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Abstract. A perfect nonlinear Sbox is a substitution transformation with evenly die- 
tributed directional derivatives. Since the method of differential cryptanalysis presented 
by E. Biham and A. Shamir makes use of nonbalanced directional derivatives, the per- 
fect nonlinear Sboxes are immune to this attack. The main result is that for a perfect 
nonlinear Sbox the number of input variables is at least twice the number of output vari- 
ables. Also two different construction methods are given. The first one is based on the 
Maiorana-McFarland construction of bent functions and is easy and efficient to implement. 
The second method generalizes Dillon's construction of difference sets. 

1. Introduction 
The study of the properties of the substitution transformations of DES has resulted 

in a wealth of nonlinearity criteria for Boolean functions, whose applications are not 
restricted to DES-like block ciphers but are useful in the analysis of any cryptographic 
algorithm where nonlinear transformations are used. An overview of nonlinearity criteria 
with extensive bibliography is given in [16]. 

The two most successful publicly presented attacks on DES make use of the so called 
linear structures of S-boxes. Chaum and Evertse [3] were able to find six-bit blocks 
such that when they are xored to the input of an S-box the output is always changed 
by a same (zero or nonzero) block. By chaining these linear structures they are able to 
successfully attack DES up till six rounds. 

Biham and Shamir develop in [2] this idea further and are able to attack more rounds. 
They only require that with certain changes in the input of an S-box the change in the 
output is known with a high probability. Therefore they look for input changes with 
most unevenly distributed output changes. 

In this paper we study substitution transformations with evenly distributed output 
changes. Their importance is also noticed in [4] We shall show that such perfect nonlin- 
ear transformations exist and can be efficiently implemented but only when the input 
block is twice as long as the output block. 

In [12] Meier and Staffelbach discuss perfect nonlinear Boolean functions, which are 
defined to be at maximum distance from linear structures. These functions are the same 
as the previously known bent functions [15]. To construct perfect nonlinear S-boxes it 
is necessary that each output bit is a perfect nonlinear function of the input. But it is 
not sufficient, indeed, also every linear combination of the output variables have to be 
perfect nonlinear. We present two different constructions to achieve this property. 

In 52 we recall the basic facts of q-ary bent functions as their definition and con- 
struction by the Maiorana-McFarland method. We also present a second construction 
which makes use of the field structure of GF(p") and generalizes Dillon's construction of 
difference set in GF(2") given in IS]. The property of perfect nonlinearity for functions 
from Z; to Zp", p prime, is studied in $3. The main result is that perfect nonlinear func- 
tions, such that all linear combinations of output variables are regular bent functions 
of the input, exist only if n 2 2772. Using a linear feedback shift register to generate a 
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suitable set of permutations an ef€icient construction of perfect nonlinear functions is 
given in $4. Since perfect nonlinear functions are quite rare it might be a good idea 
to begin a construction of a cryptographic function from a perfect nonlinear function 
and then modify it to satisfy other requirements. In 94 we present an example how bal- 
ancedness can be achieved without completely destroying the original good property. 
In 55 a different construction is presented which also gives a wealth of perfect nonlinear 
functions. 

2. Bent functions 
Let q be a positive integer and denote the set of integers modulo q by Z,. Let 

i a  u = e  9 

be the qth root of unity in C, where i = fl. Let f be a function from the set Z t  
of n-tuples of integers modulo q to 2,. Then the Fourier tramform of uf is defined as 
follows 

The following definition is given in [7]. 
DEFINITION 2.1. A function f : Z; -+ 2, is bent if IF(w)I = 1, for all w E Z i .  

Let f and g be two functions from Zi to Z,. Then their shifted croJJ-comeZation 

Fkom these definitions the following characterization is immediate. 

THEOREM 2.1. A function f : Z; -+ Z, is bent if and only if 

for all h e a r  (or &ne) functions L : ZF + Z, and w E Z r .  

minimum correlation to the set of all f f i e  functions (see Theorem 3.5 in [12]). 

THEOREM 2.2. A function f : 2; + Z, is bent if and only if 

Analogously to the binary case it then follows that the q-ary bent functions have the 

In [7] also the following result can be found. 

~ ( f ,  f)(w) = 0, for all w # 0. 

