Skip to main content

Mechanisms in Allergic Contact Dermatitis

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Reading

  • Janeway CA, Travers P, Walport M, Shlomchik M (2001) Immunobiology, 5th edn. Garland, New York

    Google Scholar 

  • Roitt I, Delves PJ (2001) Roitt’s essential immunology, 10th edn. Blackwell, London

    Google Scholar 

References

  1. Bergstresser PR (1989) Sensitization and elicitation of inflammation in contact dermatitis. In: Norris DA (ed) Immune mechanisms in cutaneous disease. Dekker, New York, pp 219–246

    Google Scholar 

  2. Turk JL (1975) Delayed hypersensitivity, 2nd edn. North-Holland, Amsterdam

    Google Scholar 

  3. Gell PDH, Coombs RRA, Lachman R (1975) Clinical aspects of immunology, 3rd edn. Blackwell, London

    Google Scholar 

  4. Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172:2731–2738

    PubMed  CAS  Google Scholar 

  5. Saint-Mezard P, Krasteva M, Chavagnac C, Bosset S, Akiba H, Kehren J, Kanitakis J, Kaiserlian D, Nicolas JF, Berard F (2003) Afferent and efferent phases of allergic contact dermatitis (ACD) can be induced after a single skin contact with haptens: evidence using a mouse model of primary ACD. J Invest Dermatol 120:641–647

    PubMed  CAS  Google Scholar 

  6. Bos JD, Meinardi MMHM (2000) The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol 9:165–169

    PubMed  CAS  Google Scholar 

  7. Roberts DW, Lepoittevin J-P (1998) Hapten-protein interactions. In: Lepoittevin J-P, Basketter DA, Goossens A, Karlberg A-T (eds) Allergic contact dermatitis. Springer, Berlin Heidelberg New York, pp 81–1118

    Google Scholar 

  8. Eliasson E, Kenna JG (1996) Cytochrome P450 2E1 is a cell surface autoantigen in halothane hepatitis. Mol Pharmacol 50:573–582

    PubMed  CAS  Google Scholar 

  9. Budinger L, Hertl M (2000) Immunologic mechanisms in hypersensitivity reactions to metal ions: an overview. Allergy 55:108–115

    PubMed  CAS  Google Scholar 

  10. Blauvelt A, Hwang ST, Udey MC (2003) Allergic and immunologic diseases of the skin. J Allergy Clin Immunol 111:S560–S570

    PubMed  CAS  Google Scholar 

  11. Kimber I, Dearman RJ (2002) Allergic contact dermatitis: the cellular effectors. Contact Dermatitis 46:1–5

    PubMed  Google Scholar 

  12. Liberato DJ, Byers VS, Ennick RG, Castagnoli N (1981) Region specific attack of nitrogen and sulfur nucleophiles on quinones from poison oak/ivy catechols (urushiols) and analogues as models for urushiol-protein conjugate formation. J Med Chem 24:28–33

    PubMed  CAS  Google Scholar 

  13. Kalish RS, Wood JA, LaPorte A (1994) Processing of urushiol (poison ivy) hapten by both endogenous and exogenous pathways for presentation to T cells in vitro. J Clin Invest 93:2039–2047

    PubMed  CAS  Google Scholar 

  14. Naisbitt DJ (2004) Drug hypersensitivity reactions in skin: understanding mechanisms and the development of diagnostic and predictive tests. Toxicology 194:179–196

    PubMed  CAS  Google Scholar 

  15. Krasteva M, Nicolas JF, Chabeau G, Garrigue JL, Bour H, Thivolet J, Schmitt D (1993) Dissociation of allergenic and immunogenic functions in contact sensitivity to para-phenylenediamine. Int Arch Allergy Immunol 102:200–204

    PubMed  CAS  Google Scholar 

  16. Merk HF, Abel J, Baron JM, Krutmann J (2004) Molecular pathways in dermatotoxicology. Toxicol Appl Pharmacol 195:267–277

    PubMed  CAS  Google Scholar 

  17. Epling GA, Wells JL, Ung Chan Yoon (1988) Photochemical transformations in salicylanilide photoallergy. Photochem Photobiol 47:167–171

    PubMed  CAS  Google Scholar 

  18. Schnuch A, Westphal GA, Muller MM, Schulz TG, Geier J, Brasch J, Merk HF, Kawakubo Y, Richter G, Koch P, Fuchs T, Gutgesell T, Reich K, Gebhardt M, Becker D, Grabbe J, Szliska C, Aberer W, Hallier E (1998) Genotype and phenotype of N-acetyltransferase 2 (NAT2) polymorphism in patients with contact allergy. Contact Dermatitis 38:209–211

    PubMed  CAS  Google Scholar 

  19. Patlewicz GY, Basketter DA, Pease CK, Wilson K, Wright ZM, Roberts DW, Bernard G, Arnau EG, Lepoittevin JP (2004) Further evaluation of quantitative structure-activity relationship models for the prediction of the skin sensitization potency of selected fragrance allergens. Contact Dermatitis 50:91–97

    PubMed  CAS  Google Scholar 

  20. Wilson NS, Villadangos JA (2004) Lymphoid organ dendritic cells: beyond the Langerhans cells paradigm. Immunol Cell Biol 82:91–98

    PubMed  Google Scholar 

  21. Hoath SB, Leahy DG (2003) The organization of human epidermis: functional epidermal units and phi proportionality. J Invest Dermatol 121:1440–1446

    PubMed  CAS  Google Scholar 

  22. Breathnach SM (1988) The Langerhans cell.Centenary review. Br J Dermatol 119:463–469

    PubMed  CAS  Google Scholar 

  23. Romani N, Holzmann S, Tripp CH, Koch F, Stoitzner P (2003) Langerhans cells — dendritic cells of the epidermis. APMIS 111:725–740

    PubMed  CAS  Google Scholar 

  24. Kimber I, Dearman RJ (2003) What makes a chemical an allergen? Ann Allergy Asthma Immunol 90:28–31

    PubMed  CAS  Google Scholar 

  25. Inaba K, Schuler G, Witmer MD, Valinsky J, Atassi B, Steinman RM (1986) Immunologic properties of purified epidermal Langerhans cells. Distinct requirements for stimulation of unprimed and sensitized T lymphocytes. J Exp Med 164:605–613

    PubMed  CAS  Google Scholar 

  26. Kimber I, Cumberbatch M (1992) Dendritic cells and cutaneous immune responses to chemical allergens. Toxicol Appl Pharmacol 117:137–146

    PubMed  CAS  Google Scholar 

  27. Dieu M-C, Vanbervliet B, Vicari A, Bridon J-M, Oldham E, Ait-Yahia S, Brière F, Zlotnik A, Lebecque S, Caux C (1998) Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 188:373–386

    PubMed  CAS  Google Scholar 

  28. Stingl G, Katz SI, Clement L, Green I, Shevach EM (1978) Immunological functions of Ia-bearing epidermal Langerhans cells. J Immunol 121:2005–2013

    PubMed  CAS  Google Scholar 

  29. Czernielewski SM, Demarchez M (1987) Further evidence for the self-reproducing capacity of Langerhans cells in human skin. J Invest Dermatol 88:17–20

    PubMed  CAS  Google Scholar 

  30. Streilein JW, Grammer SF (1989) In vitro evidence that Langerhans cells can adopt two functionally distinct forms capable of antigen presentation to T lymphocytes. J Immunol 143:3925–3933

    PubMed  CAS  Google Scholar 

  31. Langerhans P (1868) Über die Nerven der menschlichen Haut. Virchows Arch Pathol Anat 44:325–337

    Google Scholar 

  32. Birbeck M (1961) An electron microscope study of basal melanocytes and high level clear cells (Langerhans cells) in vitiligo. J Invest Dermatol 37:51–56

    Google Scholar 

  33. Braathen LR (1980) Studies on human epidermal Langerhans cells. III. Induction of T lymphocyte response to nickel sulphate in sensitized individuals. Br J Dermatol 103:517–526

    PubMed  CAS  Google Scholar 

  34. Kimber I, Dearman RJ, Cumberbatch M, Huby RJ (1998) Langerhans cells and chemical allergy. Curr Opin Immunol 10:614–619

    PubMed  CAS  Google Scholar 

  35. Kimber I, Basketter DA, Gerberick GF, Dearman RJ (2002) Allergic contact dermatitis. Int Immunopharmacol 2:201–211

    CAS  Google Scholar 

  36. Park SH, Chiu YH, Jayawardena J, Roark J, Kavita U, Bendelac A (1998) Innate and adaptive functions of the CD1 pathway of antigen presentation. Semin Immunol 10:391–398

    PubMed  CAS  Google Scholar 

  37. Weinlich G, Heine M, Stössel H, Zanella M, Stoitzner P, Ortner U, Smolle J, Koch F, Sepp NT, Schuler G, Romani N (1998) Entry into afferent lymphatics and maturation in situ of migrating murine cutaneous dendritic cells. J Invest Dermatol 110:441–448

    PubMed  CAS  Google Scholar 

  38. Richters CD, Hoekstra MJ, van Baare J, Du Pont JS, Hoefsmit EC, Kamperdijk EW (1994) Isolation and characterization of migratory human skin dendritic cells. Clin Exp Immunol 98:330–336

    PubMed  CAS  Google Scholar 

  39. Jakob T, Ring J, Udey MC (2001) Multistep navigation of Langerhans/dendritic cells in and out of the skin. J Allergy Clin Immunol 108:688–696

    PubMed  CAS  Google Scholar 

  40. Ozawa H, Nakagawa S, Tagami H, Aiba S (1996) Interleukin-1b and granulocyte-macrophage colony stimulating factor mediate Langerhans cell maturation differently. J Invest Dermatol 106:441–445

    PubMed  CAS  Google Scholar 

  41. Wong BR, Josien R, Lee SY, Sauter B, Li HL, Steinman RM, Choi YW (1997) TRANCE (Tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med 186:2075–2080

    PubMed  CAS  Google Scholar 

  42. Aiba S, Tagami H (1999) Dendritic cell activation induced by various stimuli, eg exposure to microorganisms, their products, cytokines, and simple chemicals as well as adhesion to extracellular matrix. J Dermatol Sci 20:1–13

    CAS  Google Scholar 

  43. Inaba K, Schuler G, Steinman RM (1993) GM-CSF — a granulocyte/ macrophage/dendritic cell stimulating factor. In: Van Furth R (ed) Hemopoietic growth factors and mononuclear phagocytes. Karger, Basel, pp 187–196

    Google Scholar 

  44. Jakob T, Udey MC (1998) Regulation of E-Cadherin mediated adhesion in Langerhans cell-like dendritic cells by inflammatory mediators that mobilize Langerhans cells in vivo. J Immunol 160:4067–4073

    PubMed  CAS  Google Scholar 

  45. Schwarzenberger K, Udey MC (1996) Contact allergens and epidermal proinflammatory cytokines modulate Langerhans cell E-cadherin expression in situ. J Invest Dermatol 106:553–558

    PubMed  CAS  Google Scholar 

  46. Enk AH, Katz SI (1992) Early molecular events in the induction phase of contact sensitivity. Proc Natl Acad Sci USA 89:1398–1402

    PubMed  CAS  Google Scholar 

  47. Enk AH, Angeloni VL, Udey MC, Katz SI (1993) An essential role for Langerhans cell-derived IL-1b in the initiation of primary immune responses in skin. J Immunol 150:3698–3704

    PubMed  CAS  Google Scholar 

  48. Steinman RM, Hoffman L, Pope M (1995) Maturation and migration of cutaneous dendritic cells. J Invest Dermatol 105:2S–7S

    PubMed  CAS  Google Scholar 

  49. Wang B, Esche C, Mamelak A, Freed I, Watanabe H, Sauder DN (2003) Cytokine knockouts in contact hypersensitivity research. Cytokine Growth Factor Rev 14:381–389

    PubMed  CAS  Google Scholar 

  50. Tang A, Amagai M, Granger LG, Stanley JR, Udey MC (1993) Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin. Nature 361:82–85

    PubMed  CAS  Google Scholar 

  51. Jakob T, Udey MC (1998) Regulation of E-cadherin-mediated adhesion in Langerhans cell like dendritic cells by inflammatory mediators that mobilize Langerhans cells in vivo. J Immunol 160:4067–4073

    PubMed  CAS  Google Scholar 

  52. Ma J, Wing J-H, Guo Y-J, Sy M-S, Bigby M (1994) In vivo treatment with anti-ICAM-1 and antiLFA-1 antibodies inhibits contact sensitization-induced migration of epidermal Langerhans cells to regional lymph nodes. Cell Immunol 158:389–399

    PubMed  CAS  Google Scholar 

  53. Rambukhana A, Bos JD, Irik D, Menko WJ, Kapsenberg ML, Das PK (1995) In situ behaviour of human Langerhans cells in skin organ culture. Lab Invest 73:521–531

    Google Scholar 

  54. Price AA, Cumberbatch M, Kimber I (1997) α6 integrins are required for Langerhans cell migration from the epidermis. J Exp Med 186:1725–1735

    PubMed  CAS  Google Scholar 

  55. Weiss JM, Sleeman J, Renkl AC, Dittmar H, Termeer CC, Taxis S, Howells N, Hofmann M, Kohler G, Schöpf E, Ponta H, Herrlich P, Simon JC (1997) An essential role for CD44 variant isoforms in epidermal Langerhans cell and blood dendritic cell function. J Cell Biol 137:1137–1147

    PubMed  CAS  Google Scholar 

  56. Brand CU, Hunger RE, Yawalkar N, Gerber HA, Schaffner T, Braathen LR (1999) Characterization of human skinderived CD1a-positive lymph cells. Arch Dermatol Res 291:65–72

    PubMed  CAS  Google Scholar 

  57. Kobayashi Y (1997) Langerhans cells produce type IV collagenase (MMP-9) following epicutaneous stimulation with haptens. Immunol 90:496–501

    CAS  Google Scholar 

  58. Randolph GJ (2001) Dendritic cell migration to lymph nodes: cytokines, chemokines, and lipid mediators. Semin Immunol 13:267–274

    PubMed  CAS  Google Scholar 

  59. Sallusto F, Lanzavecchia A, Mackay CR (1998) Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol Today 19:568–574

    PubMed  CAS  Google Scholar 

  60. Zlotnik A, Morales J, Hedrick JA (1999) Recent advances in chemokines and chemokine receptors. Crit Rev Immunol 19:1–47

    PubMed  CAS  Google Scholar 

  61. Caux C, Ait-Yahia S, Chemin K, de Bouteiller O, Dieu-Nosjean MC, Homey B, Massacrier C, Vanbervliet B, Zlotnik A, Vicari A (2000) Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin Immunopathol 22:345–369

    PubMed  CAS  Google Scholar 

  62. Sallusto F, Palermo B, Lenig D, Miettinen M, Matikainen S, Julkunen I, Forster R, Burgstahler R, Lipp M, Lanzavecchia A (1999) Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur J Immunol 29:1617–1625

    PubMed  CAS  Google Scholar 

  63. Saeki H, Moore AM, Brown MJ, Hwan ST (1999) Secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J Immunol 162:2472–2475

    PubMed  CAS  Google Scholar 

  64. Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD, Williams LT (1998) A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci USA 95:258–263

    PubMed  CAS  Google Scholar 

  65. Kim CH, Broxmeyer HE (1999) Chemokines: signal lamps for trafficking of T and B cells for development and effector function. J Leuk Biol 65:6–15

    CAS  Google Scholar 

  66. Robbiani DF, Finch RA, Jager D, Muller WA, Sartorelli AC, Randolph GJ. (2000) The leukotriene C(4) transporter MRP1 regulates CCL19 (MIP-3beta, ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell 103:757–768

    PubMed  CAS  Google Scholar 

  67. Honig SM, Fu S, Mao X, Yopp A, Gunn MD, Randolph GJ, Bromberg JS (2003) FTY720 stimulates multidrug transporter-and cysteinyl leukotriene-dependent T cell chemotaxis to lymph nodes. J Clin Invest 111:627–637

    PubMed  CAS  Google Scholar 

  68. Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A (1998) Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28:2760–2769

    PubMed  CAS  Google Scholar 

  69. Cumberbatch M, Dearman RJ, Kimber I (1997) Interleukin 1-beta and the stimulation of Langerhans cell migration — comparisons with tumour necrosis factor alpha. Arch Dermatol Res 289:277–284

    PubMed  CAS  Google Scholar 

  70. Heufler C, Koch F, Schuler G (1988) Granulocyte/macrophage colony-stimulating factor and interleukin 1 mediate the maturation of epidermal Langerhans cells into potent immunostimulatory dendritic cells. J Exp Med 167:700–705

    PubMed  CAS  Google Scholar 

  71. Furue M, Chang CH, Tamaki K (1996) Interleukin-1 but not tumor necrosis factor a synergistically upregulates the granulocyte-macrophage colony-stimulating factorinduced B7-1 expression of murine Langerhans cells. Br J Dermatol 135:194–198

    PubMed  CAS  Google Scholar 

  72. Schuler G, Steinman RM (1985) Murine epidermal Langerhans cells mature into potent immune-stimulatory dendritic cells in vitro. J Exp Med 161:526–546

    PubMed  CAS  Google Scholar 

  73. Haig DM, Hopkins J, Miller HRP (1999) Local immune responses in afferent and efferent lymph. Immunology 96:155–163

    PubMed  CAS  Google Scholar 

  74. Altin JG, Sloan EK (1997) The role of CD45 and CD45-associated molecules in T cell activation. Immunol Cell Biol 75:430–445

    PubMed  CAS  Google Scholar 

  75. Schon MP, Zollner TM, Boehncke WH (2003) The molecular basis of lymphocyte recruitment to the skin: clues for pathogenesis and selective therapies of inflammatory disorders. J Invest Dermatol 121:951–962

    PubMed  Google Scholar 

  76. Von Andrian UH, Mrini C (1998) In situ analysis of lymphocyte migration to lymph nodes. Cell Adh Comm 6:85–96

    Google Scholar 

  77. Vestweber D, Blanks JE (1999) Mechanisms that regulate the function of the selectins and their ligands. Physiol Rev 79:181–213

    PubMed  CAS  Google Scholar 

  78. Adema GJ, Hartgers F, Verstraten R, de Vries E, Marland G, Menon S, Foster J, Xu Y, Nooyen P, McClanahan T, Bacon KB, Figdor CG (1997) A dendritic-cell-derived C-C chemokine that preferentially attracts naive T cells. Nature 387:713–717

    PubMed  CAS  Google Scholar 

  79. Ngo VN, Tang LH, Cyster JG (1998) Epstein-Barr virusinduced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells. J Exp Med 188:181–191

    PubMed  CAS  Google Scholar 

  80. Nagira M, Imai T, Hieshima K, Kusuda J, Ridanpaa M, Takagi S, Nishimura M, Kakizaki M, Nomiyama H, Yoshie O (1997) Molecular cloning of a novel human CC chemokine secondary lymphoid-tissue chemokine that is a potent chemoattractant for lymphocytes and mapped to chromosome 9p13. J Biol Chem 272:19518–19524

    PubMed  CAS  Google Scholar 

  81. Rustemeyer T, von Blomberg BME, de Ligter S, Frosch PJ, Scheper RJ (1999) Human T lymphocyte priming in vitro by dendritic cells. Clin Exp Immunol 117:209–216

    PubMed  CAS  Google Scholar 

  82. Crivellato E, Vacca A, Ribatti D (2004) Setting the stage: an anatomist’s view of the immune system. Trends Immunol 25:210–217

    PubMed  CAS  Google Scholar 

  83. Itano AA, Jenkins MK (2003) Antigen presentation to naive CD4 T cells in the lymph node. Nat Immunol 4:733–739

    PubMed  CAS  Google Scholar 

  84. Griem P, Wulferink M, Sachs B, Gonzales JB, Gleichmann E (1998) Allergic and autoimmune reactions to xenobiotics: how do they arise? Immunol Today 19:133–141

    PubMed  CAS  Google Scholar 

  85. Moulon C, Vollmer J, Weltzien H-U (1995) Characterization of processing requirements and metal crossreactivities in T cell clones from patients with allergic contact dermatitis to nickel. Eur J Immunol 25:3308–3315

    PubMed  CAS  Google Scholar 

  86. Li QJ, Dinner AR, Qi S, Irvine DJ, Huppa JB, Davis MM, Chakraborty AK (2004) CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat Immunol 5:791–799

    PubMed  CAS  Google Scholar 

  87. Schoenberger SP, Toes REM, Vandervoort EIH, Offringa R, Melief CJM (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393:480–483

    PubMed  CAS  Google Scholar 

  88. Gascoigne NR, Zal T (2004) Molecular interactions at the T cell-antigen-presenting cell interface. Curr Opin Immunol 16:114–119

    PubMed  CAS  Google Scholar 

  89. Cantrell D (1996) T cell receptor signal transduction pathways. Annu Rev Immunol 14:259–274

    PubMed  CAS  Google Scholar 

  90. Kuo CT, Leiden JM (1999) Transcriptional regulation of T lymphocyte development and function. Annu Rev Immunol 17:149–187

    PubMed  CAS  Google Scholar 

  91. Davis SJ, van der Merwe PA (2003) TCR triggering: co-receptor-dependent or-independent? Trends Immunol 24:624–626

    PubMed  CAS  Google Scholar 

  92. Trautmann A, Randriamampita C (2003) Initiation of TCR signalling revisited. Trends Immunol 24:425–428

    PubMed  CAS  Google Scholar 

  93. Acuto O, Michel F (2003) CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol 3:939–951

    PubMed  CAS  Google Scholar 

  94. Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ (2004) CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol 22:307–328

    PubMed  CAS  Google Scholar 

  95. Dong C, Nurieva RI, Prasad DV (2003) Immune regulation by novel costimulatory molecules. Immunol Res 28:39–48

    PubMed  Google Scholar 

  96. Viola A, Lanzavecchia A (1996) T cell activation determined by T cell receptor number and tunable thresholds. Science 273:104–106

    PubMed  CAS  Google Scholar 

  97. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    PubMed  CAS  Google Scholar 

  98. Hommel M (2004) On the dynamics of T-cell activation in lymph nodes. Immunol Cell Biol 82:62–66

    PubMed  Google Scholar 

  99. Cella M, Sallusto F, Lanzavecchia A (1997) Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 9:10–16

    PubMed  CAS  Google Scholar 

  100. Gomez J, Gonzalez A, Martinez-A C, Rebollo A (1998) IL-2-induced cellular events. Crit Rev Immunol 18:185–220

    PubMed  CAS  Google Scholar 

  101. Berridge MJ (1997) Lymphocyte activation in health and disease. Crit Rev Immunol 17:155–178

    PubMed  CAS  Google Scholar 

  102. Theze J, Alzari PM, Bertoglio J (1996) Interleukin 2 and its receptors: recent advances and new immunological functions. Immunol Today 17:481–486

    PubMed  CAS  Google Scholar 

  103. Lacour M, Arrighi J-F, Müller KM, Carlberg C, Saurat J-H, Hauser C (1994) cAMP up-regulates IL-4 and IL-5 production from activated CD4+ T cells while decreasing IL-2 release and NF-AT induction. Int Immunol 6:1333–1343

    PubMed  CAS  Google Scholar 

  104. Linsley PS, Ledbetter JA (1993) The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 11:191–212

    PubMed  CAS  Google Scholar 

  105. Mazzoni A, Segal DM (2004) Controlling the Toll road to dendritic cell polarization. J Leukoc Biol 75:721–30

    PubMed  CAS  Google Scholar 

  106. Constant SL, Bottomly K (1997) Induction of Th1 and Th2 CD4+ T cell responses: the alternate approaches. Annu Rev Immunol 15:297–322

    PubMed  CAS  Google Scholar 

  107. Nakamura T, Lee RK, Nam SY, Podack ER, Bottomly K, Flavell RA (1997) Roles of IL-4 and IFN-g in stabilizing the T helper cell type-1 and 2 phenotype. J Immunol 158:2648–2653

    PubMed  CAS  Google Scholar 

  108. O’Garra A (1998) Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8:275–283

    PubMed  CAS  Google Scholar 

  109. Santana MA, Rosenstein Y (2003) What it takes to become an effector T cell: the process, the cells involved, and the mechanisms. J Cell Physiol 195:392–401

    PubMed  CAS  Google Scholar 

  110. Sallusto F, Geginat J, Lanzavecchia A. (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763

    PubMed  CAS  Google Scholar 

  111. Morel PA, Oriss TB (1998) Crossregulation between Th1 and Th2 cells. Crit Rev Immunol 18:275–303

    PubMed  CAS  Google Scholar 

  112. Dabbagh K, Lewis DB (2003) Toll-like receptors and Thelper-1/T-helper-2 responses. Curr Opin Infect Dis 16:199–204

    PubMed  Google Scholar 

  113. Burkett PR, Koka R, Chien M, Boone DL, Ma A (2004) Generation, maintenance, and function of memory T cells. Adv Immunol 83:191–231

    PubMed  CAS  Google Scholar 

  114. Spahn TW, Kucharzik T (2004) Modulating the intestinal immune system: the role of lymphotoxin and GALT organs. Gut 53:456–465

    PubMed  CAS  Google Scholar 

  115. Bour H, Peyron E, Gaucherand M, Garrigue JL, Desvignes C, Kaiserlian D, Revillard JP, Nicolas JF (1995) Major histocompatibility complex class I-restricted CD8+ T cells and class II-restricted CD4+ T cells, respectively, mediate and regulate contact sensitivity to dinitrofluorobenzene. Eur J Immunol 25:3006–3010

    PubMed  CAS  Google Scholar 

  116. Kimber I, Dearman RJ (2002) Allergic contact dermatitis: the cellular effectors. Contact Dermatitis 46:1–5

    PubMed  Google Scholar 

  117. Cavani A, Mei D, Guerra E, Corinti S, Giani M, Pirrotta L, Puddu P, Girolomoni G (1998) Patients with allergic contact dermatitis to nickel and nonallergic individuals display different nickel-specific T cell responses. Evidence for the presence of effector CD8+ and regulatory CD4+ T cells. J Invest Dermatol 111:621–628

    PubMed  CAS  Google Scholar 

  118. Kang KF, Kubin M, Cooper KD, Lessin SR, Trinchieri G, Rook AH (1996) IL-12 synthesis by human Langerhans cells. J Immunol 156:1402–1407

    PubMed  CAS  Google Scholar 

  119. Pulendran B (2004) Modulating TH1/TH2 responses with microbes, dendritic cells, and pathogen recognition receptors. Immunol Res 29:187–196

    PubMed  CAS  Google Scholar 

  120. Paul WE, Ohara J (1987) B-cell stimulatory factor-1/interleukin 4. Annu Rev Immunol 5:429–459

    PubMed  CAS  Google Scholar 

  121. Rogge L, Barberis-Maino L, Biffi M, Passini N, Presky DH, Gubler U, Sinigaglia F (1997) Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J Exp Med 185:825–831

    PubMed  CAS  Google Scholar 

  122. Nakamura T, Kamogawa Y, Bottomly K, Flavell RA (1997) Polarization of IL-4-and IFN-gamma-producing CD4(+) T cells following activation of naive CD4(+) T cells. J Immunol 158:1085–1094

    PubMed  CAS  Google Scholar 

  123. Orange JS, Biron CA (1996) An absolute and restricted requirement for IL-12 in natural killer cell IFN-g production and antiviral defense. J Immunol 156: 1138–1142

    PubMed  CAS  Google Scholar 

  124. Mackey MF, Barth RJ, Noelle RJ (1998) The role of CD40/CD154 interactions in the priming, differentiation, and effector function of helper and cytotoxic T cell. J Leuk Biol 63:418–428

    CAS  Google Scholar 

  125. Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G (1996) Ligation of CD40 on dendritic cells triggers production of high levels of interleukin 12 and enhances T cell stimulatory capacity. J Exp Med 184:747–752

    PubMed  CAS  Google Scholar 

  126. Ohshima Y, Tanaka Y, Tozawa H, Takahashi Y, Maliszewski C, Delespesse C (1997) Expression and function of OX40 ligand on human dendritic cells. J Immunol 159:3838–3848

    PubMed  CAS  Google Scholar 

  127. Kuchroo V, Prabhu Das M, Brown JA Ranger A, Zamvill MSS, Sobel RA, Weiner HL, Nabavi N, Glimcher LH (1995) B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways. Application to autoimmune disease therapy. Cell 80:707–718

    PubMed  CAS  Google Scholar 

  128. Ranger AM, Prabhu Das M, Kuchroo VK, Glimcher LH (1996) B7-2 (CD86) is essential for the development of IL-4 producing cells. Int Immunol 153:1549–1560

    Google Scholar 

  129. Schweitzer AN, Borriello F, Wong RCK, Abbas AK, Sharpe AH (1997) Role of costimulators in T cell differentiation — studies using antigen-presenting cells lacking expression of CD80 or CD86. J Immunol 158:2713–2722

    PubMed  CAS  Google Scholar 

  130. Rulifson IC, Sperling AI, Fields PE, Fitch FW, Bluestone JA (1997) CD28 costimulation promotes the production of Th2 cytokines. J Immunol 158:658–665

    PubMed  CAS  Google Scholar 

  131. Groux H, Sornasse T, Cottrez F, de Vries JE, Coffman RL, Roncarolo MG, Yssel H (1997) Induction of human T helper cell type-1 differentiation results in loss of IFN-g receptor b-chain expression. J Immunol 158:5627–5631

    PubMed  CAS  Google Scholar 

  132. Pernis A, Gupta S, Gollob KJ, Garfein E, Coffman RL, Schindler C, Rothman P (1995) Lack of interferon gamma receptor beta chain and the prevention of interferon signaling in Th1 cells. Science 269:245–247

    PubMed  CAS  Google Scholar 

  133. Gajewski TF, Fitch FW (1988) Antiproliferative effect of IFN-gamma in immune regulation. I. IFN-gamma inhibits the proliferation of Th2 but not Th1 murine helper T lymphocyte clones. J Immunol 140:4245–4252

    PubMed  CAS  Google Scholar 

  134. Yoshimoto T, Takeda K, Tanaka T, Ohkusu K, Kashiwamura S, Okamura H, Akira S, Nakanishi K (1998) IL-12 upregulates IL-18 receptor expression on T cells, TH1 cells, and B cells — synergism with IL-18 for IFN-gamma production. J Immunol 161:3400–3407

    PubMed  CAS  Google Scholar 

  135. Werfel T, Hentschel M, Kapp A, Renz H (1997) Dichotomy of blood-and skin-derived IL-4-producing allergen-specific T cells and restricted V beta repertoire in nickel-mediated contact dermatitis. J Immunol 158:2500–2505

    PubMed  CAS  Google Scholar 

  136. Probst P, Küntzlin D, Fleischer B (1995) TH2-type infiltrating T cells in nickel-induced contact dermatitis. Cell Immunol 165:134–140

    PubMed  CAS  Google Scholar 

  137. Zanni MP, Mauri-Hellweg D, Brander C, Wendland T, Schnyder B, Frei E, von Greyerz S, Bircher A, Pichler WJ (1997) Characterization of lidocaine-specific T cells. J Immunol 158:1139–1148

    PubMed  CAS  Google Scholar 

  138. Perez VL, Lederer JA, Lichtman AH, Abbas AK (1995) Stability of Th1 and Th2 populations. Int Immunol 7:869–875

    PubMed  CAS  Google Scholar 

  139. Rincon M, Anguita J, Nakamura T, Fikrig E, Flavell RA (1997) Interleukin (IL)-6 directs the differentiation of IL-4 producing CD4+ T cells. J Exp Med 182:1591–1596

    Google Scholar 

  140. Yoshimoto T, Bendelac A, Watson C, Hu-Li J, Paul WE (1995) Role of NK1.1+ T cells in a TH2 response and in immunoglobulin E production. Science 270:1845–1847

    PubMed  CAS  Google Scholar 

  141. Hiroi T, Iwatani K, Iijima H, Kodama S, Yanagita M, Kiyono H (1998) Nasal immune system — distinctive Th0 and Th1/Th2 type environments in murine nasal-associated lymphoid tissues and nasal passage, respectively. Eur J Immunol 28:3346–3353

    PubMed  CAS  Google Scholar 

  142. Banchereau J (1995) Converging and diverging properties of human interleukin-4 and interleukin-10. Behr Inst Mitteil 96:58–77

    CAS  Google Scholar 

  143. Itoh K, Hirohata S (1995) The role of IL-10 in human B cell activation, proliferation, and differentiation. J Immunol 154:4341–4350

    PubMed  CAS  Google Scholar 

  144. Napolitano LM, Buzdon MM, Shi HJ, Bass BL (1997) Intestinal epithelial cell regulation cell regulation of macrophage and lymphocyte interleukin 10 expression. Arch Surg 132:1271–1276

    PubMed  CAS  Google Scholar 

  145. Xu H, Banerjee A, Diulio NA, Fairchild RL (1996) T cell populations primed by hapten sensitization in contact sensitivity are distinguished by polarized patterns of cytokine production: interferon gamma-producing (Tc1) effector CD8+ T cells and interleukin (IL)-4/IL-10-producing (Th2) negative regulatory CD4+ T cells. J Exp Med 183:1001–1012

    PubMed  CAS  Google Scholar 

  146. Letterio JL, Roberts AB (1998) Regulation of immune responses by TGF-beta. Annu Rev Immunol 16:137–161

    PubMed  CAS  Google Scholar 

  147. Hosken NA, Shibuya K, Heath AW, Murphy KM, O’Garra A (1995) The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor phenotype development in a T cell receptor alpha/beta-transgenic model. J Exp Med 182:1579–1584

    PubMed  CAS  Google Scholar 

  148. Constant SL, Pfeiffer C, Woodard A, Pasqualini T, Bottomly K (1995) Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J Exp Med 5:1591–1596

    Google Scholar 

  149. Bretscher PA, Ogunremi O, Menon JN (1997) Distinct immunological states in murine cutaneous leishmaniasis by immunizing with different amounts of antigen: the generation of beneficial, potentially harmful, harmful and potentially extremely harmful states. Behring Inst Mitt 98:153–159

    PubMed  CAS  Google Scholar 

  150. Kanerva L, Hyry H, Jolanki R, Hytonen M, Estlander T (1997) Delayed and immediate allergy caused by methylhexahydrophthalic anhydride. Contact Dermatitis 36:34–38

    PubMed  CAS  Google Scholar 

  151. Geenen V, Brilot F (2003) Role of the thymus in the development of tolerance and autoimmunity towards the neuroendocrine system. Ann NY Acad Sci 992:186–195

    PubMed  CAS  Google Scholar 

  152. Scholzen T, Armstrong CA, Bunnett NW, Luger TA, Olerud JE, Ansel JC (1998) Neuropeptides in the skin: interactions between the neuroendocrine and the skin immune systems. Exp Dermatol 7:81–96

    PubMed  CAS  Google Scholar 

  153. Luger TA, Lotti T (1998) Neuropeptides: role in inflammatory skin diseases. J Eur Acad Derm Venereol 10:207–211

    CAS  Google Scholar 

  154. Lord GM, Matarese G, Howard LK, Baker RJ, Bloom SR, Lechler RI (1998) Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394:897–901

    PubMed  CAS  Google Scholar 

  155. Morfin R, Lafaye P, Cotillon AC, Nato F, Chmielewski V, Pompon D (2000) 7 alpha-hydroxy-dehydroepiandrosterone and immune response. Ann NY Acad Sci 917:971–982

    PubMed  CAS  Google Scholar 

  156. Cutolo M, Seriolo B, Villaggio B, Pizzorni C, Craviotto C, Sulli A (2002) Androgens and estrogens modulate the immune and inflammatory responses in rheumatoid arthritis. Ann NY Acad Sci 966:131–142

    PubMed  CAS  Google Scholar 

  157. Kidd P (2003) Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev 8:223–246

    PubMed  Google Scholar 

  158. Piccinni MP, Giudizi MG, Biagiotti R, Beloni L, Giannarini L, Sampognaro S, Parronchi P, Manetti R, Annuziato F, Livi C, Romagnani S, Maggi E (1995) Progesterone favors the development of human T helper cells producing Th2-type cytokines and promotes both IL-4 production and membrane CD30 expression in established Th1 cell clones. J Immunol 155:128–133

    PubMed  CAS  Google Scholar 

  159. Vieira PL, Kalinski P, Wierenga EA, Kapsenberg ML, Dejong EC (1998) Glucocorticoids inhibit bioactive IL-12P70 production by in vitro-generated human dendritic cells without affecting their T cell stimulatory potential. J Immunol 161:5245–5251

    PubMed  CAS  Google Scholar 

  160. Calder PC, Bevan SJ, Newsholme EA (1992) The inhibition of T-lymphocyte proliferation by fatty acids is via an eicosanoid-independent mechanism. Immunology 75:108–115

    PubMed  CAS  Google Scholar 

  161. Uotila P (1996) The role of cyclic AMP and oxygen intermediates in the inhibition of cellular immunity in cancer. Cancer Immunol Immunother 43:1–9

    PubMed  CAS  Google Scholar 

  162. Demeure CE, Yang LP, Desjardins C, Raynauld P, Delespesse G (1997) Prostaglandin E-2 primes naive T cells for the production of anti-inflammatory cytokines. Eur J Immunol 27:3526–3531

    PubMed  CAS  Google Scholar 

  163. Abe N, Katamura K, Shintaku N, Fukui T, Kiyomasu T, Lio J, Ueno H, Tai G, Mayumi M, Furusho K (1997) Prostaglandin E2 and IL-4 provide naive CD4+ T cells with distinct inhibitory signals for the priming of IFN-gamma production. Cell Immunol 181:86–92

    PubMed  CAS  Google Scholar 

  164. Kalinski P, Hilkens CMU, Snijders A, Snijdewint FGM, Kapsenberg ML (1997) IL-12 deficient dendritic cells, generated in the presence of prostaglandin E2, promote type-2 cytokine production in maturing human naive T helper cells. J Immunol 159:28–35

    PubMed  CAS  Google Scholar 

  165. von Blomberg BME, Bruynzeel DP, Scheper RJ (1991) Advances in mechanisms of allergic contact dermatitis: in vitro and in vivo research. In: Marzulli FN, Maibach HI (eds) Dermatotoxicology, 4th edn. Hemisphere, New York, pp 255–362

    Google Scholar 

  166. Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763

    PubMed  CAS  Google Scholar 

  167. Westerman J, Geismar U, Sponholz A, Bode U, Sparshott, Bell EB (1997) CD4+ T cells of both the naive and the memory phenotype enter rat lymph nodes and Peyer’s patches via high endothelial venules: within the tissue their migratory behaviour differs. Eur J Immunol 27:3174–3181

    Google Scholar 

  168. Marshall D, Haskard DO (2002) Clinical overview of leukocyte adhesion and migration: where are we now? Semin Immunol 14:133–140

    PubMed  CAS  Google Scholar 

  169. Hall JG, Morris B (1965) The origin of cells in the efferent lymph from a single lymph node. J Exp Med 121:901–910

    PubMed  CAS  Google Scholar 

  170. Hwang ST (2001) Mechanisms of T-cell homing to skin. Adv Dermatol 17:211–241

    PubMed  CAS  Google Scholar 

  171. Pober JS, Kluger MS, Schechner JS (2001) Human endothelial cell presentation of antigen and the homing of memory/effector T cells to skin. Ann NY Acad Sci 941:12–25

    PubMed  CAS  Google Scholar 

  172. Mackay CR (1993) Homing of naive, memory and effector lymphocytes. Curr Opin Immunol 5:423–427

    PubMed  CAS  Google Scholar 

  173. Tietz W, Allemand Y, Borges E, Vonlaer D, Hallmann R, Vestweber D, Hamann A (1998) CD4(+) T cells migrate into inflamed skin only if they express ligands for E-and P-selectin. J Immunol 16:963–970

    Google Scholar 

  174. Rosen Homey B (2004) Chemokines and chemokine receptors as targets in the therapy of psoriasis. Curr Drug Targets Inflamm Allergy 3:169–174

    Google Scholar 

  175. Homey B, Bunemann E (2004) Chemokines and inflammatory skin diseases. Ernst Schering Res Found Workshop 4:69–83

    Google Scholar 

  176. Tanchot C, Rocha B (1998) The organization of mature T-cell pools. Immunol Today 19:575–579

    PubMed  CAS  Google Scholar 

  177. Williams IR (2004) Chemokine receptors and leukocyte trafficking in the mucosal immune system. Immunol Res 29:283–292

    PubMed  CAS  Google Scholar 

  178. Telemo E, Korotkova M, Hanson LA (2003) Antigen presentation and processing in the intestinal mucosa and lymphocyte homing. Ann Allergy Asthma Immunol 90:28–33

    PubMed  CAS  Google Scholar 

  179. Picker LJ, Treer JR, Ferguson-Darnell B, Collins PA, Bergstresser PR, Terstappen LWMM (1993) Control of lymphocyte recirculation in man. II. Differential regulation of the cutaneous lymphocyte associated antigen, a tissue-selective homing receptor for skin homing T cells. J Immunol 150:1122–1136

    PubMed  CAS  Google Scholar 

  180. Sunderkötter C, Steinbrink K, Henseleit U, Bosse R, Schwarz A, Vestweber D, Sorg C (1996) Activated T cells induce expression of E-selectin in vitro and in an antigen-dependent manner in vivo. Eur J Immunol 26:1571–1579

    PubMed  Google Scholar 

  181. Austrup F, Vestweber D, Borges E, Lohning M, Brauer R, Herz U, Renz H, Hallmann R, Scheffold A, Radbruch A, Hamann A (1997) P-and E selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflamed tissues. Nature 385:81–83

    PubMed  CAS  Google Scholar 

  182. Borges E, Tietz W, Steegmaier M, Moll T, Hallmann R, Hamann A, Vestweber D (1997) P-selectin glycoprotein ligand-1 (PSGL-1) on T helper 1 but not on T helper 2 cells binds to P-selectin and supports migration into inflamed skin. J Exp Med 185:573–578

    PubMed  CAS  Google Scholar 

  183. Tensen CP, Flier J, Rampersad SS, Sampat-Sardjoerpersad A, Scheper RJ, Boorsma DM, Willemze R (1999) Genomic organization, sequence and transcriptional regulation of the human CXCL 11 gene. Biochim Biophys Acta 1446:167–172

    PubMed  CAS  Google Scholar 

  184. Sallusto F, Kremmer E, Palermo B, Hoy A, Ponath P, Qin SX, Forster R, Lipp M, Lanzavecchia A (1999) Switch in chemokine receptor expression upon TCR stimulation reveals novel homing potential for recently activated T cells. Eur J Immunol 29:2037–2045

    PubMed  CAS  Google Scholar 

  185. Baggiolini M (1998) Chemokines and leukocyte traffic. Nature 392:565–568

    PubMed  CAS  Google Scholar 

  186. Fuhlbrigge RC, Kieffer JD, Armerding D, Kupper TS (1997) Cutaneous lymphocyte antigen is a specialized form of PSGL-1 expressed on skin-homing T cells. Nature 389:978–981

    PubMed  CAS  Google Scholar 

  187. Rustemeyer T, von Blomberg BME, de Ligter S, Frosch PJ, Scheper RJ (1999) Human T lymphocyte priming in vitro by haptenated autologous dendritic cells. Clin Exp Immunol 117:209–216

    PubMed  CAS  Google Scholar 

  188. Milon G, Marchal G, Seman M, Truffa-Bachi P (1981) A delayed-type hypersensitivity reaction initiated by a single T lymphocyte. Agents Actions 11:612–614

    PubMed  CAS  Google Scholar 

  189. Marchal G, Seman M, Milon G, Truffa-Bachi P, Zilberfarb V (1982) Local adoptive transfer of skin delayed-type hypersensitivity initiated by a single T lymphocyte. J Immunol 129:954–958

    PubMed  CAS  Google Scholar 

  190. Rustemeyer T, von Blomberg BME, van Hoogstraten IMW, Bruynzeel DP, Scheper RJ (2004) Analysis of effector and regulatory immune-reactivity to nickel. Clin Exp Allergy 34(9):1458–1466

    PubMed  CAS  Google Scholar 

  191. Bell EB, Sparshott SM, Bunce C (1998) CD4+ T-cell memory, CD45R subsets and the persistence of antigen — a unifying concept. Immunol Today 19:60–64

    PubMed  CAS  Google Scholar 

  192. Bell EB, Sparshott SM, Ager A (1995) Migration pathways of CD4 T cell subsets in vivo: the CD45RC-subset enters the thymus via alpha 4 integrin-VCAM-1 interaction. Int Immunol 11:1861–1871

    Google Scholar 

  193. Goebeler M, Meinardus-Hager G, Roth J, Goerdt S, Sorg C (1993) Nickel chloride and cobalt chloride, two common contact sensitizers, directly induce expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leukocyte adhesion molecule (ELAM-1) by endothelial cells. J Invest Dermatol 100:759–765

    PubMed  CAS  Google Scholar 

  194. Goebeler M, Roth J, Brocker EB, Sorg C, Schulze-Osthoff K (1995) Activation of nuclear factor-kappa B and gene expression in human endothelial cells by the common haptens nickel and cobalt. J Immunol 155:2459–2467

    PubMed  CAS  Google Scholar 

  195. Walsh LJ, Lavker RM, Murphy GF (1990) Determinants of immune cell trafficking in the skin. Lab Invest 63:592–600

    PubMed  CAS  Google Scholar 

  196. Waldorf HA, Walsh LJ, Schechter NM, Murphy GF (1991) Early molecular events in evolving cutaneous delayed hypersensitivity in humans. Am J Pathol 138:477–486

    PubMed  CAS  Google Scholar 

  197. Stoof TJ, Boorsma DM, Nickoloff BJ (1994) Keratinocytes and immunological cytokines. In: Leigh I, Lane B, Watt F (eds) The keratinocyte handbook. Cambridge University Press, Cambridge, pp 365–399

    Google Scholar 

  198. Bangert C, Friedl J, Stary G, Stingl G, Kopp T (2003) Immunopathologic features of allergic contact dermatitis in humans: participation of plasmacytoid dendritic cells in the pathogenesis of the disease? J Invest Dermatol 121:1409–1418

    PubMed  CAS  Google Scholar 

  199. Houck G, Saeed S, Stevens GL, Morgan MB (2004) Eczema and the spongiotic dermatoses: a histologic and pathogenic update. Semin Cutan Med Surg 23:39–45

    PubMed  Google Scholar 

  200. Silberberg-Sinakin I, Thorbecke GJ, Baer RL, Rosenthal SA, Berezowsky V (1976) Antigen-bearing Langerhans cells in skin, dermal lymphatics, and in lymph nodes. Cell Immunol 25:137–151

    PubMed  CAS  Google Scholar 

  201. Hill S, Edwards AJ, Kimber I, Knight SC (1990) Systemic migration of dendritic cells during contact sensitization. Immunology 71:277–281

    PubMed  CAS  Google Scholar 

  202. Sterry W, Künne N, Weber-Matthiesen K, Brasch J, Mielke V (1991) Cell trafficking in positive and negative patch test reactions: demonstration of a stereotypic migration pathway. J Invest Dermatol 96:459–462

    PubMed  CAS  Google Scholar 

  203. Herzog WR, Meade R, Pettinicchi A, Ptak W, Askenase PW (1989) Nude mice produce a T cell-derived antigen-binding factor that mediates the early component of delayedtype hypersensitivity. J Immunol 142:1803–1812

    PubMed  CAS  Google Scholar 

  204. Willis CM, Young E, Brandon DR, Wilkinson JD (1986) Immunopathological and ultrastructural findings in human allergic and irritant contact dermatitis. Br J Dermatol 115:305–316

    PubMed  CAS  Google Scholar 

  205. Brasch J, Burgard J, Sterry W (1992) Common pathways in allergic and irritant contact dermatitis. J Invest Dermatol 98:166–170

    PubMed  CAS  Google Scholar 

  206. Hoefakker S, Caubo M, van’ t Herve EHM, Roggeveen MJ, Boersma WJA, van Joost Th, Notten WRF, Claassen E (1995) In vivo cytokine profiles in allergic and irritant contact dermatitis. Contact Dermatitis 33:258–266

    PubMed  CAS  Google Scholar 

  207. Flier J, Boorsma DM, Bruynzeel DP, van Beek PJ, Stoof TJ, Scheper RJ, Willemze R, Tensen CP (1999) The CXCR3 activating chemokines IP-10, MIG and IP-9 are expressed in allergic but not in irritant patch test reactions. J Invest Dermatol 113:574–578

    PubMed  CAS  Google Scholar 

  208. Tensen CP, Flier J, van der Raaij-Helmer EM, Sampat-Sardjoepersad S, van den Schors RC, Leurs R, Scheper RJ, Boorsma DM, Willemze R (1999) Human IP-9: a keratinocyte derived high affinity CXC-chemokine ligand for the IP-10/Mig receptor (CXCR3). J Invest Dermatol 112:716–722

    PubMed  CAS  Google Scholar 

  209. Kondo S, Sauder DN (1995) Epidermal cytokines in allergic contact dermatitis. J Am Acad Dermatol 33:786–800

    PubMed  CAS  Google Scholar 

  210. Wardorf HA, Walsh LJ, Schechter NM (1991) Early cellular events in evolving cutaneous delayed hypersensitivity in humans. Am J Pathol 138:477–486

    Google Scholar 

  211. Pober JS, Bevilacqua MP, Mendrick DL, Lapierre LA, Fiers W, Gimbrone MA Jr (1986) Two distinct monokines, interleukin 1 and tumor necrosis factor, each independently induce biosynthesis and transient expression of the same antigen on the surface of cultured human vascular endothelial cells. J Immunol 136:1680–1687

    PubMed  CAS  Google Scholar 

  212. Shimizu Y, Newman W, Gopal TV, Horgan KJ, Graber N, Beall LD, van Seventer GA, Shaw S (1991) Four molecular pathways of T cell adhesion to endothelial cells: roles of LFA-1, VCAM-1, and ELAM-1 and changes in pathway hierarchy under different activation conditions. J Cell Biol 113:1203–1212

    PubMed  CAS  Google Scholar 

  213. Ross R, Gilitzer C, Kleinz R, Schwing J, Kleinert H, Forstermann U, Reske-Kunz AB (1998) Involvement of NO in contact hypersensitivity. Int Immunol 10:61–69

    PubMed  CAS  Google Scholar 

  214. Virag L, Szabo E, Bakondi E, Bai P, Gergely P, Hunyadi J, Szabo C (2002) Nitric oxide-peroxynitrite-poly (ADP-ribose) polymerase pathway in the skin. Exp Dermatol 11:189–202

    PubMed  CAS  Google Scholar 

  215. Rowe A, Farrell AM, Bunker CB (1997) Constitutive endothelial and inducible nitric oxide synthase in inflammatory dermatoses. Br J Dermatol 136:18–23

    PubMed  CAS  Google Scholar 

  216. Szepietowski JC, McKenzie RC, Keohane SG, Walker C, Aldridge RD, Hunter JA (1997) Leukaemia inhibitory factor: induction in the early phase of allergic contact dermatitis. Contact Dermatitis 36:21–25

    PubMed  CAS  Google Scholar 

  217. Yu X, Barnhill RL, Graves DT (1994) Expression of monocyte chemoattractant protein-1 in delayed type hypersensitivity reactions in the skin. Lab Invest 71:226–235

    PubMed  CAS  Google Scholar 

  218. Buchanan KL, Murphy JW (1997) Kinetics of cellular infiltration and cytokine production during the efferent phase of a delayed-type hypersensitivity reaction. Immunology 90:189–197

    PubMed  CAS  Google Scholar 

  219. Ptak W, Askenase PW, Rosenstein RW, Gershon RK (1982) Transfer of an antigen-specific immediate hypersensitivity-like reaction with an antigen-binding factor produced by T cells. Proc Natl Acad Sci USA 79: 1969–1973

    PubMed  CAS  Google Scholar 

  220. Van Loveren H, Ratzlaff RE, Kato K, Meade R, Ferguson TA, Iverson GM, Janeway CA, Askenase PW (1986) Immune serum from mice contact-sensitized with picryl chloride contains an antigen-specific T cell factor that transfers immediate cutaneous reactivity. Eur J Immunol 16:1203–1208

    PubMed  Google Scholar 

  221. Ptak W, Herzog WR, Askenase PW (1991) Delayed-type hypersensitivity initiation by early-acting cells that are antigen mismatched or MHC incompatible with late-acting, delayed-type hypersensitivity effector T cells. J Immunol 146:469–475

    PubMed  CAS  Google Scholar 

  222. Tsuji RF, Geba GP, Wang Y, Kawamoto K, Matis LA, Askenase PW (1997) Required early complement activation in contact sensitivity with generation of local C5-dependent chemotactic activity, and late T cell interferon g: a possible initiating role of B cells. J Exp Med 186:1015–1026

    PubMed  CAS  Google Scholar 

  223. Askenase PW, Kawikova I, Paliwal V, Akahira-Azuma M, Gerard C, Hugli T, Tsuji R (1999) A new paradigm of T cell allergy: requirement for the B-1 B cell subset. Int Arch All Appl Immunol 118:145–149

    CAS  Google Scholar 

  224. Hardy RR, Hayakawa K (1994) CD5+ B cells, a fetal B cell lineage. Adv Immunol 55:297–339

    PubMed  CAS  Google Scholar 

  225. Askenase PW, Kawikova I, Paliwal V, Akahira-Azuma M, Gerard C, Hugli T, Tsuji R (1999) A new paradigm of T cell allergy: requirement for the B-1 cell subset. Int Arch Allergy Immunol 118:145–149

    PubMed  CAS  Google Scholar 

  226. Feinstein A, Richardson N, Taussig MJ (1986) Immunoglobulin flexibility in complement activation. Immunol Today 7:169–173

    CAS  Google Scholar 

  227. Van Loweren H, Meade R, Askenase PW (1983) An early component of delayed type hypersensitivity mediated by T cells and mast cells. J Exp Med 157:1604–1617

    Google Scholar 

  228. Geba GP, Ptak W, Anderson GA, Ratzlaff RE, Levin J, Askenase PW (1996) Delayed-type hypersensitivity in mast cell deficient mice: dependence on platelets for expression on contact sensitivity. J Immunol 157:557–565

    PubMed  CAS  Google Scholar 

  229. Foreman KE, Vaporciyan AA, Bonish BK, Jones ML, Johnson KJ, Glovsky MM, Eddy SM, Ward PA (1994) C5a-induced expression of P-selectin in endothelial cells. J Clin Invest 94:1147–1155

    PubMed  CAS  Google Scholar 

  230. Groves RW, Allen MH, Ross EL, Barker JN, MacDonald DM (1995) Tumor necrosis factor alpha is pro-inflammatory in normal human skin and modulates cutaneous adhesion molecule expression. Br J Dermatol 132:345–352

    PubMed  CAS  Google Scholar 

  231. Nataf S, Davoust N, Ames RS, Barnum SR (1999) Human T cells express the C5a receptor and are chemoattracted to C5a. J Immunol 162:4018–4023

    PubMed  CAS  Google Scholar 

  232. Wilkinson SM, Mattey DL, Beck MH (1994) IgG antibodies and early intradermal reactions to hydrocortisone in patients with cutaneous delayed-type hypersensitivity to hydrocortisone. Br J Dermatol 131:495–498

    PubMed  CAS  Google Scholar 

  233. Shirakawa T, Kusaka Y, Morimoto K (1992) Specific IgE antibodies to nickel in workers with known reactivity to cobalt. Clin Exp Allergy 22:213–218

    PubMed  CAS  Google Scholar 

  234. Redegeld FA, Nijkamp FP (2003) Immunoglobulin free light chains and mast cells: pivotal role in T-cell-mediated immune reactions? Trends Immunol 24:181–185

    PubMed  CAS  Google Scholar 

  235. Salerno A, Dieli F (1998) Role of gamma delta T lymphocytes in immune response in humans and mice. Crit Rev Immunol 18:327–357

    PubMed  CAS  Google Scholar 

  236. Szczepanik M, Lewis J, Geba GP, Ptak W, Askenase PW (1998) Positive regulatory gamma-delta T cells in contact sensitivity — augmented responses by in vivo treatment with anti-gamma-delta monoclonal antibody, or anti-Vgamma-5 or V-delta-4. Immunol Invest 27:1–15

    PubMed  CAS  Google Scholar 

  237. Dieli F, Ptak W, Sireci G, Romano GC, Potestio M, Salerno A, Asherson GL (1998) Cross-talk between V-beta-8(+) and gamma-delta(+) T lymphocytes in contact sensitivity. Immunology 93:469–477

    PubMed  CAS  Google Scholar 

  238. Tang HL, Cyster JG (1999) Chemokine up-regulation and activated T cell attraction by maturing dendritic cells. Science 284:819–822

    PubMed  CAS  Google Scholar 

  239. Scheper RJ, van Dinther-Janssen AC, Polak L (1985) Specific accumulation of hapten-reactive T cells in contact sensitivity reaction sites. J Immunol 134:1333–1336

    PubMed  CAS  Google Scholar 

  240. Macatonia SE, Knight SC, Edwards AJ, Griffiths S, Fryer P (1987) Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate. Functional and morphological studies. J Exp Med 166:1654–1667

    PubMed  CAS  Google Scholar 

  241. Lappin MB, Kimber I, Norval M (1996) The role of dendritic cells in cutaneous immunity. Arch Dermatol Res 288:109–121

    PubMed  CAS  Google Scholar 

  242. Vana G, Meingassner JG. (2000) Morphologic and immunohistochemical features of experimentally induced allergic contact dermatitis in Gottingen minipigs. Vet Pathol 37:565–80

    PubMed  CAS  Google Scholar 

  243. Teraki Y, Picker LJ (1997) Independent regulation of cutaneous lymphocyte-associated antigen expression and cytokine synthesis phenotype during human CD4+ memory T cell differentiation. J Immunol 159:6018–6029

    PubMed  CAS  Google Scholar 

  244. Butcher EC, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272:60–66

    PubMed  CAS  Google Scholar 

  245. Strunk D, Egger C, Leitner G, Hanau D, Stingl G (1997) A skin homing molecule defines the Langerhans cell progenitor in human peripheral blood. J Exp Med 185:1131–1136

    PubMed  CAS  Google Scholar 

  246. Wroblewski M, Hamann A (1997) CD45-mediated signals can trigger shedding of lymphocyte L-selectin. Int Immunol 9:555–562

    PubMed  CAS  Google Scholar 

  247. Burastero SE, Rossi GA, Crimi E (1998) Selective differences in the expression of the homing receptors of helper lymphocyte subsets. Clin Immunol Immunopathol 89:110–116

    PubMed  CAS  Google Scholar 

  248. Wahbi A, Marcusson JA, Sundqvist KG (1996) Expression of adhesion molecules and their ligands in contact allergy. Exp Dermatol 5:12–19

    PubMed  CAS  Google Scholar 

  249. Dailey MO (1998) Expression of T lymphocyte adhesion molecules: regulation during antigen-induced T cell activation and differentiation. Crit Rev Immunol 18:153–184

    PubMed  CAS  Google Scholar 

  250. Oppenheimer-Marks N, Lipsky PE (1997) Migration of naive and memory T cells. Immunol Today 18:456–457

    PubMed  CAS  Google Scholar 

  251. Romanic AM, Graesser D, Baron JL, Visintin I, Janeway CA Jr, Madri JA (1997) T cell adhesion to endothelial cells and extracellular matrix is modulated upon transendothelial cell migration. Lab Invest 76:11–23

    PubMed  CAS  Google Scholar 

  252. Zanni MP, von Greyerz S, Schnyder B, Brander KA, Frutig K, Hari Y, Valitutti S, Pichler WJ (1998) HLA-restricted, processing-and metabolism-independent pathway of drug recognition by human alpha beta T lymphocytes. J Clin Invest 102:1591–1598

    PubMed  CAS  Google Scholar 

  253. Akdis CA, Akdis M, Simon HU, Blaser K (1999) Regulation of allergic inflammation by skin-homing T cells in allergic eczema. Int Arch Allergy Immunol 118:140–4

    PubMed  CAS  Google Scholar 

  254. Okazaki F, Kanzaki H, Fujii K, Arata J, Akiba H, Tsujii K, Iwatsuki K (2002) Initial recruitment of interferon-gamma-producing CD8+ effector cells, followed by infiltration of CD4+ cells in 2,4,6-trinitro-1-chlorobenzene (TNCB)-induced murine contact hypersensitivity reactions. J Dermatol 29:699–708

    PubMed  Google Scholar 

  255. Pichler WJ, Schnyder B, Zanni MP, Hari Y, von Greyerz S (1998) Role of T cells in drug allergies. Allergy 53:225–232

    PubMed  CAS  Google Scholar 

  256. Kehren J, Desvignes C, Krasteva M, Ducluzeau MT, Assossou O, Horand F, Hahne M, Kagi D, Kaiserlian D, Nicolas JF (1999) Cytotoxicity is mandatory for CD8+ T cell mediated contact hypersensitivity. J Exp Med 189:779–786

    PubMed  CAS  Google Scholar 

  257. Mauri-Hellweg D, Bettens F, Mauri D, Brander C, Hunziker T, Pichler WJ (1995) Activation of drug-specific CD4+ and CD8+ T cells in individuals allergic to sulfonamides, phenytoin, and carbamazepine. J Immunol 155:462–472

    PubMed  CAS  Google Scholar 

  258. Abe M, Kondo T, Xu H, Fairchild RL (1996) Interferongamma inducible protein (IP-10) expression is mediated by CD8+ T cells and is regulated by CD4+ T cells during the elicitation of contact hypersensitivity. J Invest Dermatol 107:360–366

    PubMed  CAS  Google Scholar 

  259. Stark GR, Kerr IM, Williams BRG, Silverman RH, Schreiber RD (1998) How cells respond to interferons. Annu Rev Biochem 67:227–264

    PubMed  CAS  Google Scholar 

  260. Rowe A, Bunker CB (1998) Interleukin-4 and the interleukin-4 receptor in allergic contact dermatitis. Contact Dermatitis 38:36–39

    PubMed  CAS  Google Scholar 

  261. Asherson GL, Dieli F, Sireci G, Salerno A (1996) Role of IL-4 in delayed type hypersensitivity. Clin Exp Immunol 103:1–4

    PubMed  CAS  Google Scholar 

  262. Yamada H, Matsukura M, Yudate T, Chihara J, Stingl G, Tezuka T (1997) Enhanced production of RANTES, an eosinophil chemoattractant factor, by cytokine-stimulated epidermal keratinocytes. Int Arch Aller Immunol 114:28–32

    CAS  Google Scholar 

  263. Moser B, Loetscher M, Piali L, Loetscher P (1998) Lymphocyte responses to chemokines. Int Rev Immunol 16:323–3244

    PubMed  CAS  Google Scholar 

  264. Siveke JT, Hamann A (1998) T helper 1 and T helper 2 Cells respond differentially to chemokines. J Immunol 160:550–554

    PubMed  CAS  Google Scholar 

  265. Moed H, Boorsma DM, Stoof TJ, von Blomberg BM, Bruynzeel DP, Scheper RJ, Gibbs S, Rustemeyer T (2004) Nickel-responding T cells are CD4+ CLA+ CD45RO+ and express chemokine receptors CXCR3, CCR4 and CCR10. Br J Dermatol 151:32–41

    PubMed  CAS  Google Scholar 

  266. Asada H, Linton J, Katz SI (1997) Cytokine gene expression during the elicitation phase of contact sensitivity-regulation by endogenous IL-4. J Invest Dermatol 108:406–411

    PubMed  CAS  Google Scholar 

  267. Kitagaki H, Fujisawa S, Watanabe K, Hayakawa K, Shiohara T (1995) Immediate-type hypersensitivity response followed by late reaction is induced by repeated epicutaneous application of contact sensitizing agents in mice. J Invest Dermatol 105:749–755

    PubMed  CAS  Google Scholar 

  268. Carroll JM, Crompton T, Seery JP, Watt FM (1997) Transgenic mice expressing IFN-gamma in the epidermis have eczema, hair hypopigmentation, and hair loss. J Invest Dermatol 108:412–422

    PubMed  CAS  Google Scholar 

  269. Lider O, Cahalon L, Gilat D, Hershkoviz R, Siegel D, Margalit R, Shoseyov O, Cohen IR (1995) A disaccharide that inhibits tumor necrosis factor alpha is formed from the extracellular matrix by the enzyme heparinase. Proc Natl Acad Sci USA 92:5037–5041

    PubMed  CAS  Google Scholar 

  270. Kothny-Wilkes G, Kulms D, Poppelmann B, Luger TA, Kubin M, Schwarz T (1998) Interleukin-1 protects transformed keratinocytes from tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem 273:29247–2953

    PubMed  CAS  Google Scholar 

  271. Orteu CH, Poulter LW, Rustin MHA, Sabin CA, Salmon M, Akbar AN (1998) The role of apoptosis in the resolution of T cell-mediated cutaneous inflammation. J Immunol 161:1619–1629

    PubMed  CAS  Google Scholar 

  272. Zhang X, Brunner T, Carter L, Dutton RW, Rogers P, Bradley L, Sato T, Reed JC, Green D, Swain SL (1997) Unequal death in T helper cell (Th)1 and Th2 effectors: Th1, but not Th2, effectors undergo rapid Fas/FasL-mediated apoptosis. J Exp Med 185:1837–1849

    PubMed  CAS  Google Scholar 

  273. Enk AH, Katz SI (1992) Identification and induction of keratinocyte-derived IL-10. J Immunol 149:92–95

    PubMed  CAS  Google Scholar 

  274. Schwarz A, Grabbe S, Riemann H, Aragane Y, Simon M, Manon S, Andrade S, Luger TA, Zlotnik A, Schwarz T (1994) In vivo effects of interleukin-10 on contact hypersensitivity and delayed-type hypersensitivity reactions. J Invest Dermatol 103:211–216

    PubMed  CAS  Google Scholar 

  275. Berg DJ, Leach MW, Kuhn R, Rajewsky K, Muller W, Davidson NJ, Rennick D (1995) Interleukin 10 but not interleukin 4 is a natural suppressant of cutaneous inflammatory responses. J Exp Med 182:99–108

    PubMed  CAS  Google Scholar 

  276. Lalani I, Bhol K, Ahmed AR (1997) Interleukin-10 biology, role in inflammation and autoimmunity. Ann Allergy Asthma Immunol 79:469–484

    PubMed  CAS  Google Scholar 

  277. Epstein SP, Baer RL, Thorbecke GJ, Belsito DV (1991) Immunosuppressive effects of transforming growth factor beta: inhibition of the induction of Ia antigen on Langerhans cells by cytokines and of the contact hypersensitivity response. J Invest Dermatol 96:832–837

    PubMed  CAS  Google Scholar 

  278. Lawrence JN, Dickson FM, Benford DJ (1997) Skin irritant-induced cytotoxicity and prostaglandin E-2 release in human skin keratinocyte cultures. Toxicol Vitro 11:627–631

    CAS  Google Scholar 

  279. Walker C, Kristensen F, Bettens F, deWeck AL (1983) Lymphokine regulation of activated (G1) lymphocytes. I. Prostaglandin E2-induced inhibition of interleukin 2 production. J Immunol 130:1770–1773

    PubMed  CAS  Google Scholar 

  280. Weston MC, Peachell PT (1998) Regulation of human mast cell and basophil function by cAMP. Gen Pharmacol 31:715–719

    PubMed  CAS  Google Scholar 

  281. Dvorak HF, Mihm MC Jr, Dvorak AM (1976) Morphology of delayed-type hypersensitivity reactions in man. J Invest Dermatol 64:391–401

    Google Scholar 

  282. Marone G, Spadaro G, Patella V, Genovese A (1994) The clinical relevance of basophil releasability. J Aller Clin Immunol 94:1293–1303

    CAS  Google Scholar 

  283. Lundeberg L, Mutt V, Nordlind K (1999) Inhibitory effect of vasoactive intestinal peptide on the challenge phase of allergic contact dermatitis in humans. Acta Derm Venereol 79:178–182

    PubMed  CAS  Google Scholar 

  284. Boerrigter GH, Scheper RJ (1987) Local and systemic desensitization induced by repeated epicutaneous hapten application. J Invest Dermatol 88:3–7

    PubMed  CAS  Google Scholar 

  285. Jensen CS, Menne T, Lisby S, Kristiansen J, Veien NK (2003) Experimental systemic contact dermatitis from nickel: a dose-response study. Contact Dermatitis 49:124–132

    PubMed  CAS  Google Scholar 

  286. Hindsen M, Bruze M, Christensen OB (2001) Flare-up reactions after oral challenge with nickel in relation to challenge dose and intensity and time of previous patch test reactions. J Am Acad Dermatol 44:616–623

    PubMed  CAS  Google Scholar 

  287. Larsson A, Moller H, Björkner B, Bruze M (1997) Morphology of endogenous flare-up reactions in contact allergy to gold. Acta Derm Venereol 77:474–479

    PubMed  CAS  Google Scholar 

  288. Skog E (1976) Spontaneous flare-up reactions induced by different amounts of 1,3-dinitro-4-chlorobenzene. Acta Derm Venereol 46:386–395

    Google Scholar 

  289. Scheper RJ, von Blomberg BME, Boerrigter GH, Bruynzeel D, van Dinther A, Vos A (1983) Induction of local memory in the skin. Role of local T cell retention. Clin Exp Immunol 51:141–148

    PubMed  CAS  Google Scholar 

  290. Moed H, Boorsma DM, Tensen CP, Flier J, Jonker MJ, Stoof TJ, von Blomberg BM, Bruynzeel DP, Scheper RJ, Rustemeyer T, Gibbs S (2004) Increased CCL27-CCR10 expression in allergic contact dermatitis: implications for local skin memory. J Pathol 204:39–46

    PubMed  CAS  Google Scholar 

  291. Christensen OB, Beckstead JH, Daniels TE, Maibach HI (1985) Pathogenesis of orally induced flare-up reactions at old patch sites in nickel allergy. Acta Derm Venereol 65:298–304

    PubMed  CAS  Google Scholar 

  292. Hindsen M, Christensen OB (1992) Delayed hypersensitivity reactions following allergic and irritant inflammation. Acta Derm Venereol 72:220–221

    PubMed  CAS  Google Scholar 

  293. Gawkrodger DJ, McVittie E, Hunter JA (1987) Immunophenotyping of the eczematous flare-up reaction in a nickel-sensitive subject. Dermatology 175:171–177

    CAS  Google Scholar 

  294. Polak L, Turk JL (1968) Studies on the effect of systemic administration of sensitizers in guinea-pigs with contact sensitivity to inorganic metal compounds. II. The flare-up of previous test sites of contact sensitivity and the development of a generalized rash. Clin Exp Immunol 3:253–262

    PubMed  CAS  Google Scholar 

  295. Qin S, Rottman JB, Myers P, Kassam N, Weinblatt M, Loetscher M, Koch AE, Moser B, Mackay CR (1998) The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 101:746–754

    PubMed  CAS  Google Scholar 

  296. Isaksson M, Bruze M (2003) Late patch-test reactions to budesonide need not be a sign of sensitization induced by the test procedure. Am J Contact Dermatol 14:154–156

    Google Scholar 

  297. Rustemeyer T, de Groot J, von Blomberg BME, Frosch PJ, Scheper RJ (2002) Assessment of contact allergen crossreactivity by retesting. Exp Dermatol 11:257–265

    PubMed  Google Scholar 

  298. Matura M (1998) Contact allergy to locally applied corticosteroids. Thesis, Leuven Belgium

    Google Scholar 

  299. Inerot A, Moller H (2000) Symptoms and signs reported during patch testing. Am J Contact Dermatol 11:49–52

    CAS  Google Scholar 

  300. Zinkernagel RM (2004) On “reactivity” versus “tolerance”. Immunol Cell Biol 82:343–352

    PubMed  Google Scholar 

  301. Piccirillo CA, Thornton AM (2004) Cornerstone of peripheral tolerance: naturally occurring CD4+CD25+ regulatory T cells. Trends Immunol 25:374–380

    PubMed  CAS  Google Scholar 

  302. Rocha B, von Boehmer H (1991) Peripheral selection of the T cell repertoire. Science 251:1225–1228

    PubMed  CAS  Google Scholar 

  303. Benson JM, Whitacre CC (1997) The role of clonal deletion and anergy in oral tolerance. Res Immunol 148:533–541

    PubMed  CAS  Google Scholar 

  304. Ferber I, Schönrich G, Schenkel J, Mellor AL, Hämmerling GJ, Arnold B (1994) Levels of peripheral T cell tolerance induced by different doses of tolerogen. Science 263:674–67

    PubMed  CAS  Google Scholar 

  305. Arnold B, Schönrich G, Hämmerling GJ (1993) Multiple levels of peripheral tolerance. Immunol Today 14:12–1

    PubMed  CAS  Google Scholar 

  306. Morgan DJ, Kreuwel HTC, Sherman LA (1999) Antigen concentration and precursor frequency determine the rate of CD8(+) T cell tolerance to peripherally expressed antigens. J Immunol 163:723–727

    PubMed  CAS  Google Scholar 

  307. Shreedhar V, Giese T, Sung VW, Ullrich SE (1998) A cytokine cascade including prostaglandin E2, IL-4, and IL-10 is responsible for UV-induced systemic immune suppression. J Immunol 160:3783–3789

    PubMed  CAS  Google Scholar 

  308. Semma M, Sagami S (1981) Induction of suppressor T cells to DNFB contact sensitivity by application of sensitizer through Langerhans cell-deficient skin. Arch Dermatol Res 271:361–364

    PubMed  CAS  Google Scholar 

  309. Taams LS, van Eden W, Wauben MHM (1999) Dose-dependent induction of distinct anergic phenotypes: multiple levels of T cell anergy. J Immunol 162:1974–1981

    PubMed  CAS  Google Scholar 

  310. Girolomoni G, Gisondi P, Ottaviani C, Cavani A (2004) Immunoregulation of allergic contact dermatitis. J Dermatol 31:264–270

    PubMed  CAS  Google Scholar 

  311. Mayer L, Sperber K, Chan L, Child J, Toy L (2001) Oral tolerance to protein antigens. Allergy 56:12–15

    PubMed  Google Scholar 

  312. Van Hoogstraten IMW, Andersen JE, von Blomberg BME, Boden D, Bruynzeel DP, Burrows D, Camarasa JMG, Dooms-Goossens A, Lahti A, Menné T, Rycroft R, Todd D, Vreeburg KJJ, Wilkinson JD, Scheper RJ (1989) Preliminary results of a multicenter study on the incidence of nickel allergy in relationship to previous oral and cutaneous contacts. In: Frosch PJ, Dooms-Goossens A, Lachapelle JM, Rycroft RJG, Scheper RJ (eds) Current topics in contact dermatitis. Springer, Berlin Heidelberg New York, pp 178–184

    Google Scholar 

  313. Pozzilli P, Gisella Cavallo M (2000) Oral insulin and the induction of tolerance in man: reality or fantasy? Diabetes Metab Res Rev 16:306–307

    PubMed  CAS  Google Scholar 

  314. Weiner HL, Gonnella PA, Slavin A, Maron R (1997) Oral tolerance: cytokine milieu in the gut and modulation of tolerance by cytokines. Res Immunol 148:528–533

    PubMed  CAS  Google Scholar 

  315. Rustemeyer T, de Groot J, von Blomberg BME, Frosch PJ, Scheper RJ (2001) Induction of tolerance and cross-tolerance to methacrylate contact sensitizers. Toxicol Appl Pharmacol 176:195–202

    PubMed  CAS  Google Scholar 

  316. Miller SD, Sy M-S, Claman HN (1977) The induction of hapten-specific T cell tolerance using hapten-modified lymphoid membranes. II. Relative roles of suppressor T cells and clone inhibition in the tolerant state. Eur J Immunol 7:165–170

    PubMed  CAS  Google Scholar 

  317. Polak L (1980) Immunological aspects of contact sensitivity. An experimental study. Monogr Allergy 15:4–60

    Google Scholar 

  318. Weiner HL (1997) Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol Today 18:335–343

    PubMed  CAS  Google Scholar 

  319. Weigle WO, Romball CG (1997) CD4+ T-cell subsets and cytokines involved in peripheral tolerance. Immunol Today 18:533–538

    PubMed  CAS  Google Scholar 

  320. Zembala M, Ashershon GL (1973) Depression of T cell phenomenon of contact sensitivity by T cells from unresponsive mice. Nature 244:227–228

    PubMed  CAS  Google Scholar 

  321. Boerrigter GH, Scheper RJ (1984) Local administration of the cytostatic drug 4-hydroperoxy-cyclophosphamde (4-HPCY) facilitates cell mediated immune reactions. Clin Exp Immunol 58:161–166

    PubMed  CAS  Google Scholar 

  322. Boerrigter GH, de Groot J, Scheper RJ (1986) Intradermal administration of 4-hydoperoxy-cyclophosphamde during contact sensitization potentiates effector T cell responsiveness in draining lymph nodes. Immunopharmacology 1:13–20

    Google Scholar 

  323. Mokyr MB, Kalinichenko T, Gorelik L, Bluestone JA (1998) Realization of the therapeutic potential of CTLA-4 blockade in low-dose chemotherapy-treated tumor-bearing mice. Cancer Res 58:5301–5304

    PubMed  CAS  Google Scholar 

  324. Knop J, Stremmer R, Neumann C, Dc Maeyer D, Macher E (1982) Interferon inhibits the suppressor T cell response of delayed-type hypersensitivity. Nature 296:775–776

    Google Scholar 

  325. Zhang ZY, Michael JG (1990) Orally inducible immune unresponsiveness is abrogated by IFN-gamma treatment. J Immunol 144:4163–4165

    PubMed  CAS  Google Scholar 

  326. Claessen AME, von Blomberg BME, de Groot J, Wolvers DAE, Kraal G, Scheper RJ (1996) Reversal of mucosal tolerance by subcutaneous administration of interleukin-12 at the site of attempted sensitization. Immunology 88:363–367

    PubMed  CAS  Google Scholar 

  327. Röcken M, Shevach EM (1996) Immune deviation — the third dimension of nondeletional T cell tolerance. Immunol Rev 149:175–194

    PubMed  Google Scholar 

  328. Bridoux F, Badou A, Saoudi A, Bernard L, Druet E, Pasquier R, Druet P, Pelletier L (1997) Transforming growth factor beta (TGF-beta)-dependent inhibition of T helper cell 2 (Th2)-induced autoimmunity by self-major histocompatibility complex (MHC) class II-specific, regulatory CD4+ T cell lines. J Exp Med 185:1769–1775

    PubMed  CAS  Google Scholar 

  329. Hafler DA, Kent SC, Pietrusewicz MJ, Khoury SJ, Weiner HL, Fukaura H (1997) Oral administration of myelin induces antigen-specific TGF-beta 1 secreting T cells in patients with multiple sclerosis. Ann NY Acad Sci 835:120–131

    PubMed  CAS  Google Scholar 

  330. Cavani A, Nasorri F, Ottaviani C, Sebastiani S, de Pita O, Girolomoni G (2003) Human CD25+ regulatory T cells maintain immune tolerance to nickel in healthy, nonallergic individuals. J Immunol 171:5760

    PubMed  CAS  Google Scholar 

  331. Lonati A, Licenziati S, Marcelli M, Canaris D, Pasolini G, Caruso A, de Panfilis G (1998) Quantitative analysis “at the single cell level” of the novel CD28CD11b subpopulation of CD8+ T lymphocytes. ESDR meeting at Cologne

    Google Scholar 

  332. De Panfilis G (1998) CD8+ cytolytic T lymphocytes and the skin. Exp Dermatol 7:121–131

    PubMed  Google Scholar 

  333. Kuchroo VK, Byrne MC, Atsumi Y, Greenfeld E, Connol JH, Whitters MJ, O’Hara RM, Collins M, Dorf ME (1991) T cell receptor alpha chain plays a critical role in antigenspecific suppressor cell function. Proc Natl Acad Sci USA 88:8700–8704

    PubMed  CAS  Google Scholar 

  334. Kumar V, Sercarz E (1998) Induction or protection from experimental autoimmune encephalomyelitis depends on the cytokine secretion profile of TCR peptide-specific regulatory CD4 T cells. J Immunol 161:6585–6591

    PubMed  CAS  Google Scholar 

  335. Kalinski P, Schuitemaker JH, Hilkens CM, Kapsenberg ML (1998) Prostaglandin E2 induces the final maturation of IL-12 deficient CD1a+CD83+ dendritic cells. J Immunol 161:2804–2809

    PubMed  CAS  Google Scholar 

  336. Steinbrink K, Wolf M, Jonuleit H, Knop J, Enk AH (1997) Induction of tolerance by IL-10-treated dendritic cells. J Immunol 159:4772–4780

    PubMed  CAS  Google Scholar 

  337. Steinbrink K, Jonuleit H, Muller G, Schuler G, Knop J, Enk AH (1999) Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 93:1634–1642

    PubMed  CAS  Google Scholar 

  338. Taams LS, Boot EPJ, van Eden W, Wauben MHM (2000) ‘Anergic’ T cells modulate the T-cell activating capacity of antigen-presenting cells J Autoimmun 14:335–341

    PubMed  CAS  Google Scholar 

  339. Taams LS, van Rensen AJML, Poelen MC, van Els CACM, Besseling AC, Wagenaar JPA, van Eden W, Wauben MHM (1998) Anergic T cells actively suppress T cell responses via the antigen presenting cell. Eur J Immunol 28:2902–2912

    PubMed  CAS  Google Scholar 

  340. Strobel S, Mowat AM (1998) Immune responses to dietary antigens: oral tolerance. Immunol Today 19:173–181

    PubMed  CAS  Google Scholar 

  341. Strober W, Kelsall B, Marth T (1998) Oral tolerance. J Clin Immunol 18:1–30

    PubMed  CAS  Google Scholar 

  342. von Herrath MG (1997) Bystander suppression induced by oral tolerance. Res Immunol 148:541–554

    Google Scholar 

  343. Inobe J, Slavin AJ, Komagata Y, Chen Y, Liu L, Weiner HL (1998) IL-4 is a differentiation factor for transforming growth factor-beta secreting Th3 cells and oral administration of IL-4 enhances oral tolerance in experimental allergic encephalomyelitis. Eur J Immunol 28:2780–2790

    PubMed  CAS  Google Scholar 

  344. Fowler E, Weiner HL (1997) Oral tolerance: elucidation of mechanisms and application to treatment of autoimmune diseases. Biopolymers 43:323–335

    PubMed  CAS  Google Scholar 

  345. Van Hoogstraten IMW, von Blomberg BME, Boden D, Kraal G, Scheper RJ (1994) Non-sensitizing epicutaneous skin tests prevent subsequent induction of immune tolerance. J Invest Dermatol 102:80–83

    PubMed  Google Scholar 

  346. Epstein WL (1987) The poison ivy picker of Pennypack Park: the continuing saga of poison ivy. J Invest Dermatol 88:7–9

    Google Scholar 

  347. Morris DL (1998) Intradermal testing and sublingual in desensitization for nickel. Cutis 61:129–132

    PubMed  CAS  Google Scholar 

  348. Wendel GD, Stark BJ, Jamison RB, Molina RD, Sullivan TJ (1985) Penicillin allergy and desensitization in serious infections during pregnancy. N Engl J Med 312:1229–1232

    PubMed  Google Scholar 

  349. Panzani RC, Schiavino D, Nucera E, Pellegrino S, Fais G, Schinco G, Patriarca G (1995) Oral hyposensitization to nickel allergy: preliminary clinical results. Int Arch Allergy Immunol 107:251–254

    PubMed  CAS  Google Scholar 

  350. Troost RJ, Kozel MM, van Helden-Meeuwsen CG, van Joost T, Mulder PG, Benner R, Prens EP (1995) Hyposensitization in nickel allergic contact dermatitis: clinical and immunologic monitoring. J Am Acad Dermatol 32:576–583

    PubMed  CAS  Google Scholar 

  351. Chase MW (1946) Inhibition of experimental drug allergy by prior feeding of the sensitizing agent. Proc Soc Exp Biol Med 61:257–259

    CAS  Google Scholar 

  352. Polak L, Turk SL (1968) Studies on the effect of systemic administration of sensitizers in guinea pigs with contact sensitivity to inorganic metal compounds. I. The induction of immunological unresponsiveness in already sensitized animals. Clin Exp Immunol 3:245–251

    PubMed  CAS  Google Scholar 

  353. Polak L, Rinck C (1978) Mechanism of desensitization in DNCH-contact sensitive guinea pigs. J Invest Dermatol 70:98–104

    PubMed  CAS  Google Scholar 

  354. Gaspari AA, Jenkins MK, Katz SI (1988) Class II MCH-bearing keratinocytes induce antigen-specific unresponsiveness in hapten-specific TH1 clones. J Immunol 141:2216–2220

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rustemeyer, T., van Hoogstraten, I.M., von Blomberg, B.M.E., Scheper, R.J. (2006). Mechanisms in Allergic Contact Dermatitis. In: Frosch, P.J., Menné, T., Lepoittevin, JP. (eds) Contact Dermatitis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31301-X_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-31301-X_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24471-4

  • Online ISBN: 978-3-540-31301-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics