Machida S, Amano J, Asahi S (1990) JP Patent 02308803 21 Dec 1990 to Idemitsu Kosan Co., Ltd., Japan

    Google Scholar 

  17. Tanaka M, Machida S (1988) EP Patent Application 283972, 28 Sept 1988 to Idemitsu Kosan Co., Ltd., Japan

    Google Scholar 

  18. Tanaka M, Machida S, Uoi M (1989) US Patent 4833224, 27 June 1989 to Idemitsu Kosan Co., Ltd., Japan.

    Google Scholar 

  19. Tanaka M, Machida S (1987) JP Patent 63270709 to Idemitsu Kosan Co., Ltd., Japan, priority date 3 April 1987

    Google Scholar 

  20. Novak BM, Hiromitsu T (1999) Polym Mater Sci Eng 80:45. JP Patent 02308803

    CAS  Google Scholar 

  21. Marques MM, Correia SG, Ascenso JR, Ribeiro AFG, Gomes PT, Dias AR, Foster P, Rausch MD, Chien JCWJ (1999) Polym Sci Part A: Polym Chem 37:2457

    Article  CAS  ADS  Google Scholar 

  22. McLain SJ, McCord EF, Arthur SD, Hauptman E, Feldman J, Nugent WA, Johnson LK, Mecking S, Brookhart M (1997) Polym Mater Sci Eng 76:246–247

    CAS  Google Scholar 

  23. Bansleben DA, Huynh-Tran T-CT, Blanski RL, Hughes PA, Roberts WP, Grubbs RH, Hatfield GR (1998) WO Patent Application 9950331 to Cryovac, Inc., priority date 31 March 1998

    Google Scholar 

  24. Crabtree RH (1988) The organometallic chemistry of the transition metals. Wiley-Interscience, New York, p 51

    Google Scholar 

  25. Johnson LK, Killian CM, Brookhart M (1995) J Am Chem Soc 117:6414–6415

    Article  CAS  Google Scholar 

  26. Goodall BL et al. (1998) Polym Prepr (Am Chem Soc Div Polym Chem) 39:(1)216–217

    CAS  Google Scholar 

  27. Johnson LK, Mecking S, Brookhart M (1996) J Am Chem Soc 118:267–268

    Article  MATH  CAS  Google Scholar 

  28. Goodall BL (2008) In: Late transition metal olefin polymerization. Wiley, New York

    Google Scholar 

  29. Goodall BL (2001) Encyclopedia of materials: Science and Technology. Elsevier, Amsterdam, (2001) 1959–1963

    Google Scholar 

  30. Britovsek GJP, Gibson VC, Wass DF (1999) Angew Chem Int Ed 38:429

    Article  Google Scholar 

  31. Gibson VC, Spizmesser SK (2003)Chem Rev 103:283–315

    Article  PubMed  CAS  Google Scholar 

  32. Haras A, Anderson GDW, Michalak A, Rieger B, Ziegler T (2006) Organometallics 25:(19)4491–4497

    Article  CAS  Google Scholar 

  33. Meinhard D, Wegner M, Kipiani G, Hearley A, Reuter P, Fischer S, Marti O, Rieger B (2007) J Am Chem Soc 129:(29)9182–9191