This is in the binary case exactly the property of perfect nonlinearity used by Meier 
and Staffelbach [12] to define bent functions. In 1131 the following generalization is 
made. 
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DEFINITION 2 .2 .  A function f : Z; + Z, is perfect nonlinear if for every fixed w E 
Z;, w # 0, the difference 

obtains each value k E Z, for exactly 9"-' values ofx E Z;. 

THEOREM 2.3. A perfect nonlinear function fiom Z t  to Z, is bent. The converse is 
true if q is a prime. 

The following theorem is due to Kumar, Scholtz and Welch [7]. For q = 2 it was 
proved by Maiorana (unpublished, see [6]) generalizing the construction method of 
Itothaus [15]. An equivalent method is given by McFarland in [ll]. 

THEOREM 2.4.  Let g : Zr + Z, be any function and A : Zr + Zr any permutation. 
Then the function 

f (x  + w) - f(x) 

f : 23" = zp" x zp" + z,, f(x1,xz) = A(X1). x2 + g(x1) 

is a regular bent function. 

A third equivalent way of looking at this construction in the binary case is to make 
use of Hadamard matrices as described in [8]. This method is also discussed in [14]. 
The constructions given in [l] and [17] are special cases of the Maiorana-MacFarland 
construction. 

A completely different construction of bent functions in GF(2n) with an even n is 
due to Dillon. Indeed, the main result of [5] is that this method gives bent functions 
which are not &ely equivalent to any Maiorana function. We have the following 
generalization of Dillon's construction. 

THEOREM 2.5. Let p be a prime and n = 2m. Denote by G = GF(pm) the subfield of 
F = GF@") and let a be a primitive element in F. Then the cosets of G' 

H; = aiG', i = 0,1,. . . ,pm, 

are all distinct and their union is the set of non-zero elements of F.  Assume that the set 
of indices 1,2,. . . ,pm is divided into p disjoint subsets Ao, A l ,  . . . , AP-1 of cardinality 
pm-' each. Then the function f : GF(p") + GF(p),  

is a bent function in F.  

The proof of this theorem is a straightforward but lengthy checking of the condition 
on perfect nonlinearity. The main argument is that b r  every nonzero w the elements 
x + w belong to distinct cosets of G for distinct elements x in a fixed coset. 
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3. Perfect nonlinear transformation 
We give the following further generalization of perfect nonlinearity. 

DEFINITION 3.1. A function f : Z t  --t Z y  is perfect nonlinear if for every fixed w E Z t  
the difference 

f(" + w) - f(x) 

obtains each value y E Z y  for qn-'" values of x. 

We call the function 

D,f : z; -+ zr, x H f(x + w) - f(x), 

the derivative of f to the direction w. Then we can say that f is perfect nonlinear if and 
only if its derivatives to all nonzero directions are balanced functions. By definition, a 
function g : Z;f --t 2; is balanced if and only if for every c E 2 7 ,  c # 0 the function 
x H c . g(x) is balanced. Since moreover, 

D , ( c .  f )  = c . D w f ,  

we have the following characterization. 
THEOREM 3.1. A function f : Z i  + Zy is perfect nonlinear if and only if for every 
nonzero c E Z: the function 

is perfect nonlinear in the sense of Definition 2.2. 

In other words, a blockfunction is perfect nonlinear if and only if every linear combi- 
nation of its output coordinates is perfect nonlinear. 

Assume now that p is a prime. Then perfect nonlinearity and bentness of a Zp-valued 
function in Zi axe equivalent concepts, see Theorem 2.3. The value distributions of 
p a r y  bent functions are derived in [13]. Let us now consider the value distributions of 
perfect nonlinear blockfunctions. Recall that a function f : Z; -+ Z, is called a regular 
bent function if there is a function g : ZF -t Z, such that F(w) = ug(,), for all w E ZF 
([7], (131). If p = 2 then all bent functions are regular. 

THEOREM 3.2.. Let n be even and f : Zp" + Zp" a perfect nonlinear function such that 
the functions 

x H c * f(x) 

x t+ c .  f(x), c E zpm,c # 0 ,  

are regular bent functions. Let 

ay = #{x E z; I f(x) = y}, y E zpm. 

Then 
ay = pf-mby, for every y, 

where by is a positive integer not divisible by p .  Also, 

p n - m  + pf-m - pf 5 ay 5 pn-m - pt-m + p?. 



382 

PROOF: Let c E Zp", c # 0 and denote the Fourier transform of the function x H c.f(x) 
by Fc(0). Then 

Taking the sum over c # 0 we obtain 

Let S = Ccz0 F,(O). Then we have 

c ay( -1)  + .o(p" - 1) = P f S  
Y#O 

from which 
s = pn-t + aopm-P. 

To prove the claim it suffices to show that S is an integer not divisible by p .  Since n is 
even, S is a rational number. Let 

rc = #{c E Zp" \ (0) I Fc(0) = t i k } ,  k = O , l , .  . . , p  - 1. 

Then, due to the regularity assumption, 

k=O k=O 

and hence 
rp-1, ro - s = r1 = l-2 = ... = 

from which it follows that S is an integer and p devides c r k  - S = p" - 1 - S, which 
proves the claim. 

The estimates for ay follow from the estimates 

Indeed, in the context of this theorem, we always have n 1 2m. Since ay is an 
integer and binary bent functions are regular and exist only if the input space is of even 
dimension, we have the following 
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COROLLARY. For a perfect nonlinear binary S-box the dimension of the input space is 
at least twice the dimension of the output space. 

4. A construction based on Maiorana-McFarland method 
Let n be an even positive integer, f : Z; * ZF a function and denote the m output 

coordinate functions of f by f,, fz,, . . , fm. Assume that every f;, i = 1,2,. . . , m, is a 
Maiorana function, i.e., has the form 

f i ( x )  = f i ( x 1 , ~ 2 )  = r i ( x 1 )  ' xz + gi(xl), 

P 
where ri is a permutation of the space Z,! and g, is a function from Z; to Z,. Then 
f = (f1,  f 2 , .  . . , fm) is perfect nonlinear if every nonzero linear combination of the 
permutations x i ,  i = 1,2,. . . , m is again a permutation of 2; . Since Mdoranafunctions 
are regular bent we have by the remark at the end of $3 that n 2 2m. 

One way of constructing a family of permutations with the required property, is to use 
a linear feedback shift register of length f and with a primitive feedback polynomial. 
Let A be the state transition function of such a shift register. Then A is a permutation 
of the space Z,2 as well aa the powers A' of A, 

n 

P 

i times 
/-.h-4 

A ' = A o * . * o A ,  i = l , 2 ,  .... 
Moreover, it is a wellknown property of linear feedback shift registers that generate 
maximal length sequences that every non-trivial linear combination of the permutations 

I ,  A , A ~ ,  . . . , A : - ~  

is a power of A and hence a permutation. 
Now an elementary implementation of a perfect nonlinear S-box with n input variables 

and m output variables, n 2 2m, is obtained in the following way. Take a :-shift register 
with a primitive feedback polynomial. Devide the input block of length n into two halves 
XI and x2. The first digit of the output block of length m is obtained by calculating 
the dot product x1 . x 2 .  To obtain the second digit the shift register is shifted once and 
the dot product of its new contents with x 2  is calculated. In this manner every shift of 
the register produces a new output digit. This basic arrangement is very efficient and 
suitable for on-line applications. If the functions g; are used their complexity may cause 
reduction of the speed. 

Let us still consider the properties of the basic arrangement, 

f = ( f i , f i , .  . , fm) ,  f i (X1,  xi) = A i - ' ( X 1 ) .  xi- 

This perfect nonlinear function f : Zg * Zp" is not balanced. The all-zero output block 
is obtained for 

p - m  - $-m + p f  

Pn-m - PP-" 

different inputs and the other possible outputs are obtained for equally many, i.e., for 
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different inputs. In some applications it might be possible that the first half x1 of the 
input that goes to the shift register is never the all zero block. With this restriction the 
function f is balanced. Let us see what is the effect of this restriction to the directional 
derivatives. 

Let the nonzero increment w have two halves w1 and w2 corresponding to the division 
of the input. Then 

fi(x + W) - fi(X) = Ai-'(x1) ~2 + Ai-'(w1) ~2 + Ai-'(w1). ~ 2 ,  

for every a = 1,2,. . . , m,. Now we have two cases. 
I" w1 = 0. In this cwe the directional derivative 

&f(x) = f(x + w)) - f(x) 

is a linear function of x1 and obtains each nonzero value for p"-" different inputs and 
the zero value for p"-"' - pf different inputs. 

2" w1 # 0. Then the directional derivative is balanced. 
As a conclusion we can say that the restriction to the inputs with nonzero first halves 

Other possible families of permutations { T I ,  7 4 , .  . . , r,} to be used in the Maiora- 
gives a balanced and almost perfect nonlinear function. 

na-McF'arland based construction are, for example 

.i(X) = six, 

where {al, a2, . . . ,a,} are linearly independent elements of the Galois field GF(p:) ,  or 
BS a special case, 

where a is a primitive element of GF(pt).  
The problem of finding suitable permutations is related to the problem of complete 

mappings and orthogonal Latin squares (see [9],§9.4 and [lo]). The following theorem 
illustrates this relationship. For more evolved constructions of orthogonal Latin squares 
we refer to [5] ,  Ch. 7. 

THEOREM 4.1.. Let r and u be permutations of Zp" and let m,a l , .  . . , a p n - l  be the 
elements of 2;. Then the p" x p" matrices 

(.(ai) + aj)ij and (a(ai) + a j ) i j  

7ri(X) = d x ,  

are orthogonal Latin squares if and only if ?r - u is a permutation. 

It is not difficult to check that if the s u m  of two permutations of Zi is a permuta- 
tion then these permutations are &nely equivalent mappings. For n 2 4 nonlinear 
permutations can have a permutation sum even if they are not affinely equivalent. 

Example. The following nonlinear permutations 7~ and u of Z: have a sum which is 
a permutation. 

X = 1 2 3 4 5 6  7 8 9 A 6 B C D E F  
~ ( x )  = 0 2 D 1 3  8 A 9 C F B E 7 5 4 6 
~ ( x )  = 0 3 4  2 1 D E F 6  7 C 5 8 B 9 A 

( T + u ) ( x )  = 0 1 9 3 2 5 4 6 A 8 7 B F E D C 
Also T and (r are not affinely equivalent, i.e., *-'a is nonlinear. 
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5. A second construction 
Let f,, i = 1,2,. . . , m be bent functions from GF(p")  to GF(p)  constructed by the 

method given in Theorem 2.5. Assume that the assignments of the values 0,1,. . . , p -  1 
to the different cosets of G for different f; satisfy the following compatibility condition. 
For every nonzero c = (CI, CZ, . . . , c,) E GF(pm) the function clfi + czf2 + . . . + c& 
obtains each of the values 1,2,. . . , p  - 1 on pf-' cosets from HI, H2,. . . , H p p .  Then 
the function f = (fi, f 2 , .  . . , f m )  is perfect nonlinear. In fact, the given compatibility 
condition is also necessary for f to be perfect nonlinear. 

--t Z, defined 
in the following way. For k E Zp and i = 1,2,. . . , rn we set 

The assignment of values for fi can be done by using a function hi : Z 
P 

h;(u)  = k, if fi(x) = Ic for x E H,+1 

THEOREM 5.1 .  Let f;, i = 1,2, . . . ,  m be bent functions in GF(p") constructed by 
the generalization of Dillon's method. Let hi be the vdue assignment function for 
f i ,  i = 1,2,. . . ,m .  Then the function 

f : GF(Pn) - GF(zJ"), f(4 = (fl(4, f 2 ( X > l *  * * 3 frn(x)), 

is perfect nonlinear if and only if for every nonzero c = (q, c2,. . . , c,) E GF(pm)  the 
function c1 hl + cz h2 + . - - + c,h, is balanced. 

In the terminology of [9], Ch. 7, the statement of the theorem says that f is perfect 
nonlinear if and only if the functions hi, i = 1,2,. . . ,m, form an orthogonal system 
of permutation polynomials. Hence especially, for rn = ;, every permutation of the 
space Z,l gives, via this construction, a perfect nonlinear function from Zp" to Z: and 
different permutations give different functions. Since the fixed coset Ho can be chosen 
in (pt + 1) ways the number of perfect nonlinear functions with maximal output given 
by this construction is ( p t  + l)!. 
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