Skip to main content

Molecular Microfluorometry: Converting Arbitrary Fluorescence Units into Absolute Molecular Concentrations to Study Binding Kinetics and Stoichiometry in Transporters

  • Chapter
Neurotransmitter Transporters

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 175))

Abstract

Cotransporters use energy stored in Na+ or H+ gradients to transport neurotransmitters or other substrates against their own gradient. Cotransport is rapid and efficient, and at synapses it helps terminate signaling. Cotransport in norepinephrine (NET), epinephrine (EpiT), dopamine (DAT), and serotonin (SERT) transporters couples downhill Na+ flux to uphill transmitter flux. NETs, for example, attenuate signaling at adrenergic synapses by efficiently clearing NE from the synaptic cleft, thus preparing the synapse for the next signal. Transport inhibition with tricyclic antidepressants prolongs neurotransmitter presence in the synaptic cleft, potentially alleviating symptoms of depression. Transport inhibition with cocaine or amphetamine, which respectively block or replace normal transport, may result in hyperactivity. Little is known about the kinetic interactions of substrates or drugs with transporters, largely because the techniques that have been successful in discovering transporter agonists and antagonists do not yield detailed kinetic information. Mechanistic data are for the most part restricted to global parameters, such as K m and V max, measured from large populations of transporter molecules averaged over thousands of cells. Three relatively new techniques used in transporter research are electrophysiology, amperometry, and microfluorometry. This review focuses on fluorescence-based methodologies, which—unlike any other technique—permit the simultaneous measurement of binding and transport. Microfluorometry provides unique insights into binding kinetics and transport mechanisms from a quantitative analysis of fluorescence data. Here we demonstrate how to quantify the number of bound substrate molecules, the number of transported substrate molecules, and the kinetics of substrate binding to individual transporters. Although we describe experiments on a specific neurotransmitter transporter, these methods are applicable to other membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcala JR, Gratton E, Jameson DM (1985) A multifrequency phase fluorometer using the harmonic content of a mode-locked laser. Anal Instrum 14:225–250

    Article  CAS  Google Scholar 

  • Axelrod D (1989) Total internal reflection fluorescence microscopy. Methods Cell Biol 30:245–270

    PubMed  CAS  Google Scholar 

  • Axelrod D (2001a) Selective imaging of surface fluorescence with very high aperture microscope objectives. J Biomed Opt 6:6–13

    Article  PubMed  CAS  Google Scholar 

  • Axelrod D (2001b) Total internal reflection fluorescence microscopy in cell biology. Traffic 2:764–774

    Article  PubMed  CAS  Google Scholar 

  • Axelrod D (2003) Total internal reflection fluorescence microscopy in cell biology. Methods Enzymol 361:1–33

    Article  PubMed  CAS  Google Scholar 

  • Axelrod D, Thompson NL, Burghardt TP (1983) Total internal inflection fluorescent microscopy. J Microsc 129:19–28

    PubMed  CAS  Google Scholar 

  • Axelrod J, Kopin IJ (1969) The uptake, storage, release and metabolism of noradrenaline in sympathetic nerves. Prog Brain Res 31:21–32

    PubMed  CAS  Google Scholar 

  • Bacia K, Schwille P (2003) A dynamic view of cellular processes by in vivo fluorescence auto-and cross-correlation spectroscopy. Methods 29:74–85

    Article  PubMed  CAS  Google Scholar 

  • Backs J, Haunstetter A, Gerber SH, Metz J, Borst MM, Strasser RH, Kubler W, Haass M (2001) The neuronal norepinephrine transporter in experimental heart failure: evidence for a posttranscriptional downregulation. J Mol Cell Cardiol 33:461–472

    Article  PubMed  CAS  Google Scholar 

  • Batchelor M, Schenk JO (1998) Protein kinase A activity may kinetically upregulate the striatal transporter for dopamine. J Neurosci 18:10304–10309

    PubMed  CAS  Google Scholar 

  • Bauman PA, Blakely RD (2002) Determinants within the C-terminus of the human norepinephrine transporter dictate transporter trafficking, stability, and activity. Arch Biochem Biophys 404:80–91

    Article  PubMed  CAS  Google Scholar 

  • Berland KM, So PT, Gratton E (1995) Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophys J 68:694–701

    PubMed  CAS  Google Scholar 

  • Blakely RD (1992) Molecular cloning and characterization of neurotransmitter transporters. NIDA Res Monogr 126:66–83

    PubMed  CAS  Google Scholar 

  • Blakely RD (2001) Physiological genomics of antidepressant targets: keeping the periphery in mind. J Neurosci 21:8319–8323

    PubMed  CAS  Google Scholar 

  • Blakely RD, Berson HE, Fremeau RT Jr, Caron MG, Peek MM, Prince HK, Bradley CC (1991) Cloning and expression of a functional serotonin transporter from rat brain. Nature 354:66–70

    Article  PubMed  CAS  Google Scholar 

  • Bonisch H, Harder R (1986) Binding of 3H-desipramine to the neuronal noradrenaline carrier of rat phaeochromocytoma cells (PC-12 cells). Naunyn Schmiedebergs Arch Pharmacol 334:403–411

    Article  PubMed  CAS  Google Scholar 

  • Bonisch H, Fuchs G, Graefe KH (1986) Sodium-dependence of the saturability of carrier-mediated noradrenaline efflux from noradrenergic neurones in the rat vas deferens. Naunyn Schmiedebergs Arch Pharmacol 332:131–134

    Article  PubMed  CAS  Google Scholar 

  • Bradley CC, Blakely RD (1997) Alternative splicing of the human serotonin transporter gene. J Neurochem 69:1356–1367

    Article  PubMed  CAS  Google Scholar 

  • Bruns D, Engert F, Lux HD (1993) A fast activating presynaptic reuptake current during serotonergic transmission in identified neurons of Hirudo. Neuron 10:559–572

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Muller JD, So PT, Gratton E (1999) The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J 77:553–567

    PubMed  CAS  Google Scholar 

  • Chen Y, Muller JD, Ruan Q, Gratton E (2002) Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy. Biophys J 82:133–144

    PubMed  CAS  Google Scholar 

  • Clark MS, Russo AF (1998) Measurement of tryptophan hydroxylase mRNA levels by competitive RT-PCR. Brain Res Brain Res Protoc 2:273–285

    Article  PubMed  CAS  Google Scholar 

  • Corey JL, Quick MW, Davidson N, Lester HA, Guastella J (1994) A cocaine-sensitive Drosophila serotonin transporter: cloning, expression, and electrophysiological characterization. Proc Natl Acad Sci U S A 91:1188–1192

    Article  PubMed  CAS  Google Scholar 

  • Dickinson ME, Simbuerger E, Zimmermann B, Waters CW, Fraser SE (2003) Multiphoton excitation spectra in biological samples. J Biomed Opt 8:329–338

    Article  PubMed  Google Scholar 

  • Dittrich P, Malvezzi-Campeggi F, Jahnz M, Schwille P (2001) Accessing molecular dynamics in cells by fluorescence correlation spectroscopy. Biol Chem 382:491–494

    Article  PubMed  CAS  Google Scholar 

  • Earles C, Schenk JO (1999) Multisubtrate mechanism for the inward transport of dopamine by the human dopamine transporter expressed in HEK cells and its inhibition by cocaine. Synapse 33:230–238

    Article  PubMed  CAS  Google Scholar 

  • Elson EL, Magde D, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:1–27

    Article  CAS  Google Scholar 

  • Foote S, Aston-Jones G (1995) Pharmacology and physiology of central noradrenergic systems. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York, pp 335–345

    Google Scholar 

  • Foote SL, Aston-Jones G, Bloom FE (1980) Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc Natl Acad Sci U S A 77:3033–3037

    Article  PubMed  CAS  Google Scholar 

  • Galli A, DeFelice LJ, Duke BJ, Moore KR, Blakely RD (1995) Sodium-dependent norepinephrine-induced currents in norepinephrine-transporter-transfected HEK-293 cells blocked by cocaine and antidepressants. J Exp Biol 198:2197–2212

    PubMed  CAS  Google Scholar 

  • Galli A, Blakely RD, DeFelice LJ (1996) Norepinephrine transporters have channel modes of conduction. Proc Natl Acad Sci U S A 93:8671–8676

    Article  PubMed  CAS  Google Scholar 

  • Galli A, Blakely RD, DeFelice LJ (1998) Patch-clamp and amperometric recordings from norepinephrine transporters: channel activity and voltage-dependent uptake [see comments]. Proc Natl Acad Sci U S A 95:13260–13265

    Article  PubMed  CAS  Google Scholar 

  • Graefe KH, Bonisch H, Keller B (1978) Saturation kinetics of the adrenergic neurone uptake system in the perfused rabbit heart. A new method for determination of initial rates of amine uptake. Naunyn Schmiedebergs Arch Pharmacol 302:263–273

    Article  PubMed  CAS  Google Scholar 

  • Gratton E, Jameson DM, Hall RD (1984) Multifrequency phase andmodulation fluorometry. Annu Rev Biophys Bioeng 13:105–124

    Article  PubMed  CAS  Google Scholar 

  • Hahn MK, Blakely RD (2002) Monoamine transporter gene structure and polymorphisms in relation to psychiatric and other complex disorders. Pharmacogenomics J 2:217–235

    Article  PubMed  CAS  Google Scholar 

  • Hahn MK, Robertson D, Blakely RD (2003) A mutation in the human norepinephrine transporter gene (SLC6A2) associated with orthostatic intolerance disrupts surface expression of mutant and wild-type transporters. J Neurosci 23:4470–4478

    PubMed  CAS  Google Scholar 

  • Hanson KM, Behne MJ, Barry NP, Mauro TM, Gratton E, Clegg RM (2002) Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys J 83:1682–1690

    PubMed  CAS  Google Scholar 

  • Harder R, Bonisch H (1985) Effects of monovalent ions on the transport of noradrenaline across the plasmam embrane of neuronal cells (PC-12 cells). J Neurochem 45:1154–1162

    PubMed  CAS  Google Scholar 

  • Haupts U, Maiti S, Schwille P, Webb WW (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A 95:13573–13578

    Article  PubMed  CAS  Google Scholar 

  • Haustein E, Schwille P (2003) Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29:153–166

    Article  PubMed  CAS  Google Scholar 

  • Herman BD (2001) Fluorescence microscopy, 2nd edn. Bios Scientific Publishing, pp 1–170

    Google Scholar 

  • Iversen LL, de Champlain J, Glowinski J, Axelrod J (1967) Uptake, storage and metabolism of norepinephrine in tissues of the developing rat. J Pharmacol Exp Ther 157:509–516

    PubMed  CAS  Google Scholar 

  • Jameson DM, Gratton E, Hall RD (1984) The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry. Appl Spectrosc Rev 20:55–106

    CAS  Google Scholar 

  • Kitayama S, Ikeda T, Mitsuhata C, Sato T, Morita K, Dohi T (1999) Dominant negative isoform of rat norepinephrine transporter produced by alternative RNA splicing. J Biol Chem 274:10731–10736

    Article  PubMed  CAS  Google Scholar 

  • Kitayama S, Morita K, Dohi T (2001) Functional characterization of the splicing variants of human norepinephrine transporter. Neurosci Lett 312:108–112

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz J (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum Publishers, New York, pp 368–394

    Google Scholar 

  • Maes M, Lin AH, Verkerk R, Delmeire L, Van Gastel A, Van der P M, Scharpe S (1999) Serotonergic and noradrenergic markers of post-traumatic stress disorder with and without major depression. Neuropsychopharmacology 20:188–197

    Article  PubMed  CAS  Google Scholar 

  • Magde D, Elson EL, Webb WW (1972) Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708

    Article  CAS  Google Scholar 

  • Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61

    Article  PubMed  CAS  Google Scholar 

  • Mager S, Min C, Henry DJ, Chavkin C, Hoffman BJ, Davidson N, Lester HA (1994) Conducting states of a mammalian serotonin transporter. Neuron 12:845–859

    Article  PubMed  CAS  Google Scholar 

  • Medina MA, Schwille P (2002) Fluorescence correlation spectroscopy for the detection and study of single molecules in biology. Bioessays 24:758–764

    Article  PubMed  CAS  Google Scholar 

  • Meissner O, Haberlein H (2003) Lateral mobility and specific binding to GABA(A) receptors on hippocampal neurons monitored by fluorescence correlation spectroscopy. Biochemistry 42:1667–1672

    Article  PubMed  CAS  Google Scholar 

  • Merlet P, Benvenuti C, Moyse D, Pouillart F, Dubois-Rande JL, Duval AM, Loisance D, Castaigne A, Syrota A (1999) Prognostic value of MIBG imaging in idiopathic dilated cardiomyopathy [see comments]. J Nucl Med 40:917–923

    PubMed  CAS  Google Scholar 

  • Minsky M (1957) Microscopy apparatus. US Patent No. 3013467

    Google Scholar 

  • Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT (2002) Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci 22:389–395

    PubMed  CAS  Google Scholar 

  • Nelson PJ, Rudnick G (1981) Anion-dependent sodium ion conductance of platelet plasma membranes. Biochemistry 20:4246–4249

    Article  PubMed  CAS  Google Scholar 

  • Ni YG, Chen JG, Androutsellis-Theotokis A, Huang CJ, Moczydlowski E, Rudnick G (2001) A lithium-induced conformational change in serotonin transporter alters cocaine binding, ion conductance, and reactivity of Cys-109. J Biol Chem 276:30942–30947

    Article  PubMed  CAS  Google Scholar 

  • Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW (1997) Use of the green fluorescent protein and itsmutants in quantitative fluorescence microscopy. Biophys J 73:2782–2790

    PubMed  CAS  Google Scholar 

  • Pawley JB (1995) Handbook of biological confocal microscopy, 2nd edn. Plenum Press, New York, pp 1–632

    Google Scholar 

  • Petersen CI, DeFelice LJ (1999) Ionic interactions in the Drosophila serotonin transporter identify it as a serotonin channel. Nat Neurosci 2:605–610

    Article  PubMed  CAS  Google Scholar 

  • Piston DW, Masters BR, Webb WW (1995) Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy. J Microsc 178:20–27

    PubMed  CAS  Google Scholar 

  • Povlock SL, Schenk JO (1997) A multisubstrate kinetic mechanism of dopamine transport in the nucleus accumbens and its inhibition by cocaine. J Neurochem 69:1093–1105

    Article  PubMed  CAS  Google Scholar 

  • Ramsey IS, DeFelice LJ (2002) Serotonin transporter function and pharmacology are sensitive to expression level: evidence for an endogenous regulatory factor. J Biol Chem 277:14475–14482

    PubMed  CAS  Google Scholar 

  • Rigler R, Mets U, Widengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22:169–175

    Article  CAS  Google Scholar 

  • Ritz MC, Cone EJ, Kuhar MJ (1990) Cocaine inhibition of ligand binding at dopamine, norepinephrine and serotonin transporters: a structure-activity study. Life Sci 46:635–645

    Article  PubMed  CAS  Google Scholar 

  • Robertson D, Flattem N, Tellioglu T, Carson R, Garland E, Shannon JR, Jordan J, Jacob G, Blakely RD, Biaggioni I (2001) Familial orthostatic tachycardia due to norepinephrine transporter deficiency. Ann N Y Acad Sci 940:527–543

    Article  PubMed  CAS  Google Scholar 

  • Rudnick G, Nelson PJ (1978) Platelet 5-hydroxytryptamine transport, an electroneutral mechanism coupled to potassium. Biochemistry 17:4739–4742

    Article  PubMed  CAS  Google Scholar 

  • Sacchetti G, Bernini M, Bianchetti A, Parini S, Invernizzi RW, Samanin R (1999) Studies on the acute and chronic effects of reboxetine on extracellular noradrenaline and other monoamines in the rat brain. Br J Pharmacol 128:1332–1338

    Article  PubMed  CAS  Google Scholar 

  • Schenk JO (2002) The functioning neuronal transporter for dopamine: kinetic mechanisms and effects of amphetamines, cocaine and methylphenidate. Prog Drug Res 59:111–131

    PubMed  CAS  Google Scholar 

  • Schildkraut JJ, Gordon EK, Durell J (1965) Catecholamine metabolism in affective disorders. I. Normetanephrine and VMA excretion in depressed patients treated with imipramine. J Psychiatr Res 3:213–228

    Article  PubMed  CAS  Google Scholar 

  • Scholze P, Norregaard L, Singer EA, Freissmuth M, Gether U, Sitte HH (2002) The role of zinc ions in reverse transport mediated by monoamine transporters. J Biol Chem 277:21505–21513

    Article  PubMed  CAS  Google Scholar 

  • Schroeter S, Apparsundaram S, Wiley RG, Miner LH, Sesack SR, Blakely RD (2000) Immunolocalization of the cocaine and antidepressant-sensitive 1-norepinephrine transporter. J Comp Neurol 420:211–232

    Article  PubMed  CAS  Google Scholar 

  • Schwartz JW, Blakely RD, DeFelice LJ (2003) Binding and transport in norepinephrine transporters. Real-time, spatially resolved analysis in single cells using a fluorescent substrate. J Biol Chem 278:9768–9777

    Article  PubMed  CAS  Google Scholar 

  • Schwille P (2001) Fluorescence correlation spectroscopy and its potential for intracellular applications. Cell Biochem Biophys 34:383–408

    Article  PubMed  CAS  Google Scholar 

  • Schwille P, Korlach J, Webb WW (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36:176–182

    Article  PubMed  CAS  Google Scholar 

  • Shannon JR, Flattem NL, Jordan J, Jacob G, Black BK, Biaggioni I, Blakely RD, Robertson D (2000) Orthostatic intolerance and tachycardia associated with norepinephrine-transporter deficiency. N Engl J Med 342:541–549

    Article  PubMed  CAS  Google Scholar 

  • Siggia ED, Lippincott-Schwartz J, Bekiranov S (2000) Diffusion in inhomogeneous media: theory and simulations applied to whole cell photobleach recovery. Biophys J 79:1761–1770

    PubMed  CAS  Google Scholar 

  • Sitte HH, Huck S, Reither H, Boehm S, Singer EA, Pifl C (1998) Carrier-mediated release, transport rates, and charge transfer induced by amphetamine, tyramine, and dopamine in mammalian cells transfected with the human dopamine transporter. J Neurochem 71:1289–1297

    Article  PubMed  CAS  Google Scholar 

  • Sitte HH, Scholze P, Schloss P, Pifl C, Singer EA (2000) Characterization of carrier-mediated efflux in human embryonic kidney 293 cells stably expressing the rat serotonin transporter: a superfusion study. J Neurochem 74:1317–1324

    Article  PubMed  CAS  Google Scholar 

  • Sitte HH, Hiptmair B, Zwach J, Pifl C, Singer EA, Scholze P (2001) Quantitative analysis of inward and outward transport rates in cells stably expressing the cloned human serotonin transporter: inconsistencies with the hypothesis of facilitated exchange diffusion. Mol Pharmacol 59:1129–1137

    PubMed  CAS  Google Scholar 

  • Sonders MS, Zhu SJ, Zahniser NR, Kavanaugh MP, Amara SG (1997) Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J Neurosci 17:960–974

    PubMed  CAS  Google Scholar 

  • Tatsumi M, Groshan K, Blakely RD, Richelson E (1997) Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol 340:249–258

    Article  PubMed  CAS  Google Scholar 

  • Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4:13–25

    Article  PubMed  CAS  Google Scholar 

  • Valentino RJ, Foote SL, Aston-Jones G (1983) Corticotropin-releasing factor activates noradrenergic neurons of the locus coeruleus. Brain Res 270:363–367

    Article  PubMed  CAS  Google Scholar 

  • Vrljic M, Nishimura SY, Brasselet S, Moerner WE, McConnell HM (2002) Translational diffusion of individual class II MHC membrane proteins in cells. Biophys J 83:2681–2692

    Article  PubMed  CAS  Google Scholar 

  • Wang YM, Xu F, Gainetdinov RR, Caron MG (1999) Genetic approaches to studying norepinephrine function: knockout of the mouse norepinephrine transporter gene. Biol Psychiatry 46:1124–1130

    Article  PubMed  CAS  Google Scholar 

  • Wayment H, Meiergerd SM, Schenk JO (1998) Relationships between the catechol substrate binding site and amphetamine, cocaine, and mazindol binding sites in a kinetic model of the striatal transporter of dopamine in vitro. J Neurochem 70:1941–1949

    Article  PubMed  CAS  Google Scholar 

  • Williams RM, Piston DW, Webb WW (1994) Two-photon molecular excitation provides intrinsic 3-dimensional resolution for laser-based microscopy and microphotochemistry. Faseb J 8:804–813

    PubMed  CAS  Google Scholar 

  • Xu F, Gainetdinov RR, Wetsel WC, Jones SR, Bohn LM, Miller GW, Wang YM, Caron MG (2000) Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat Neurosci 3:465–471

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwartz, J.W., Piston, D., DeFelice, L.J. (2006). Molecular Microfluorometry: Converting Arbitrary Fluorescence Units into Absolute Molecular Concentrations to Study Binding Kinetics and Stoichiometry in Transporters. In: Sitte, H.H., Freissmuth, M. (eds) Neurotransmitter Transporters. Handbook of Experimental Pharmacology, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29784-7_2

Download citation

Publish with us

Policies and ethics