    Article  PubMed  CAS  Google Scholar 

  34. Jia L, Yang X, Ishihara A, Marks TJ (1995) Organometallics 14:(7)3135–3137

    Article  CAS  Google Scholar 

  35. McLain SJ, Sweetman KJ, Johnson LK, McCord E (2002) Polym Mater Sci Eng 86:320–321

    CAS  Google Scholar 

  36. Matsumura K, Fukumoto O (1971) J Poly Sci Part A-1:9471–483

    Article  CAS  Google Scholar 

  37. Popeney CS, Camacho DH, Guan Z (2007) J Am Chem Soc 129:(33)10062–10063

    Article  PubMed  CAS  Google Scholar 

  38. Camacho DH, Salo EV, Ziller JW, Guan Z (2004) Angew Chem Intl Ed 43:(14)1821–1825

    Article  CAS  Google Scholar 

  39. Philipp DM, Muller RP, Goddard WA, Storer J, McAdon M, Mullins M (2002) J Am Chem Soc 124:10198–10210

    Article  PubMed  CAS  Google Scholar 

  40. Michalak A, Ziegler T (2001) J Am Chem Soc 123:12266–12278

    Article  PubMed  CAS  Google Scholar 

  41. Michalak A, Ziegler T (2001) Organometallics 20:1521–1532

    Article  CAS  Google Scholar 

  42. Younkin TR, Connor EF, Henderson JL, Friederich SK, Grubbs RH, Bansleben DA (2000) Science 297:460–462

    Article  ADS  Google Scholar 

  43. Connor EF, Younkin TR, Henderson JI, Waltman, AW, Grubbs RH (2003)Chem Commun :20032272–2273

    Article  CAS  Google Scholar 

  44. Waltman AW, Younkin TR, Grubbs RH (2004) Organometallics 23:(22)5121–5123

    Article  CAS  Google Scholar 

  45. Waltman AW, Grubbs Robert H (2004) Organometallics 23:(13)3105–3107

    Article  CAS  Google Scholar 

  46. Waltman AW, Ritter T, Grubbs RH (2006) Organometallics25:(18)4238–4239

    Article  CAS  Google Scholar 

  47. Goodall BL Grubbs RH and Waltman AW (2005) US Patent Application Rohm and Haas Company, US 2005215738 A1

    Google Scholar 

  48. Drent E, van Dijk R, van Ginkel R, van Oort B, Pugh RI (2002) JCS Chem Commun 2002:744–745

    Google Scholar 

  49. Behr A, Keim W (1985) Arabian J Sci Eng 10:(4)377–390

    CAS  Google Scholar 

  50. Allen NT, Goodall BL, McIntosh LH (2007)(Rohm and Haas Company). U.S. Patent Application. Publ. (2007), Rohm and Haas Company, US 20070287627 A1

    Google Scholar 

  51. Allen NT, Goodall BL, McIntosh LH (2007)(Rohm and Haas Company) U.S. Patent Application. Publ. (2007) Rohm and Haas Company, US 20070049712 A1

    Google Scholar 

  52. Luo S, Vela J, Lief GR, Jordan RF (2007) J Am Chem Soc 129:8946–8947

    Article  PubMed  CAS  Google Scholar 

  53. Weng W, Shen Z, Jordan RF (2007) J Am Chem Soc 129:15460–15461

    Article  CAS  Google Scholar 

  54. Skupov KM, Piche L, Claverie JP (2008) Macromolecules41:(7)2309–2310

    Article  CAS  ADS  Google Scholar 

  55. Skupov KM, Marella PR, Hobbs JL, McIntosh LH, Goodall BL, Claverie JP (2006) Macromolecules39:(13)4279–4281

    Article  CAS  ADS  Google Scholar 

  56. Allen NT, Goodall BL, Kirk TC, McIntosh LH (2008) US Patent (Rohm and Haas Company),. U.S. 7,339,075 B2 (2008)

    Google Scholar 

  57. Skupov KM, Marella PR, Simard M, Yap GPA, Allen NT, Conner D, Goodall BL, Claverie JP (2007) Macromol Rapid Commun28:(20)2033–2038

    Article  CAS  Google Scholar 

  58. Stibrany RT, Schulz DN, Kacker S, Patil AO, Baugh LS, Sissano JA, Kacker S, Berluche E, Stibrany RT, Schulz DN, and Rucker SP (2006) US Patent, (Exxon Research and Engineering Co.,). US 6,417,303 B1;.

    Google Scholar 

  59. Baugh LS, Sissano JA, Kacker S, BerlucheE, Stibrany RT, Schulz DN, Rucker SP (2006) J Polym Sci Part A: Polym Chem 44:(6)1817–1840

    Article  CAS  ADS  Google Scholar 

  60. Nagel M, Paxton WF, Sen A, Zakharov L, Rheingold AL (2004) Macromolecules37:(25)9305–9307

    Article  CAS  ADS  Google Scholar 

  61. Sen A, Borkar S (2007) J Organometal Chem692:(15)3291–3299

    Article  CAS  Google Scholar 

  62. Nagel M, Sen A (2006) Organometallics25:(20)4722–4724

    Article  CAS  Google Scholar 

  63. Tian G, Boone HW, Novak BM (2001) Macromolecules 34:(22)7656–7663

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian L. Goodall .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London

About this chapter

Cite this chapter

Goodall, B. (2008). Late Transition Metal Catalysts for the Copolymerization of Olefins and Polar Monomers. In: Topics in Organometallic Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3418_2008_6

Download citation

  • DOI: https://doi.org/10.1007/3418_2008_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics