Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

  • 569 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yoshie O, Imai T, Nomiyama H (2001) Chemokines in immunity. Adv Immunol 78: 57–110

    CAS  PubMed  Google Scholar 

  2. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3: 710–720

    Article  CAS  PubMed  Google Scholar 

  3. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415: 389–395

    Article  CAS  PubMed  Google Scholar 

  4. Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ (2004) Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 22: 181–215

    Article  PubMed  Google Scholar 

  5. Cole AM, Ganz T, Liese AM, Burdick MD, Liu L, Strieter RM (2001) Cutting edge: IFN-inducible ELR-CXC chemokines display defensin-like antimicrobial activity. J Immunol 167: 623–627

    CAS  PubMed  Google Scholar 

  6. Hieshima K, Ohtani H, Shibano M, Izawa D, Nakayama T, Kawasaki Y, Shiba F, Shiota M, Katou F, Saito T et al (2003) CCL28 has dual roles in mucosal immunity as a chemokine with broad-spectrum antimicrobial activity. J Immunol 170: 1452–1461

    CAS  PubMed  Google Scholar 

  7. Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J, Oppenheim JJ (2003) Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. J Leukoc Biol 74: 448–455

    CAS  PubMed  Google Scholar 

  8. Matloubian M, David A, Engel S, Ryan JE, Cyster JG (2000) A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat Immunol 1: 298–304

    Article  CAS  PubMed  Google Scholar 

  9. Wilbanks A, Zondlo SC, Murphy K, Mak S, Soler D, Langdon P, Andrew DP, Wu L, Briskin M (2001) Expression cloning of the STRL33/BONZO/TYMSTRligand reveals elements of CC, CXC, and CX3C chemokines. J Immunol 166: 5145–5154

    CAS  PubMed  Google Scholar 

  10. Shimaoka T, Kume N, Minami M, Hayashida K, Kataoka H, Kita T, Yonehara S (2000) Molecular cloning of a novel scavenger receptor for oxidized low density lipoprotein, SR-PSOX, on macrophages. J Biol Chem 275: 40663–40666

    Article  CAS  PubMed  Google Scholar 

  11. Shimaoka T, Nakayama T, Hieshima K, Kume N, Fukumoto N, Minami M, Hayashida K, Kita T, Yoshie O, Yonehara S (2004) Chemokines generally exhibit scavenger receptor activity through their receptor-binding domain. J Biol Chem 279: 26807–26810

    Article  CAS  PubMed  Google Scholar 

  12. Domachowske JB, Bonville CA, Dyer KD, Rosenberg HF (1998) Evolution of antiviral activity in the ribonuclease A gene superfamily: evidence for a specific interaction between eosinophil-derived neurotoxin (EDN/RNase 2) and respiratory syncytial virus. Nucleic Acids Res 26: 5327–5332

    CAS  PubMed  Google Scholar 

  13. Hornef MW, Putsep K, Karlsson J, Refai E, Andersson M (2004) Increased diversity of intestinal antimicrobial peptides by covalent dimer formation. Nat Immunol 5: 836–843

    Article  CAS  PubMed  Google Scholar 

  14. Hughes AL (1999) Evolutionary diversification of the mammalian defensins. Cell Mol Life Sci 56: 94–103

    CAS  PubMed  Google Scholar 

  15. Schutte BC, Mitros JP, Bartlett JA, Walters JD, Jia HP, Welsh MJ, Casavant TL, McCray PB Jr (2002) Discovery of five conserved beta-defensin gene clusters using a computational search strategy. Proc Natl Acad Sci USA 99: 2129–2133

    Article  CAS  PubMed  Google Scholar 

  16. Ayabe T, Ashida T, Kohgo Y, Kono T (2004) The role of Paneth cells and their antimicrobial peptides in innate host defense. Trends Microbiol 12: 394–398

    Article  CAS  PubMed  Google Scholar 

  17. Cunliffe RN (2003) Alpha-defensins in the gastrointestinal tract. Mol Immunol 40: 463–467

    Article  CAS  PubMed  Google Scholar 

  18. Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89: 3503–3521

    CAS  PubMed  Google Scholar 

  19. Chertov O, Yang D, Howard OM, Oppenheim JJ (2000) Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol Rev 177: 68–78

    Article  CAS  PubMed  Google Scholar 

  20. Krensky AM (2000) Granulysin: a novel antimicrobial peptide of cytolytic T lymphocytes and natural killer cells. Biochem Pharmacol 59: 317–320

    Article  CAS  PubMed  Google Scholar 

  21. Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, Kiessling R, Jornvall H, Wigzell H, Gudmundsson GH (2000) The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96: 3086–3093

    CAS  PubMed  Google Scholar 

  22. Smith JJ, Travis SM, Greenberg EP, Welsh MJ (1996) Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85: 229–236

    Article  CAS  PubMed  Google Scholar 

  23. Putsep K, Carlsson G, Boman HG, Andersson M (2002) Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet 360: 1144–1149

    Article  CAS  PubMed  Google Scholar 

  24. Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS, Stratman JL, Hultgren SJ, Matrisian LM, Parks WC (1999) Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286: 113–117

    CAS  PubMed  Google Scholar 

  25. Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414: 454–457

    Article  CAS  PubMed  Google Scholar 

  26. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OM et al (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286: 525–528

    Article  CAS  PubMed  Google Scholar 

  27. Fujiie S, Hieshima K, Izawa D, Nakayama T, Fujisawa R, Ohyanagi H, Yoshie O (2001) Proinflammatory cytokines induce liver and activation-regulated chemokine/macrophage inflammatory protein-3alpha/CCL20 in mucosal epithelial cells through NF-kappaB [correction of NK-kappaB]. Int Immunol 13: 1255–1263

    Article  CAS  PubMed  Google Scholar 

  28. Nakayama T, Fujisawa R, Yamada H, Horikawa T, Kawasaki H, Hieshima K, Izawa D, Fujiie S, Tezuka T, Yoshie O (2001) Inducible expression of a CC chemokine liver-and activation-regulated chemokine (LARC)/macrophage inflammatory protein (MIP)-3 alpha/CCL20 by epidermal keratinocytes and its role in atopic dermatitis. Int Immunol 13: 95–103

    Article  CAS  PubMed  Google Scholar 

  29. Shirane J, Nakayama T, Nagakubo D, Izawa D, Hieshima K, Shimomura Y, Yoshie O (2004) Corneal epithelial cells and stromal keratocytes efficiently produce CC chemokine-ligand 20 (CCL20) and attract cells expressing its receptor CCR6 in mouse herpetic stromal keratitis. Curr Eye Res 28: 297–306

    Article  CAS  PubMed  Google Scholar 

  30. Starner TD, Barker CK, Jia HP, Kang Y, McCray BP Jr (2003) CCL20 is an inducible product of human airway epithelia with innate immune properties. Am J Respir Cell Mol Biol 29: 627–633

    Article  CAS  PubMed  Google Scholar 

  31. Perez-Canadillas JM, Zaballos A, Gutierrez J, Varona R, Roncal F, Albar JP, Marquez G, Bruix M (2001) NMR solution structure of murine CCL20/MIP-3alpha, a chemokine that specifically chemoattracts immature dendritic cells and lymphocytes through its highly specific interaction with the beta-chemokine receptor CCR6. J Biol Chem 276: 28372–28379

    Article  CAS  PubMed  Google Scholar 

  32. De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O (2000) LL-37, the neutrophil granule-and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192: 1069–1074

    Google Scholar 

  33. Krijgsveld J, Zaat SA, Meeldijk J, van Veelen PA, Fang G, Poolman B, Brandt E, Ehlert JE, Kuijpers AJ, Engbers H et al (2000) Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines. J Biol Chem 275: 20374–20381

    Article  CAS  PubMed  Google Scholar 

  34. Tang YQ, Yeaman MR, Selsted ME (2002) Antimicrobial peptides from human platelets. Infect Immun 70: 6524–6533

    Article  CAS  PubMed  Google Scholar 

  35. Pan J, Kunkel EJ, Gosslar U, Lazarus N, Langdon P, Broadwell K, Vierra MA, Genovese MC, Butcher EC, Soler D (2000) A novel chemokine ligand for CCR10 and CCR3 expressed by epithelial cells in mucosal tissues. J Immunol 165: 2943–2949

    CAS  PubMed  Google Scholar 

  36. Wang W, Soto H, Oldham ER, Buchanan ME, Homey B, Catron D, Jenkins N, Copeland NG, Gilbert DJ, Nguyen N et al (2000) Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2). J Biol Chem 275: 22313–22323

    CAS  PubMed  Google Scholar 

  37. Ishikawa-Mochizuki I, Kitaura M, Baba M, Nakayama T, Izawa D, Imai T, Yamada H, Hieshima K, Suzuki R, Nomiyama H et al (1999) Molecular cloning of a novel CC chemokine, interleukin-11 receptor alpha-locus chemokine (ILC), which is located on chromosome 9p13 and a potential homologue of a CC chemokine encoded by molluscum contagiosum virus. FEBS Lett 460: 544–548

    Article  CAS  PubMed  Google Scholar 

  38. Morales J, Homey B, Vicari AP, Hudak S, Oldham E, Hedrick J, Orozco R, Copeland NG, Jenkins NA, McEvoy LM et al (1999) CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells. Proc Natl Acad Sci USA 96: 14470–14475

    Article  CAS  PubMed  Google Scholar 

  39. Homey B, Wang W, Soto H, Buchanan ME, Wiesenborn A, Catron D, Muller A, McClanahan TK, Dieu-Nosjean MC, Orozco R et al (2000) Cutting edge: the orphan chemokine receptor G protein-coupled receptor-2 (GPR-2, CCR10) binds the skin-associated chemokine CCL27 (CTACK/ALP/ILC). J Immunol 164: 3465–3470

    CAS  PubMed  Google Scholar 

  40. Jarmin DI, Rits M, Bota D, Gerard NP, Graham GJ, Clark-Lewis I, Gerard C (2000) Cutting edge: identification of the orphan receptor G-protein-coupled receptor 2 as CCR10, a specific receptor for the chemokine ESkine. J Immunol 164: 3460–3464

    CAS  PubMed  Google Scholar 

  41. Tsai H, Bobek LA (1998) Human salivary histatins: promising anti-fungal therapeutic agents. Crit Rev Oral Biol Med 9: 480–497

    CAS  PubMed  Google Scholar 

  42. Sauty A, Dziejman M, Taha RA, Iarossi AS, Neote K, Garcia-Zepeda EA, Hamid Q, Luster AD (1999) The T cell-specific CXC chemokines IP-10, Mig, and I-TAC are expressed by activated human bronchial epithelial cells. J Immunol 162: 3549–3558

    CAS  PubMed  Google Scholar 

  43. Steinbrecher UP (1999) Receptors for oxidized low density lipoprotein. Biochim Biophys Acta 1436: 279–298

    CAS  PubMed  Google Scholar 

  44. Peiser L, Mukhopadhyay S, Gordon S (2002) Scavenger receptors in innate immunity. Curr Opin Immunol 14: 123–128

    Article  CAS  PubMed  Google Scholar 

  45. Shimaoka T, Nakayama T, Kume N, Takahashi S, Yamaguchi J, Minami M, Hayashida K, Kita T, Ohsumi J, Yoshie O et al (2003) Cutting edge: SR-PSOX/CXC chemokine ligand 16 mediates bacterial phagocytosis by APCs through its chemokine domain. J Immunol 171: 1647–1651

    CAS  PubMed  Google Scholar 

  46. Gordon S (2002) Pattern recognition receptors: doubling up for the innate immune response. Cell 111: 927–930

    Article  CAS  PubMed  Google Scholar 

  47. Farzan M, Mirzabekov T, Kolchinsky P, Wyatt R, Cayabyab M, Gerard NP, Gerard C, Sodroski J, Choe H (1999) Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96: 667–676

    Article  CAS  PubMed  Google Scholar 

  48. Murphy PM (1994) The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol 12: 593–633

    Article  CAS  PubMed  Google Scholar 

  49. Monteclaro FS, Charo IF (1997) The amino-terminal domain of CCR2 is both necessary and sufficient for high affinity binding of monocyte chemoattractant protein 1. Receptor activation by a pseudo-tethered ligand. J Biol Chem 272: 23186–23190

    Article  CAS  PubMed  Google Scholar 

  50. Proudfoot AE, Handel TM, Johnson Z, Lau EK, LiWang P, Clark-Lewis I, Borlat F, Wells TN, Kosco-Vilbois MH (2003) Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci USA 100: 1885–1890

    Article  CAS  PubMed  Google Scholar 

  51. Morrison G, Kilanowski F, Davidson D, Dorin J (2002) Characterization of the mouse beta defensin 1, Defb1, mutant mouse model. Infect Immun 70: 3053–3060

    CAS  PubMed  Google Scholar 

  52. Moser C, Weiner DJ, Lysenko E, Bals R, Weiser JN, Wilson JM (2002) beta-Defensin 1 contributes to pulmonary innate immunity in mice. Infect Immun 70: 3068–3072

    Article  CAS  PubMed  Google Scholar 

  53. Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL (2003) Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422: 522–526

    Article  CAS  PubMed  Google Scholar 

  54. Hoover DM, Boulegue C, Yang D, Oppenheim JJ, Tucker K, Lu W, Lubkowski J (2002) The structure of human macrophage inflammatory protein-3alpha /CCL20. Linking antimicrobial and CC chemokine receptor-6-binding activities with human betadefensins. J Biol Chem 277: 37647–37654

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Yoshie, O. (2006). Antimicrobial and related activities of chemokines. In: Moser, B., Letts, G.L., Neote, K. (eds) Chemokine Biology — Basic Research and Clinical Application. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7423-3_10

Download citation

Publish with us

Policies and ethics