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Time Discretization

In many practical applications the processes under consideration are unsteady
and thus require for their numerical simulation the solution of time-dependent
model equations. The time has a certain exceptional role in the differential
equations because, unlike for spatial coordinates, there is a distinguished di-
rection owing to the principle of causality. This fact has to be taken into
account for the discretization techniques employed for time. In this chapter
the most important aspects with respect to this issue are discussed.

6.1 Basics

For unsteady processes the physical quantities – in addition to the spatial
dependence – also depend on the time t. In the applications considered here
mainly two types of time-dependent problems appear: transport and vibration
processes. Examples of corresponding processes are, for instance, the Kármán
vortex street formed when fluids flow around bodies (see Fig. 6.1), or vibra-
tions of a structure (see Fig. 6.2), respectively.

Fig. 6.1. Kármán vortex street (instantaneous vorticity)

While the equations for unsteady transport processes only involve first
derivatives with respect to time, for vibration processes second time deriva-
tives also appear. In the first case the problem is called parabolic, in the second
case hyperbolic. Since we do not need the underlying concepts in the following,
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Fig. 6.2. Vibrations of a clamped
beam

we will disperse with a more precise definition of the terms that can be used
for a general classification of second-order partial differential equations (see,
e.g., [9] or [12]).

An example of a parabolic problem is the general unsteady scalar transport
equation (cf. Sect. 2.3.2)

∂(ρφ)
∂t

+
∂

∂xi

(
ρviφ − α

∂φ

∂xi

)
= f . (6.1)

An example of the hyperbolic type are the equations of linear elastodynamics
(cf. Sect. 2.4.1). For a vibrating beam, as illustrated in Fig. 6.2, one has, for
instance:

ρA
∂2w

∂t2
+

∂2

∂x2

(
B

∂2w

∂x2

)
+ fq = 0 . (6.2)

Compared to the corresponding steady problems the time is an additional
coordinate, i.e., φ = φ(x, t) or w = w(x, t). Also, all involved prescribed
quantities may depend on time. Note that vibration processes frequently can
be formulated by means of a separation ansatz, i.e., φ(x, t) := φ1(x)φ2(t), in
the form of eigenvalue problems. However, we will not go into further detail
with this here (see, e.g., [2]).

In order to fully define time-dependent problems, initial conditions are
required in addition to the boundary conditions (which may also depend on
time). For transport problems an initial distribution of the unknown function
has to be prescribed, e.g.,

φ(x, t0) = φ0(x)

for problem (6.1), while vibration problems require an additional initial dis-
tribution for the first time derivative, e.g.,

w(x, t0) = w0(x) und
∂w

∂t
(x, t0) = w1(x)

for problem (6.2).
For the numerical solution of time-dependent problems usually first a spa-

tial discretization with one of the techniques described in the preceding sec-
tions is performed. This results in a system of ordinary differential equations
(with respect to time). In a finite-difference method setting this approach is
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referred to as method of lines. For instance, the spatial discretization of (6.1)
with a finite-volume method yields for each control volume the equation

∂φP

∂t
=

1
ρ δV

[
−aP(t)φP +

∑
c

ac(t)φc + bP(t)

]
, (6.3)

where, for the sake of simplicity we assume the density ρ and the volume δV
is temporally constant (and we will also do so in the following). Globally, i.e.,
for all control volumes, (6.3) corresponds to a (coupled) system of ordinary
differential equations for the unknown functions φi

P = φi
P(t) for i = 1, . . . , N ,

where N is the number of control volumes.
When employing a finite-element method for the spatial discretization of

a time-dependent problem, in the Galerkin method a corresponding ansatz
with time-dependent coefficients is made:

φ(x, t) = ϕ0(x, t) +
N∑

k=1

ck(t)ϕk(x) .

For temporally varying boundary conditions also the function ϕ0 has to be
time-dependent, because it has to fulfil the inhomogeneous boundary condi-
tions within the whole time interval. Applying the Galerkin method with this
ansatz in an analogous way as in the steady case leads to a system of ordinary
differential equations for the unknown functions ck = ck(t) (see Exercise 6.2).

For ease of notation in the following the right hand side of the equation
resulting from the spatial discretization (either obtained by finite-volume or
finite-element methods) is expressed by the operator L:

∂φ

∂t
= L(φ) ,

where φ = φ(t) denotes the vector of the unknown functions. For instance,
in the case of a finite-volume space discretization of (6.1) according to (6.3),
the components of L(φ) are defined by the right hand side of (6.3).

For the time discretization, i.e., for the discretization of the systems of or-
dinary differential equations, techniques similar to those for the spatial coor-
dinates can be employed (i.e., finite-difference, finite-volume, or finite-element
methods). Since the application of the different methods does not result in
principal differences in the resulting discrete systems, we restrict ourselves to
the (most simple) case of finite-difference approximations.

First, the time interval [t0, T ] under consideration is divided into individ-
ual, generally non-equidistant, subintervals Δtn:

tn+1 = tn + Δtn , n = 0, 1, 2, . . .

For a further simplification of notation the variable value at time tn is indi-
cated with an index n, e.g.:
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L(φ(tn)) = L(φn).

According to the principle of causality the solution at time tn+1 only can
depend on previous points in time tn, tn−1, . . . Since the time in this sense is a
“one-way” coordinate, the solution for tn+1 has to be determined as a function
of the boundary conditions and the solutions at earlier times. Thus, the time
discretization always consists in an extrapolation. Starting from the prescribed
initial conditions at t0, the unknown variable φ is successively computed at
the points of time t1, t2, . . . (see Fig. 6.3).

�

�φ

t

Values already known ��

•φ0
φ1

φn−1

φn

φn+1

�
?

t0 t1

· · ·

· · · tn−1 tn tn+1 · · · tN−1 tN = T

Fig. 6.3. Time-stepping process

Finally, the temporal developing of φ can be represented as a sequence of
different spatial values at discrete points in time (see Fig. 6.4 for a spatially
two-dimensional problem). It should be noted that for transport problems
steady solutions are often also computed with a time discretization method as
a limit for t → ∞ from the time-dependent equations. However, this method,
known as pseudo time stepping, does not usually result in an efficient method,
but may be useful when, owing to stability problems, the direct solution of
the steady problem is hard to obtain (the time-stepping acts as a relaxation,
see Sect. 10.3.3).

There must be at least one already known time level to discretize the time
derivative. If only one time level is used, i.e., the values at tn, one speaks of
one-step methods, while if more known time levels are employed, i.e., values for

φ0
i

φ1
i

φ2
i

�




�

x1

x2

t0

t1

t2

t

Fig. 6.4. Relation between spa-
tial and temporal discretization
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the time levels tn, tn−1, . . ., one talks about multi-step methods. Furthermore
– and more importantly – the methods for the time discretization generally
are divided into two classes according to the choice of points of time, at which
the right hand side is evaluated:

Explicit methods: discretization of the right hand side only at previous
(already known) time levels:

φn+1 = F(φn,φn−1, . . .) .

Implicit methods: discretization of the right hand side also at new (un-
known) time level:

φn+1 = F(φn+1,φn,φn−1, . . .) .

Here, F denotes some discretization rule for the choice of which we will give
examples later. The distinction into explicit and implicit methods is a very
important attribute because far reaching differences with respect to the prop-
erties of the numerical schemes arise (we will go into more detail in Sect. 8.1.2).

In the next two sections some important and representative variants for the
above classes of methods will be introduced. We restrict our considerations to
problems of the parabolic type (only first time derivative). However, it should
be mentioned that the described methods in principle also can be applied to
problems with second time derivative, i.e., problems of the type

∂2φ

∂t2
= L(φ) , (6.4)

by introducing the first time derivatives

ψ =
∂φ

∂t

as additional unknowns (order reduction). According to (6.4) one has

∂ψ

∂t
= L(φ)

and with the definitions

φ̃ =
[

ψ
φ

]
and L̃(φ̃) =

[L(φ)
ψ

]
a system of the form

∂φ̃

∂t
= L̃(φ̃)

results, which is equivalent to (6.4) and involves only first time derivatives.
However, this way the number of unknowns doubles so that methods that
solve the system (6.4) directly (for instance the so-called Newmark methods,
see, e.g., [2]) usually are more efficient.
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6.2 Explicit Methods

We start with the most simple example of a time discretization method, the
explicit Euler method, which is obtained by approximating the time derivative
at time level tn by means of a forward differencing scheme:

∂φ

∂t
(tn) ≈ φn+1 − φn

Δtn
= L(φn) . (6.5)

This corresponds to an approximation of the time derivative of the components
φi of φ at the time tn by means of the slope of the straight line through the
points φn

i and φn+1
i (see Fig. 6.5). The method is first-order accurate (with

respect to time) and is also known as the Euler polygon method.

�

�

t

φi

tn tn+1

�� Δtn

∂φi

∂t
(tn)

φn+1
i − φn

i

Δtn

Fig. 6.5. Approximation of time derivative
with explicit Euler method

The relation (6.5) can be resolved explicitly for φn+1:

φn+1 = φn + ΔtnL(φn) .

On the right hand side there are only values from the already known time level,
such that the equations for the values at the point of time tn+1 at the different
spatial grid points are fully decoupled and can be computed independently
from each other. This is characteristic for explicit methods.

Let us consider as an example the unsteady one-dimensional diffusion
equation (with constant material parameters):

∂φ

∂t
=

α

ρ

∂2φ

∂x2
. (6.6)

A finite-volume space discretization with the central differencing scheme for
the diffusion term for an equidistant grid with grid spacing Δx yields for each
control volume the ordinary differential equation:

∂φP

∂t
(t)Δx =

α

ρ

φE(t) − φP(t)
Δx

− α

ρ

φP(t) − φW(t)
Δx

(6.7)

The explicit Euler method with fixed time step size Δt gives the following
approximation:
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φn+1
P − φn

P

Δt
Δx =

α

ρ

φn
E − φn

P

Δx
− α

ρ

φn
P − φn

W

Δx

Resolving for φn+1
P yields

φn+1
P =

αΔt

ρΔx2
(φn

E + φn
W) + (1 − 2αΔt

ρΔx2
)φn

P .

The procedure is illustrated graphically in Fig. 6.6. One observes that a num-
ber of time steps is necessary until changes at the boundary affect the interior
of the spatial problem domain. The finer the grid, the slower the spreading of
the information (for the same time step size). As we will see in Sect. 8.1.2, this
leads to a limitation of the time step size (stability condition), which depends
quadratically on the spatial resolution and, with a finer spatial grid, becomes
more and more restrictive. This limitation is purely due to numerical reasons
and independent from the actual temporal developing of the problem solution.

tn−1

tn

tn+1

x1 x2 · · · xi−1 xi xi+1 · · · xN

Fig. 6.6. Procedure and
flow of information for
explicit Euler method

There are numerous other explicit one-step methods that differ from the
explicit Euler method in the approximation of the right hand sides. The mod-
ified explicit Euler method formulated by Collatz (1960) is

φn+1 − φn

Δtn
= L(φn +

Δtn
2

L(φn)) ,

which, compared to the explicit Euler method, requires just one additional
evaluation of the right hand side, but is second order accurate on equidistant
grids.

Another class of explicit one-step methods are the Runge-Kutta methods,
which are frequently used in practice particularly for aerodynamical flow sim-
ulations. These methods can be defined for arbitrary order. As an example,
the classical Runge-Kutta method of fourth order is defined by:

φn+1 − φn

Δtn
=

1
6
(f1 + 2f2 + 2f3 + f4) ,
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where

f1 = L(φn) , f2 = L(φn +
Δtn
2

f1) ,

f3 = L(φn +
Δtn
2

f2) , f4 = L(φn + Δtnf3) .

Combinations of Runge-Kutta methods of the orders p and p+1 frequently
are employed to obtain procedures with an automatic time step size control.
The resulting methods are known as Runge-Kutta-Fehlberg methods (see, e.g.,
[24]).

In multi-step methods more than two time levels are employed to ap-
proximate the time derivative. A corresponding discretization scheme can, for
instance, be defined by assuming a piecewise polynomial course of the un-
known function with respect to time (e.g., quadratically for three time levels)
or by a suitable Taylor series expansion (see, e.g., [12]).

The computation of the solution with a multi-step method must always
be started with a single-step method because initially only the solution at t0
is available. Having computed the solutions for t1, . . . , tp−2, one can continue
with a p time level method. Note that during the computation all variable val-
ues from the involved time levels have to be stored. In the case of large systems
and many time levels this results in a relatively large memory requirement.

Depending on the number of involved time levels, the approximation of
the time derivative, and the evaluation of the right hand side, a variety of
multi-step methods can be defined. An important class of explicit multi-step
methods that are frequently employed in practice are the Adams-Bashforth
methods. These can be derived by polynomial interpolation with arbitrary
orders. However, in practice, only the methods up to the order 4 are used.
For equdistant time steps these are summarized in Table 6.1 (the first order
Adams-Bashforth method is again the explicit Euler method).

Table 6.1. Adams-Bashforth methods up to the order 4

Formula Order

φn+1 − φn

Δt
= L(φn) 1

φn+1 − φn

Δt
=

1

2

[
3L(φn) − L(φn−1)

]
2

φn+1 − φn

Δt
=

1

12

[
23L(φn) − 16L(φn−1) + 5L(φn−2)

]
3

φn+1 − φn

Δt
=

1

24

[
55L(φn) − 59L(φn−1) + 37L(φn−2) − 9L(φn−3)

]
4



6.3 Implicit Methods 157

6.3 Implicit Methods

Approximating the time derivative at time tn+1 by a first order backward
difference formula (see Fig. 6.7) results in the implicit Euler method:

∂φ

∂t
(tn+1) ≈ φn+1 − φn

Δtn
= L(φn+1)

This differs from the explicit variant only in the evaluation of the right hand
side, which now is computed at the new (unknown) time level. Consequently,
explicitly solving for φn+1

P is no longer possible because all variables of the
new time level are coupled to each other. Thus, for the computation of each
new time level – as in the steady case – the solution of an equation system is
necessary. This is characteristic for implicit methods.

�

�

t

φi

tn tn+1

�� Δtn

∂φi

∂t
(tn+1)

φn+1
i − φn

i

Δtn

Fig. 6.7. Approximation of time derivative
with implicit Euler method

For instance, discretizing the one-dimensional diffusion equation (6.6) with
the spatial discretization (6.7) using the implicit Euler method gives:

(1 +
2αΔt

ρΔx2
)φn+1

P =
αΔt

ρΔx2
(φn+1

E + φn+1
W ) + φn

P . (6.8)

Regarded over all control volumes, this represents a tridiagonal linear equation
system that has to be solved for each time step.

In the implicit case changes at the boundary in the actual time step spread
in the whole spatial problem domain (see Fig. 6.8) so that the stability prob-
lems indicated for the explicit Euler method do not occur in this form. The
implicit Euler method turns out to be stable independently of Δx and Δt
(see Sect. 8.1.2).

As the explicit method, the implicit Euler method is first order accurate
in time. It is more costly than the explicit variant because more computa-
tional effort (for the solution the equation system) and more memory (for the
coefficients and the source terms) is required per time step. However, there
is no limitation for the time step size due to stability reasons. The higher
effort of the method usually is more than compensated for by the possibility
of selecting larger time steps. Thus, in most cases it is in total much more
efficient than the explicit variant.
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tn−1

tn

tn+1

x1 x2 · · · xi−1 xi xi+1 · · · xN

Fig. 6.8. Procedure and
flow of information for
implicit Euler method

The algebraic equations resulting with the implicit Euler method for an
unsteady transport problem differ from the corresponding steady case (when
using the same spatial discretizations) only by two additional terms in the
coefficients aP and bP:

(an+1
P + δV ρ

Δtn
)︸ ︷︷ ︸

ãn+1
P

φn+1
P =

∑
c

an+1
c φn+1

c + bn+1
P + δV ρ

Δtn
φn

P︸ ︷︷ ︸
b̃n+1
P

.

In the limit Δtn → ∞ the steady equations result. Thus, the methods can be
easily combined for a single code that can handle both steady and unsteady
cases.

An important implicit one-step method frequently used in practice is the
Crank-Nicolson method, which is obtained when for each component φi of φ
the time derivative at time tn+1/2 = (tn + tn+1)/2 is approximated by the
straight line connecting φn+1

i and φn
i (see Fig. 6.9):

∂φ

∂t
(tn+1/2) ≈ φn+1 − φn

Δtn
=

1
2
[L(φn+1) + L(φn)

]
.

This corresponds to a central difference approximation of the time deriva-
tive at time tn+1/2. The scheme has a second order temporal accuracy. The
method is also called trapezoidal rule because the application of the latter
for numerical integration of the equivalent integral equation yields the same
formula.

The computational effort for the Crank-Nicolson method is only slightly
higher than for the implicit Euler method because only L(φn) has to be com-
puted additionally and the solution of the resulting equation systems usually
is a bit more “difficult”. However, due to the higher order the accuracy is much
better. One can show that the Crank-Nicolson method is the most accurate
second-order method.

For problem (6.6) with the spatial discretization (6.7), the Crank-Nicolson
method results in the following approximation:
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�� Δtn

∂φi

∂t
(tn+1/2)

φn+1
i − φn

i

Δtn

Fig. 6.9. Approximation of time deriva-
tive with Crank-Nicolson method

2(1 +
αΔt

ρΔx2
)φn+1

P =
αΔt

ρΔx2
(φn+1

E + φn+1
W ) +

αΔt

ρΔx2
(φn

E + φn
W) +

2(1 − αΔt

ρΔx2
)φn

P .

Although it is implicit, the Crank-Nicolson method may suffer from stabil-
ity problems for cases where the problem solution is spatially not “smooth”
(no strong A-stability, see, e.g., [12]). By interspersing some steps of the im-
plicit Euler method at regular intervals, a damping of the corresponding (non-
physical) oscillations can be achieved while preserving the second-order accu-
racy of the scheme.

Note that the explicit and implicit Euler methods as well as the Crank-
Nicolson method can be integrated into a single code in a simple way by
introducing a control parameter θ as follows:

φn+1 − φn

Δtn
= θL(φn+1) + (1 − θ)L(φn) .

This approach in the literature is often called θ-method. For θ = 0 and θ = 1
the explicit and implicit Euler methods, respectively, result. θ = 1/2 gives
the Crank-Nicolson method. Valid time discretizations are also obtained for
all other values of θ in the interval [0, 1]. However, for θ �= 1/2 the method is
only of first order.

As in the explicit case, implicit multi-step methods of different order can
be defined depending on the number of involved time levels, the approximation
of the time derivative, and the evaluation of the right hand side An important
class of methods are the BDF-methods (backward-differencing formula). These
can be derived with arbitrary order by approximating the time derivative at
tn+1 with backward-differencing formulas involving a corresponding number
of previous time levels. The corresponding methods for equidistant time steps
up to the order 4 are indicated in Table 6.2.

The first order BDF-method corresponds to the implicit Euler method.
In particular, the second order BDF-method is frequently used in practice.
With this the unknown function is approximated by the parabola defined
by the function values at the time levels tn−1, tn, and tn+1 (see Fig. 6.10).
Having comparably good stability properties this method only involves slightly
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Table 6.2. BDF-methods up to the order 4

Formula Order

φn+1 − φn

Δt
= L(φn+1) 1

3φn+1 − 4φn + φn−1

2Δt
= L(φn+1) 2

11φn+1 − 18φn + 9φn−1 + 2φn−2

6Δt
= L(φn+1) 3

25φn+1 − 48φn + 36φn−1 − 16φn−2 + 3φn−3

2Δt
= L(φn+1) 4

more computational effort per time step and is much more accurate than the
implicit Euler method. Only the values φn−1 have to be stored additionally.
From order three on the stability properties deteriorate with increasing order
such that the application of a BDF-method with order higher than 4 is not
recommended.

�

�

t

φi

tn−1 tn tn+1

Fig. 6.10. Approximation of time
derivative with second-order BDF-
method

Another class of implicit multi-step methods are the Adams-Moulton meth-
ods – the implicit counterparts to the (explicit) Adams-Bashforth methods.
The corresponding formulas up to the order 4 for equidistant grids are sum-
marized in Table 6.3. The Adams-Moulton methods of first and second orders
correspond to the implicit Euler and Crank-Nicolson methods, respectively.

Adams-Moulton methods can be used together with Adams-Bashforth
methods of the same order as predictor-corrector methods. Here, the idea is to
determine with the explicit predictor method in a “cheap” way a good start-
ing value for the implicit corrector method. For instance, the corresponding
predictor-corrector method of fourth order is given by:

φ∗=φn+
Δt

24
[
55L(φn) − 59L(φn−1) + 37L(φn−2) − 9L(φn−3)

]
,

φn+1=φn+
Δt

24
[
9L(φ∗) + 19L(φn) − 5L(φn−1) + L(φn−2)

]
.
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Table 6.3. Adams-Moulton methods up to the order 4

Formula Order

φn+1 − φn

Δt
= L(φn+1) 1

φn+1 − φn

Δt
=

1

2

[
L(φn+1) + L(φn)

]
2

φn+1 − φn

Δt
=

1

12

[
5L(φn+1) + 8L(φn) − L(φn−1)

]
3

φn+1 − φn

Δt
=

1

24

[
9L(φn+1) + 19L(φn) − 5L(φn−1) + L(φn−2)

]
4

The error for such a combined method is equal to that of the implicit method,
which is always the smaller one.

6.4 Numerical Example

As a more complex application example for the numerical simulation of time-
dependent processes and for comparison of different time discretization meth-
ods we consider the unsteady flow around a circular cylinder in a channel
with time dependent inflow condition. The problem configuration is shown in
Fig. 6.11. The problem can be described by the two-dimensional incompress-
ible Navier-Stokes equations as given in Sect. 2.5.1. The kinematic viscosity is
defined as ν = 10−3 m2/s, and the fluid density is ρ = 1.0 kg/m3. The inflow
condition for the velocity component v1 in x1-direction is

v1(0, x2, t) = 4vmaxx2(H − x2) sin(πt/8)/H2 , for 0 ≤ t ≤ 8 s

with vmax = 1.5m/s. This corresponds to the velocity profile of a fully deve-
loped channel flow, where the Reynolds number Re = v̄D/ν based on the
cylinder diameter D = 0.1m and the mean velocity v̄(t) = 2vmax(0,H/2, t)/3
varies in the range 0 ≤ Re ≤ 100.

As reference quantities the drag and lift coefficients

cD =
2Fw

ρv̄2D
and cL =

2Fa

ρv̄2D

for the cylinder are considered. Hereby, the drag and lift forces are defined by

FD =
∫
S

(ρν
∂vt

∂xi
nin2 − pn1) dS and FL = −

∫
S

(ρν
∂vt

∂xi
nin1 + pn2) dS ,

where S denotes the cylinder surface (circle), n = (n1, n2) is the normal vector
on S, and vt is the tangential velocity on S.
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v1 =v2 =0
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v1 =v2 =0
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(0, 0)
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Fig. 6.11. Configuration for two-dimensional flow around cylinder (lengths in m)

The temporal development of the flow is illustrated in Fig. 6.12 and shows
the vorticity at different points of time. First, there are two counterrotating
vortices behind the cylinder, that become unstable after a certain time (with
increasing oncoming flow). A Kármán vortex street forms and finally decays
with decreasing oncoming flow. The problem effectively involves two kinds of
time dependencies: an “outer” one due to the time-dependent boundary con-
dition and an “inner” one due to the vortex separation by physical instability
(bifurcation).

t = 1.6 s

t = 5.6 s

t = 8.0 s

Fig. 6.12. Temporal development of vorticity for unsteady flow around cylinder



6.4 Numerical Example 163

The spatial discretization uses a finite-volume method with central dif-
ferencing scheme on a grid with 24 576 CVs, a typical grid size for this kind
of problem. The grid can be seen in Fig. 6.13, where for visibility only ev-
ery fourth grid line is shown, i.e., the real number of CVs is 16 times larger.
For the time discretization the implicit Euler method, the Crank-Nicolson
method, and the second-order BDF-method are compared. We only consider
implicit methods because explicit methods for this kind of problems are orders
of magnitude slower and, therefore, are out of discussion here.

Fig. 6.13. Numerical grid for flow around cylinder (every fourth grid line is shown)

Figure 6.14 shows the temporal development of the lift coefficient cL ob-
tained with the different time discretization methods, where for each case the
same time step size Δt = 0.02 s is employed. Thus 400 time steps for the
given time interval of 8 s are necessary. The “exact” solution, which has been
obtained by a computation with a very fine grid and a very small time step
size, is also indicated.
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Fig. 6.14. Temporal development of lift coefficient for different time discretization
schemes for flow around cylinder
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One can see quite significant differences in the results obtained with the
different methods. With the implicit Euler method the oscillations with the
given time step size are not captured at all. The discretization error in this case
is so large, that the oscillations are damped completely. The BDF-method is
able to resolve the oscillations to some extent, but the amplitude is clearly too
small. The Crank-Nicolson method, as one would expect from a corresponding
analysis of the discretization error, gives the best result.

One of the most important practical aspects for a numerical method is
how much computing time the method needs to compute the solution with a
certain accuracy. In order to compare the methods in this respect, Fig. 6.15
shows the relative error for the maximum of the lift coefficient against the
computing time, which is needed for different time step sizes, for the different
time discretization methods.
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Fig. 6.15. Relative error against computing time for different time discretizations

One can observe that the implicit Euler method does not perform well
because very small time step sizes are necessary to achieve an acceptable
accuracy (the method is only of first order). The two second-order methods
don’t differ that much, in particular, in the range of small errors. However, the
Crank-Nicolson method is also in this respect the best scheme, i.e., within a
given computing time with this method one obtains the most accurate results.
In other words, a precribed accuracy can be achieved within the shortest
computing time.

In order to point out that not all quantities of a problem react with the
same sensitivity to the discretization employed, in Fig. 6.16 the temporal
development of the drag coefficient cD that results with the different time
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discretization schemes is given. In contrast to the corresponding lift coefficients
one can observe only minor differences in the results for the different methods.
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Fig. 6.16. Temporal development of drag coefficient with different time discretiza-
tions

In summary, one can conclude that the time discretization method to-
gether with the time step size has to be chosen according to the accuracy
requirements of the underlying problem, where the stability and approxima-
tion properties of the method have to be taken into account. This is not always
an easy undertaking. In the case of strong temporal variations in the solution,
the method should in any event be at least of second order.

Exercises for Chap. 6

Exercise 6.1. The temperature distribtion T = T (t, x) in a bar of length L
with constant material properties is decribed by the differential equation

∂T

∂t
− α

∂2T

∂x2
= 0 with α =

κ

ρcp

for 0 < x < L and t > 0 (cf. Sect. 2.3.2). As initial and boundary conditions
T (0, x) = sin(πx)+x and T (t, 0) = 0, and T (t, L) = 1 are given (in K). The
problem parameters are L = 1 m and α = 1 m2/s. (i) Use the FVM with two
equidistant CVs and second-order central differences for the spatial discretiza-
tion and formulate the resulting ordinary differential equations for the two
CVs. (ii) Compute the temperature until the time t = 0, 4 s with the implicit
and explicit Euler methods, each with Δt = 0, 1 s and 0, 2 s. (iii) Discuss the
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results in comparison to the analytic solution Ta(t, x) = e−αtπ2
sin(πx) + x.

Exercise 6.2. Discretize the unsteady transport equation (2.24) with the
finite-element method and formulate the θ-method for the resulting system of
ordinary differential equations.

Exercise 6.3. Formulate the Adams-Bashforth and the Adams-Moulton
methods of fourth order for the problem in Exercise 6.1 and determine the
corresponding truncation errors by Taylor series expansion.

Exercise 6.4. Formulate a second-order finite-volume method (for equidis-
tant grids) for the spatial and temporal discretization of the unsteady beam
equation (6.2).

Exercise 6.5. A finite-volume space discretization yields for t > 0 the system
of ordinary differential equations[

φ′
1

φ′
2

]
=

[
2 0
t
√

t

] [
φ1

φ2

]
+

[
sin(πt)√

t

]
for the two values φ1 = φ1(t) and φ2 = φ2(t) in the CV centers. The initial
conditions are φ1(0) = 2 and φ2(0) = 1. (i) Discretize the system with the
θ-method. (ii) Compute φ1

1 = φ2(Δt) with the time step size Δt = 2.


