Skip to main content

Histone Post-Translational Modifications Regulate Transcription and Silent Chromatin in Saccharomyces cerevisiae

  • Conference paper
The Histone Code and Beyond

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 57))

Abstract

Regulation of chromatin structure is important for the control of DNAtemplated processes such as gene expression and silencing, and its dysregulation is implicated in diverse developmental and cell proliferative defects such as tumorigenesis. Covalent post-translational modifications of histones are one of the prominent means to regulate the chromatin structure. Here, we summarize findings from our lab and others regarding the interactions between different covalent modifications of histones in the budding yeast Saccharomyces cerevisiae. First, we describe the effect of histone H3 phosphorylation at residue serine 10 in transcriptional gene activation, and its histone H3 acetylation dependent and independent modes of action and downstream effects on TATA-binding protein (TBP) recruitment. Further, we review how ubiquitylation of histone H2B and its deubiquitylation by ubiquitin proteases Ubp8 and Ubp10 regulate histone H3 methylations, and consequently affect co-activator-dependent gene transcription and silent chromatin, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar RC, Wendland B (2003) Ubiquitin: not just for proteasomes anymore. Curr Opin Cell Biol 15:184–190

    Article  PubMed  CAS  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794

    Article  PubMed  CAS  Google Scholar 

  • Anest V, Hanson JL, Cogswell PC, Steinbrecher KA, Strahl BD, Baldwin AS (2003) A nucleosomal function for IkappaB kinase-alpha in NF-kappaBdependent gene expression. Nature 423:659–663

    Article  PubMed  CAS  Google Scholar 

  • Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32 Database issue:D138–D141

    Google Scholar 

  • Baur JA, Zou Y, Shay JW, Wright WE (2001) Telomere position effect in human cells. Science 292:2075–2077

    Article  PubMed  CAS  Google Scholar 

  • Berger SL (2002) Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12:142–148

    Article  PubMed  CAS  Google Scholar 

  • Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS, Kouzarides T, Schreiber SL (2002) Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci U S A 99:8695–8700

    Article  PubMed  CAS  Google Scholar 

  • Bettiga M, Calzari L, Orlandi I, Alberghina L, Vai M (2004) Involvement of the budding yeast metacaspase Yca1 in ubp10Delta-programmed cell death. FEMS Budding yeast Res 5:141–147

    Article  CAS  Google Scholar 

  • Bhaumik SR, Green MR (2001) SAGA is an essential in vivo target of the budding yeast acidic activator Gal4p. Genes Dev 15:1935–1945

    Article  PubMed  CAS  Google Scholar 

  • Botstein D, Fink GR (1988) Budding yeast: an experimental organism for modern biology. Science 240:1439–1443

    PubMed  CAS  Google Scholar 

  • Bottomley MJ (2004) Structures of protein domains that create or recognize histone modifications. EMBO Rep 5:464–469

    Article  PubMed  CAS  Google Scholar 

  • Boyer LA, Latek RR, Peterson CL (2004) The SANT domain: a unique histonetail-binding module? Nat Rev Mol Cell Biol 5:158–163

    Article  PubMed  CAS  Google Scholar 

  • Briggs SD, Bryk M, Strahl BD, Cheung WL, Davie JK, Dent SY, Winston F, Allis CD (2001) Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev 15:3286–3295

    Article  PubMed  CAS  Google Scholar 

  • Briggs SD, Xiao T, Sun ZW, Caldwell JA, Shabanowitz J, Hunt DF, Allis CD, Strahl BD (2002) Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418:498

    Article  PubMed  CAS  Google Scholar 

  • Brown CE, Howe L, Sousa K, Alley SC, Carrozza MJ, Tan S, Workman JL (2001) Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit. Science 292:2333–2337

    Article  PubMed  CAS  Google Scholar 

  • Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD (1996) Tetrahymena histone acetyltransferase A: a homolog to budding yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851

    Article  PubMed  CAS  Google Scholar 

  • Candau R, Zhou J, Allis CD, Berger SL (1997) Histone acetyltransferase activity and interaction with ADA2 are critical for GCN5 function in vivo. EMBO J. 16:555–565

    Article  PubMed  CAS  Google Scholar 

  • Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD (2000) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5:905–915

    Article  PubMed  CAS  Google Scholar 

  • Clements A, Poux AN, Lo WS, Pillus L, Berger SL, Marmorstein R (2003) Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase. Mol Cell 12:461–473

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove MS, Boeke JD, Wolberger C (2004) Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol 11:1037–1043

    Article  PubMed  CAS  Google Scholar 

  • Daniel JA, Torok MS, Sun ZW, Schieltz D, Allis CD, Yates JR 3rd, Grant PA (2004) Deubiquitination of histone H2B by a budding yeast acetyltransferase complex regulates transcription. J Biol Chem 279:1867–1871

    Article  PubMed  CAS  Google Scholar 

  • De la Cruz X, Lois S, Sanchez-Molina S, Martinez-Balbas MA (2005) Do protein motifs read the histone code? Bioessays 27:164–175

    Article  PubMed  CAS  Google Scholar 

  • Dover J, Schneider J, Tawiah-Boateng MA, Wood A, Dean K, Johnston M, Shilatifard A (2002) Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem 277:28368–28371

    Article  PubMed  CAS  Google Scholar 

  • Elgin SC, Workman JL (2000) Chromatin structure and gene expression, vol 35, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Emre NCT, Ingvarsdottir K, Wyce A, Wood A, Krogan NJ, Henry KW, Li K, Marmorstein R, Greenblatt JF, Shilatifard A, Berger SL (2005) Maintenance of low histone ubiquitylation by Ubp10 correlates with telomere-proximal Sir2 association and gene silencing. Mol Cell 17:585–594

    Article  PubMed  CAS  Google Scholar 

  • Fischle W, Wang Y, Allis CD (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15:172–183

    Article  PubMed  CAS  Google Scholar 

  • Freitas MA, Sklenar AR, Parthun MR (2004) Application of mass spectrometry to the identification and quantification of histone post-translational modifications. J Cell Biochem 92:691–700

    Article  PubMed  CAS  Google Scholar 

  • Gardner RG, Nelson ZW, Gottschling DE (2005) Ubp10/Dot4p regulates the persistence of ubiquitinated histone H2B: distinct roles in telomeric silencing and general chromatin. Mol Cell Biol 25:6123–6139

    Article  PubMed  CAS  Google Scholar 

  • Gasser SM, Cockell MM (2001) The molecular biology of the SIR proteins. Gene 279:1–16

    Article  PubMed  CAS  Google Scholar 

  • Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63:751–762

    CAS  Google Scholar 

  • Grant PA, Duggan L, Cote J, Roberts SM, Brownell JE, Candau R, Ohba R, Owen-Hughes T, Allis CD, Winston F, Berger SL, Workman JL (1997) Budding yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev 11:1640–1650

    PubMed  CAS  Google Scholar 

  • Grant PA, Sterner DE, Duggan LJ, Workman JL, Berger SL (1998) The SAGA unfolds: convergence of transcription regulators in chromatin-modifying complexes. Trends Cell Biol 8:193–197

    Article  PubMed  CAS  Google Scholar 

  • Grunstein M (1997) Molecular model for telomeric heterochromatin in budding yeast. Curr Opin Cell Biol 9:383–387

    Article  PubMed  CAS  Google Scholar 

  • Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89:341–347

    Article  PubMed  CAS  Google Scholar 

  • Henry KW, Wyce A, Lo WS, Duggan LJ, Emre NC, Kao CF, Pillus L, Shilatifard A, Osley MA, Berger SL (2003) Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev 17:2648–2663

    Article  PubMed  CAS  Google Scholar 

  • Hicke L (2001) Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2:195–201

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30:405–439

    Article  PubMed  CAS  Google Scholar 

  • Hook SS, Orian A, Cowley SM, Eisenman RN (2002) Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes. Proc Natl Acad Sci U S A 99:13425–13430

    Article  PubMed  CAS  Google Scholar 

  • Huang Y (2002) Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Nucleic Acids Res 30:1465–1482

    Article  PubMed  CAS  Google Scholar 

  • Hwang WW, Venkatasubrahmanyam S, Ianculescu AG, Tong A, Boone C, Madhani HD (2003) A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell 11:261–266

    Article  PubMed  CAS  Google Scholar 

  • Ingvarsdottir K, Krogan NJ, Emre NC, Wyce A, Thompson NJ, Emili A, Hughes TR, Greenblatt J, Berger SL (2005) H2B ubiquitin protease Ubp8 and Sgf11 constitute a discrete functional module within the Saccharomyces cerevisiae SAGA complex. Mol Cell Biol 25:1162–1172

    Article  PubMed  CAS  Google Scholar 

  • Kahana A, Gottschling DE (1999) DOT4 links silencing and cell growth in Saccharomyces cerevisiae. Mol Cell Biol 19:6608–6620

    PubMed  CAS  Google Scholar 

  • Kao CF, Hillyer C, Tsukuda T, Henry K, Berger S, Osley MA (2004) Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. Genes Dev 18:184–195

    Article  PubMed  CAS  Google Scholar 

  • Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell 116:259–272

    Article  PubMed  CAS  Google Scholar 

  • Kimura A, Umehara T, Horikoshi M (2002) Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat Genet 32:370–377

    Article  PubMed  Google Scholar 

  • Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, Canadien V, Richards DP, Beattie BK, Emili A, Boone C, Shilatifard A, Buratowski S, Greenblatt J (2003) Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 23:4207–4218

    Article  PubMed  CAS  Google Scholar 

  • Kubicek S, Jenuwein T (2004) A crack in histone lysine methylation. Cell 119:903–906

    Article  PubMed  CAS  Google Scholar 

  • Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20:615–626

    Article  PubMed  CAS  Google Scholar 

  • Kurdistani SK, Grunstein M (2003) Histone acetylation and deacetylation in budding yeast. Nat Rev Mol Cell Biol 4:276–284

    Article  PubMed  CAS  Google Scholar 

  • Labrador M, Corces VG (2003) Phosphorylation of histone H3 during transcriptional activation depends on promoter structure. Genes Dev 17:43–48

    Article  PubMed  CAS  Google Scholar 

  • Ladurner AG, Inouye C, Jain R, Tjian R (2003) Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries. Mol Cell 11:365–376

    Article  PubMed  CAS  Google Scholar 

  • Larschan E, Winston F (2001) The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes Dev 15:1946–1956

    Article  PubMed  CAS  Google Scholar 

  • Lee DY, Teyssier C, Strahl BD, Stallcup MR (2004) Role of protein methylation in regulation of transcription. Endocr Rev 26:147–170

    Article  PubMed  CAS  Google Scholar 

  • Lee KK, Florens L, Swanson SK, Washburn MP, Workman JL (2005) The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex. Mol Cell Biol 25:1173–1182

    Article  PubMed  CAS  Google Scholar 

  • Lee KK, Prochasson P, Florens L, Swanson SK, Washburn MP, Workman JL (2004) Proteomic analysis of chromatin-modifying complexes in Saccharomyces cerevisiae identifies novel subunits. Biochem Soc Trans 32:899–903

    Article  PubMed  CAS  Google Scholar 

  • Lo WS, Trievel RC, Rojas JR, Duggan L, Hsu JY, Allis CD, Marmorstein R, Berger SL (2000) Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 5:917–926

    Article  PubMed  CAS  Google Scholar 

  • Lo WS, Duggan L, Emre NCT, Belotserkovskya R, Lane WS, Shiekhattar R, Berger SL (2001) Snf1 — a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293:1142–1146

    Article  PubMed  CAS  Google Scholar 

  • Lo WS, Gamache ER, Henry KW, Yang D, Pillus L, Berger SL (2005) Histone H3 phosphorylation can promote TBP recruitment through distinct promoter-specific mechanisms. EMBO J 24:997–1008

    Article  PubMed  CAS  Google Scholar 

  • Luger K (2003) Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev 13:127–135

    Article  PubMed  CAS  Google Scholar 

  • Mahadevan LC, Willis AC, Barratt MJ (1991) Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65:775–783

    Article  PubMed  CAS  Google Scholar 

  • Marcus GA, Silverman N, Berger SL, Horiuchi J, Guarente L (1994) Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors. EMBO J 13:4807–4815

    PubMed  CAS  Google Scholar 

  • Meneghini MD, Wu M, Madhani HD (2003) Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112:725–736

    Article  PubMed  CAS  Google Scholar 

  • Ng HH, Xu RM, Zhang Y, Struhl K (2002) Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J Biol Chem 277:34655–34657

    Article  PubMed  CAS  Google Scholar 

  • Ng HH, Ciccone DN, Morshead KB, Oettinger MA, Struhl K (2003a) Lysine-79 of histone H3 is hypomethylated at silenced loci in budding yeast and mammalian cells: a potential mechanism for position-effect variegation. Proc Natl Acad Sci U S A 100:1820–1825

    Article  PubMed  CAS  Google Scholar 

  • Ng HH, Robert F, Young RA, Struhl K (2003b) Targeted recruitment of set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11:709–719

    Article  PubMed  CAS  Google Scholar 

  • Nishioka K, Chuikov S, Sarma K, Erdjument-Bromage H, Allis CD, Tempst P, Reinberg D (2002) Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev 16:479–489

    Article  PubMed  CAS  Google Scholar 

  • Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20:214–220

    Article  PubMed  CAS  Google Scholar 

  • Orlandi I, Bettiga M, Alberghina L, Vai M (2004) Transcriptional profiling of ubp10 null mutant reveals altered subtelomeric gene expression and insurgence of oxidative stress response. J Biol Chem 279:6414–6425

    Article  PubMed  CAS  Google Scholar 

  • Osley MA (2004) H2B ubiquitylation: the end is in sight. Biochim Biophys Acta 1677:74–78

    PubMed  CAS  Google Scholar 

  • Perrod S, Gasser SM (2003) Long-range silencing and position effects at telomeres and centromeres: parallels and differences. Cell Mol Life Sci 60:2303–2318

    Article  PubMed  CAS  Google Scholar 

  • Polioudaki H, Markaki Y, Kourmouli N, Dialynas G, Theodoropoulos PA, Singh PB, Georgatos SD (2004) Mitotic phosphorylation of histone H3 at threonine 3. FEBS Lett 560:39–44

    Article  PubMed  CAS  Google Scholar 

  • Powell DW, Weaver CM, Jennings JL, McAfee KJ, He Y, Weil PA, Link AJ (2004) Cluster analysis of mass spectrometry data reveals a novel component of SAGA. Mol Cell Biol 24:7249–7259

    Article  PubMed  CAS  Google Scholar 

  • Ren Q, Gorovsky MA (2001) Histone H2A.Z acetylation modulates an essential charge patch. Mol Cell 7:1329–1335

    Article  PubMed  CAS  Google Scholar 

  • Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD (2003) Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12:1591–1598

    Article  PubMed  CAS  Google Scholar 

  • Robzyk K, Recht J, Osley MA (2000) Rad6-dependent ubiquitination of histone H2B in budding yeast. Science 287:501–504

    Article  PubMed  CAS  Google Scholar 

  • Rusche LN, Kirchmaier AL, Rine J (2003) The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72:481–516

    Article  PubMed  CAS  Google Scholar 

  • Sanders SL, Jennings J, Canutescu A, Link AJ, Weil PA (2002) Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of budding yeast TFIID by multidimensional mass spectrometry. Mol Cell Biol 22:4723–4738

    Article  PubMed  CAS  Google Scholar 

  • Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NCT, Schreiber SL, Mellor J, Kouzarides T (2002) Active genes are tri-methylated at K4 of histone H3 Nature 419:407–411

    Article  PubMed  CAS  Google Scholar 

  • Santos-Rosa H, Schneider R, Bernstein BE, Karabetsou N, Morillon A, Weise C, Schreiber SL, Mellor J, Kouzarides T (2003) Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin. Mol Cell 12:1325–1332

    Article  PubMed  CAS  Google Scholar 

  • Santos-Rosa H, Bannister AJ, Dehe PM, Geli V, Kouzarides T (2004) Methylation of H3 lysine 4 at euchromatin promotes Sir3p association with heterochromatin. J Biol Chem 279:47506–47512

    Article  PubMed  CAS  Google Scholar 

  • Seigneurin-Berny D, Verdel A, Curtet S, Lemercier C, Garin J, Rousseaux S, Khochbin S (2001) Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol Cell Biol 21:8035–8044

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    Article  PubMed  CAS  Google Scholar 

  • Sims RJ 3rd, Nishioka K, Reinberg D (2003) Histone lysine methylation: a signature for chromatin function. Trends Genet 19:629–639

    Article  PubMed  CAS  Google Scholar 

  • Singer MS, Kahana A, Wolf AJ, Meisinger LL, Peterson SE, Goggin C, Mahowald M, Gottschling DE (1998) Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 150:613–632

    PubMed  CAS  Google Scholar 

  • Soboleva TA, Baker RT (2004) Deubiquitinating enzymes: their functions and substrate specificity. Curr Protein Pept Sci 5:191–200

    Article  PubMed  CAS  Google Scholar 

  • Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459

    Article  PubMed  CAS  Google Scholar 

  • Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12:599–606

    PubMed  CAS  Google Scholar 

  • Suka N, Luo K, Grunstein M (2002) Sir2p and Sas2p opposingly regulate acetylation of budding yeast histone H4 lysine16 and spreading of heterochromatin. Nat Genet 32:378–383

    Article  PubMed  CAS  Google Scholar 

  • Sun ZW, Allis CD (2002) Ubiquitination of histone H2B regulates H3 methylation and gene silencing in budding yeast. Nature 418:104–108

    Article  PubMed  CAS  Google Scholar 

  • Thomson S, Mahadevan LC, Clayton AL (1999) MAP kinase-mediated signalling to nucleosomes and immediate-early gene induction. Semin Cell Dev Biol 10:205–214

    Article  PubMed  CAS  Google Scholar 

  • Turner BM (2002) Cellular memory and the histone code. Cell 111:285–291

    Article  PubMed  CAS  Google Scholar 

  • Van Leeuwen F, Gottschling DE (2002) Genome-wide histone modifications: gaining specificity by preventing promiscuity. Curr Opin Cell Biol 14:756–762

    Article  PubMed  CAS  Google Scholar 

  • Vaquero A, Loyola A, Reinberg D (2003) The constantly changing face of chromatin. Sci Aging Knowledge Environ 2003:RE4

    PubMed  Google Scholar 

  • Wilkinson KD (1997) Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J 11:1245–1256

    PubMed  CAS  Google Scholar 

  • Wilkinson KD (2000) Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 11:141–148

    Article  PubMed  CAS  Google Scholar 

  • Wolffe A (1998) Chromatin: structure and function, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Wood A, Krogan NJ, Dover J, Schneider J, Heidt J, Boateng MA, Dean K, Golshani A, Zhang Y, Greenblatt JF, Johnston M, Shilatifard A (2003) Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Mol Cell 11:267–274

    Article  PubMed  CAS  Google Scholar 

  • Wyce A, Henry KW, Berger SL (2004) H2B ubiquitylation and de-ubiquitylation in gene activation. Novartis Found Symp 259:63–73; discussion 73–77, 163–169

    Article  PubMed  CAS  Google Scholar 

  • Xiao T, Hall H, Kizer KO, Shibata Y, Hall MC, Borchers CH, Strahl BD (2003) Phosphorylation of RNA polymerase II CTD regulates H3 methylation in budding yeast. Genes Dev 17:654–663

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Verma UN, Prajapati S, Kwak YT, Gaynor RB (2003) Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature 423:655–659

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Emre, N.C.T., Berger, S.L. (2006). Histone Post-Translational Modifications Regulate Transcription and Silent Chromatin in Saccharomyces cerevisiae. In: Berger, S.L., Nakanishi, O., Haendler, B. (eds) The Histone Code and Beyond. Ernst Schering Research Foundation Workshop, vol 57. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-37633-X_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-37633-X_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27857-3

  • Online ISBN: 978-3-540-37633-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics