Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1983))

  • 1336 Accesses

Abstract

This paper reports the use of association rules for the discovery of lithofacies characteristics from well log data. Well log data are used extensively in the exploration and evaluation of petroleum reservoirs. Traditionally, discriminant analysis, statistical and graphical methods have been used for the establishment of well log data interpretation models. Recently, computational intelligence techniques such as artificial neural networks and fuzzy logic have also been employed. In these techniques, prior knowledge of the log analysts is required. This paper investigated the application of association rules to the problem of knowledge discovery. A case study has been used to illustrate the proposed approach. Based on 96 data points for four lithofacies, twenty association rules were established and they were further reduced to six explicit statements. It was found that the execution time is fast and the method can be integrated with other techniques for building intelligent interpretation models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jian, F.X., Chork, C.Y., Taggart, I.J., McKay, D.M., and Barlett, R.M.: A Genetic Approach to Prediction of Petrophysical Properties. Journal of Petroleum Geology, Vol. 17, No. 1(1994) pp. 71–88.

    Article  Google Scholar 

  2. Hook, J. R., Nieto, J. A., Kalkomey, C. T. and Ellis, D. “Facies and Permeability Prediction from Wireline Logs and Core-A North Sea Case Study,” SPWLA 35 th Annual Logging Symposium, paper “AAA”, June (1994).

    Google Scholar 

  3. Ebanks, W.R. Jr.: “Flow Unit Concept-Integrated Approach to Reservoir Description for Engineering Projects.” Paper presented at the 1987 AAPG Annual Meeting, Los Angeles (1987).

    Google Scholar 

  4. Wong, P. M., Taggart, I. J. and Jian, F. X. “A Critical Comparison of Neural Networks and Discriminant Analysis in Lithofacies, Porosity, and Permeability Predictions,” Journal of Petroleum Geology, vol. 18(2), April (1995), pp. 191–206.

    Article  Google Scholar 

  5. Condert, L., Frappa, M. and Arias, R. “A Statistical Method for Lithofacies Identification”, Journal of Applied Geophysics, vol 32, (1994), pp. 257–267.

    Article  Google Scholar 

  6. Fung, C. C., Wong, K. W. Eren, H. and Charlebois, R. “Lithology Classification using Self-Organising Map,” Proceedings of IEEE International Conference on Neural Networks, Perth, Western Australia, December (1995), pp. 526–531.

    Google Scholar 

  7. Wong, P.M., Gedeon, T.D., and Taggart, I. J.: Fuzzy ARTMAP: A New Tool for Lithofacies Recognition. AI Applications, Vol. 10, No. 2(1996), pp. 29–39.

    Google Scholar 

  8. Rogers, S. J., Fang, J. H., Karr, C. L. and Stanley, D.A. “Determination of Lithology from Well Logs Using a Neural Network,” The AAPG Bulletin, vol. 76(5), (1992), pp. 731–739.

    Google Scholar 

  9. Fayyad, U. M., Piatetsky-Shapiro, G. and Smyth, P.: “From Data Mining to Knowledge Discovery: An Overview,” Advances in Knowledge Discovery and Data Mining, ed. U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy, The AAAI/MIT Press, Menlo Park, California/Cambridge, Massachusetts, (1996), pp. 1–34.

    Google Scholar 

  10. Chen, M. S., Han, J. and Yu, P. S.: “Data Mining: An Overview from a Database Perspective,” IEEE Transactions on Knowledge and Data Engineering, vol. 8(6), December (1996), pp. 866–883.

    Article  Google Scholar 

  11. Agrawal R., and Srikant, R.: Mining Quantitative Association Rules in Large Relational Tables. Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal Canada (1996), pp. 1–12.

    Google Scholar 

  12. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, I.: Fast Discovery of Association Rules. In: Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. (eds.): Advances in Knowledge Discovery and Data Mining. AAAI Press/The MIT Press, Menlo Park California/Cambridge Massachusetts (1996), pp. 307–328.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fung, C.C., Law, K.W., Wong, K.W., Rajagopalan, P. (2000). Lithofacies Characteristics Discovery from Well Log Data Using Association Rules. In: Leung, K.S., Chan, LW., Meng, H. (eds) Intelligent Data Engineering and Automated Learning — IDEAL 2000. Data Mining, Financial Engineering, and Intelligent Agents. IDEAL 2000. Lecture Notes in Computer Science, vol 1983. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44491-2_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-44491-2_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41450-6

  • Online ISBN: 978-3-540-44491-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics