Skip to main content

3.0 T Imaging of Brain Tumours

  • Chapter
Book cover High Field Brain MRI

18.5 Conclusion

Combining metabolic, diffusion and haemodynamic information from 1H-MRSI, DWI and PWI with morphological information from conventional MRI undoubtedly improves the assessment of intracranial tumours, increasing the capability to discriminate between different tissues. Furthermore, using high-field MR can allow shorter imaging times for a given resolution, a higher resolution for a given imaging time, or combination of both, due to the higher SNR. Ashort acquisition time is preferable for the fast imaging of ill and sometimes poorly cooperative subjects, especially if long MR protocols are used. High spatial resolution allows high quality imaging and therefore additional diagnostic information. We suggest that the multiparametric MR approach, including 1H-MRSI, DWI and PWI in addition to conventional MRI, at 3 T may provide a non-invasive fast and accurate tool for the formulation of diagnosis and prognosis, the planning of treatment and the monitoring of therapeutic response in patients with brain tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behin A, Hoang-Xuan K, Carpentier AF, Delattre J-Y (2003) Primary brain tumours in adults. Lancet 361:323–331

    Article  PubMed  Google Scholar 

  2. Grant R (2004) Overview: brain tumour diagnosis and management. Royal College of Physicians guidelines. J Neurol Neurosurg Psychiatry 75(Suppl 2):18–23

    Google Scholar 

  3. Howe FA, Opstad KS (2003) 1H MR spectroscopy of brain tumor and masses. NMR Biomed 16:123–131

    Article  PubMed  CAS  Google Scholar 

  4. McKnight TR (2004) Proton magnetic resonance spectroscopic evaluation of brain tumor metabolism. Semin Oncol 31:605–617

    Article  PubMed  CAS  Google Scholar 

  5. Li X, Lu Y, Pirzkall A, McKnight T, Nelson SJ (2002) Analysis of the spatial characteristics of metabolic abnormalities in newly diagnosed glioma patients. J Magn Reson Imaging 16:229–237

    Article  PubMed  Google Scholar 

  6. Burtscher IM, Skagerberg G, Geijer B, et al. (2000) Proton MR spectroscopy and preoperative diagnostic accuracy: an evaluation of intracranial mass lesions characterized by stereotactic biopsy findings. Am J Neuroradiol 21:84–93

    PubMed  CAS  Google Scholar 

  7. Dowling C, Bollen AW, Noworolski SM, et al. (2001) Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. Am J Neuroradiol 22:604–612

    PubMed  CAS  Google Scholar 

  8. Croteau D, Scarpace L, Hearshen D, et al. (2001) Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies: semiquantitative and qualitative histopathological analyses of patients with untreated glioma. Neurosurgery 49:823–829

    Article  PubMed  CAS  Google Scholar 

  9. Rabinov JD, Lee PL, Barker FG, et al. (2002) In vivo 3-TMR spectroscopy in the distinction of recurrent glioma versus radiation effects: initial experience. Radiology 225:871–879

    PubMed  CAS  Google Scholar 

  10. Tedeschi G, Lundbom N, Raman R, et al. (1997) Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg 87:516–524

    Article  PubMed  CAS  Google Scholar 

  11. Sener RN (2001) Diffusion MRI: apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders based on ADC values. Comput Med Imaging Graph 25:299–326

    Article  PubMed  CAS  Google Scholar 

  12. Kono K, Inoue Y, Nakayama K, et al. (2001) The role of diffusion-weighted imaging in patients with brain tumors. Am J Neuroradiol 22:1081–1088

    PubMed  CAS  Google Scholar 

  13. Asao C, Korogi Y, Kitajima M, et al. (2005) Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. Am J Neuroradiol 26:1455–1460

    PubMed  Google Scholar 

  14. Muti M, Aprile I, Principi M, et al. (2002) Study on the variations of the apparent diffusion coefficient in areas of solid tumor in high grade gliomas. Magn Reson Imaging 20:635–641

    Article  PubMed  CAS  Google Scholar 

  15. Yamasaki F, Kurisu K, Satoh K, et al. (2005)Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology 235:985–991

    PubMed  Google Scholar 

  16. Lam WWM, Poon WS, Metreweli C (2002) Diffusion MR imaging in glioma: does it have any role in the pre-operation determination of grading of glioma? Clin Radiol 57:219–225

    Article  PubMed  CAS  Google Scholar 

  17. Tien RD, Felsberg GJ, Friedman H, et al. (1994) MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. Am J Roentgenol 162:671–677

    CAS  Google Scholar 

  18. Cha S, Knopp EA, Johnson G, et al. (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 223:11–29

    PubMed  Google Scholar 

  19. Maia ACM, Malheiros SMF, da Rocha AJ, et al. (2005) MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas. Am J Neuroradiol 26:777–783

    PubMed  Google Scholar 

  20. Law M, Yang S, Babb JS, et al. (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol 25:746–755

    PubMed  Google Scholar 

  21. Lev MH, Ozsunar Y, Henson JW, et al. (2004) Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas. Am J Neuroradiol 25:214–221

    PubMed  Google Scholar 

  22. Cha S, Tihan T, Crawford F, et al. (2005) Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas by using quantitative blood-volume measurements derived from dynamic susceptibility contrast-enhanced MR imaging. Am J Neuroradiol 26:266–273

    PubMed  Google Scholar 

  23. Frayne R, Goodyear BG, Dickhoff P, et al. (2003) Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 38:385–402

    Article  PubMed  Google Scholar 

  24. Di Costanzo A, Trojsi F, Tosetti M, et al. (2003) High-field proton MRS of human brain. Eur J Radiol 48:146–153

    Article  PubMed  Google Scholar 

  25. Counsell CE, Grant R (1998) Incidence studies of primary and secondary intracranial tumours: a systematic review of their methodology and results. J Neurooncol 37:241–250

    Article  PubMed  CAS  Google Scholar 

  26. Prados M (2000) Neoplasms of the central nervous system. In: Bast R, Kufe D, Pollock R, Weichselbaum R, Holland J, Frei E (eds) Cancer medicine, 5th edn. BC Decker, Hamilton, Ontario, pp 1055–1082

    Google Scholar 

  27. Yuh WT, Nguyen HD, Tali ET, et al. (1994) Delineation of gliomas with various doses of MR contrast material. Am J Neuroradiol 15:983–989

    PubMed  CAS  Google Scholar 

  28. Pirzkall A, McKnight TR, Graves EE, et al. (2001) MR-spectroscopy guided target delineation for high-grade gliomas. Int J Radiat Oncol Biol Phys 50:915–928

    Article  PubMed  CAS  Google Scholar 

  29. Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. IARC Press, Lyon, France

    Google Scholar 

  30. Fallentin E, Skriver E, Herning M, et al. (1997) Gliomatosis cerebri: an appropriate diagnosis? Case reports. Acta Radiol 38:381–390

    Article  PubMed  CAS  Google Scholar 

  31. Barnard RO, Geddes JF (1987) The incidence of multifocal cerebral gliomas: a histologic study of large hemisphere sections. Cancer 60:1519–1531

    PubMed  CAS  Google Scholar 

  32. Artigas J, Cervos-Navarro J, Iglesias JR, et al. (1985) Gliomatosis cerebri: clinical and histological findings. Clin Neuropathol 4:135–148

    PubMed  CAS  Google Scholar 

  33. Castillo M, Smith JK, Kwock L, Wilber K (2001) Apparent diffusion coefficients in the evaluation of high-grade cerebral gliomas. Am J Neuroradiol 22:60–64

    PubMed  CAS  Google Scholar 

  34. Law M, Cha S, Knopp EA, et al. (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222:715–721

    PubMed  Google Scholar 

  35. Tzika AA, Astrakas LG, Zarifi MK, et al. (2003) Multiparametric MR assessment of pediatric brain tumors. Neuroradiology 45:1–10

    Article  PubMed  CAS  Google Scholar 

  36. Chiang IC, Kuo Y-T, Lu C-Y, et al. (2004) Distinction between high-grade gliomas and solitary metastases using peritumoral 3-T magnetic resonance spectroscopy, diffusion, and perfusion imagings. Neuroradiology 46:619–627

    Article  PubMed  Google Scholar 

  37. Strugar JG, Criscuolo GR, Rothbart D, Harrington WN (1995) Vascular endothelial growth/permeability factor expression in human glioma specimens: correlation with vasogenic brain edema and tumor-associated cysts. J Neurosurg 83:682–689

    Article  PubMed  CAS  Google Scholar 

  38. Cha S, Johnson G, Wadghiri YZ, et al. (2003) Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med 49:848–855

    Article  PubMed  Google Scholar 

  39. Strugar J, Rothbart D, Harrington W, Criscuolo GR (1994) Vascular permeability factor in brain metastases: correlation with vasogenic brain edema and tumor angiogenesis. J Neurosurg 81:560–566

    PubMed  CAS  Google Scholar 

  40. Eis M, Els T, Hoehn-Berlage M (1995) High resolution quantitative relaxation and diffusion MRI of three different experimental brain tumors in rat. Magn Reson Med 34:835–844

    PubMed  CAS  Google Scholar 

  41. Black PM (1993) Meningiomas. Neurosurgery 32:643–657

    PubMed  CAS  Google Scholar 

  42. Mahmood A, Caccamo DV, Tomecek FJ, et al. (1993) Atypical and malignant meningiomas: a clinicopathological review. Neurosurgery 33:955–963

    PubMed  CAS  Google Scholar 

  43. Maier H, Ofner D, Hittmair A, et al. (1992) Classic, atypical, and anaplastic meningioma: three histopathological subtypes of clinical relevance. J Neurosurg 77:616–623

    Article  PubMed  CAS  Google Scholar 

  44. Nakano T, Asano K, Miura H, et al. (2002) Meningiomas with brain edema. Radiological characteristics on MRI and review of the literature. Clin Imaging 26: 243–249

    Article  PubMed  Google Scholar 

  45. Yang S, Law M, Zagzag D, et al. (2003) Dynamic contrast-enhanced perfusion MR imaging measurements of endothelial permeability: differentiation between atypical and typical meningiomas. Am J Neuroradiol 24:1554–1559

    PubMed  Google Scholar 

  46. Cho Y-D, Choi G-H, Lee S-P, Kim J-K (2003) 1H-MRS metabolic patterns for distinguishing between meningiomas and other brain tumors. Magn Reson Imaging 21:663–672

    Article  PubMed  Google Scholar 

  47. Provenzale JM, McGraw P, Mhatre P, et al. (2004) Peritumoral brain regions in gliomas and meningiomas: investigation with isotropic diffusion-weighted MR imaging and diffusion-tensor MR imaging. Radiology 232:451–460

    PubMed  Google Scholar 

  48. Cha S (2004) Perfusion MR imaging of brain tumors. Top Magn Reson Imaging 15:279–289

    Article  PubMed  Google Scholar 

  49. Jellinger KA, Paulus W (1992) Primary central nervous system lymphomas — an update. J Cancer Res Clin Oncol 119:7–27

    Article  PubMed  CAS  Google Scholar 

  50. Lai R, Rosenblum MK, DeAngelis LM (2002) Primary CNS lymphoma. A whole-brain disease? Neurology 59:1557–1562

    PubMed  Google Scholar 

  51. Larocca LM, Capello D, Rinelli A, et al. (1998) The molecular and phenotypic profile of primary central nervous system lymphoma identifies distinct categories of the disease and is consistent with histogenetic derivation from germinal center-related B cells. Blood 92:1011–1019

    PubMed  CAS  Google Scholar 

  52. Buhring U, Herrlinger U, Krings T, et al. (2001) MRI features of primary central nervous system lymphomas at presentation. Neurology 57:393–396

    PubMed  CAS  Google Scholar 

  53. Küker W, Nägele T, Korfel A, et al. (2005) Primary central nervous system lymphomas (PCNSL): MRI features at presentation in 100 patients. J Neurooncol 72:169–177

    Article  PubMed  Google Scholar 

  54. Hartmann M, Heiland S, Harting I, et al. (2003) Distinguishing of primary cerebral lymphoma from high-grade glioma with perfusion-weighted magnetic resonance imaging. Neurosci Lett 338:119–122

    Article  PubMed  CAS  Google Scholar 

  55. Onda K, Wakabayashi K, Tanaka R, Takahashi H (1999) Intracranial malignant lymphomas: clinicopathological study of 26 autopsy cases. Brain Tumor Pathol 16:29–35

    PubMed  CAS  Google Scholar 

  56. Deangelis LM (2001) Brain tumors. N Engl J Med 344:114–123

    Article  PubMed  CAS  Google Scholar 

  57. Jeyapalan S, Batchelor T (2000) Diagnostic evaluation of neurologic metastases. Cancer Invest 18:381–394

    PubMed  CAS  Google Scholar 

  58. Hwang T, Close T, Grego J, et al. (1996) Predilection of brain metastasis in grey and white matter junction and vascular border zones. Cancer 77:1551–1555

    Article  PubMed  CAS  Google Scholar 

  59. Krabbe K, Gideon P, Wagn P, et al. (1997) MR diffusion imaging of human intracranial tumours. Neuroradiology 39:483–489

    Article  PubMed  CAS  Google Scholar 

  60. Kremer S, Grand S, Berger F (2003) Dynamic contrast-enhanced MRI: differentiating melanoma and renal carcinoma metastases from high-grade astrocytomas and other metastases. Neuroradiology 45:44–49

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Di Costanzo, A. et al. (2006). 3.0 T Imaging of Brain Tumours. In: Salvolini, U., Scarabino, T. (eds) High Field Brain MRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31776-7_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-31776-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31775-3

  • Online ISBN: 978-3-540-31776-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics