Skip to main content

Heat Shock Proteins in Immunity

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 172))

Abstract

This chapter focuses on immunological effects of eukaryotic and microbial heat shock proteins (HSPs), with molecular weights of about 60, 70, and 90 kDa. The search for tumor-specific antigens resulted in the identification of HSPs. They have been found to elicit a potent anti-cancer immune response mediated by the adoptive and innate immune system. Following receptor-mediated uptake of HSP (HSP70 and gp96) peptide complexes by antigen-presenting cells and representation of HSP-chaperoned peptides byMHC class I molecules, a CD8-specific T cell response is induced.Apart fromchaperoning immunogenic peptides derived fromtumors, bacterial and virally infected cells, they by themselves provide activatory signals for antigen-presenting cells and natural killer (NK) cells. After binding of peptide-free HSP70 to Toll-like receptors, the secretion of pro-inflammatory cytokines is initiated by antigen-presenting cells and thus results in a nonspecific stimulation of the immune system. Moreover, soluble as well as ell membrane-bound HSP70 on tumor cells can directly activate the cytolytic and migratory capacity of NK cells. Apart form cancer, HSPs of different origins, with a molecular weight of about 60, 70, and 90 kDa, also play a pivotal role in viral infections, including human and simian immunodeficiency virus (HIV, SIV), measles, and choriomeningitis. Moreover, HSPs have been found to induce tolerance against autoimmune diseases. In summary, depending on their mode of induction, intracellular/extracellular location, cellular origin (eukaryote/prokaryote), peptide loading status, intracellular ADP/ATP content, concentration, and route of application, HSPs either exert immune activation as danger signals in cancer immunity and mediate protection against infectious diseasesor exhibit regulatory activities in controllingandpreventing autoimmunity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed RK, Biberfeld G, Thorstensson R (2005) Innate immunity in experimental SIV infection and vaccination. Mol Immunol 42:251–258

    Article  PubMed  CAS  Google Scholar 

  • Altmeyer A, Maki RG, Feldweg AM, Heike M, Protopopov VP, Masur SK, Srivastava PK (1996) Tumor-specific cell surface expression of the-KDEL containing, endoplasmic reticular heat shock protein gp96. Int J Cancer 69: 340–349

    Article  PubMed  CAS  Google Scholar 

  • Arispe N, De Maio A (2000) ATP and ADP modulate a cation channel formed by Hsc70 in acidic phospholipid membranes. J Biol Chem 275:30839–30843

    Article  PubMed  CAS  Google Scholar 

  • Arispe N, Doh M, Simakova O, Kurganov B, De Maio A (2004) Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability. FASEB J 18:1636–1645

    Article  PubMed  CAS  Google Scholar 

  • Arnold-Schild D, Hanau D, Spehner D, Schmid C, Rammensee HG, de la Salle H, Schild H (1999) Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol 162: 3757–3760

    PubMed  CAS  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    Article  PubMed  CAS  Google Scholar 

  • Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellularHSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277: 15028–15034

    Article  PubMed  CAS  Google Scholar 

  • Barreto A, Gonzalez JM, Kabingu E, Asea A, Fiorentino S (2003) Stress-induced release of HSC70 from human tumors. Cell Immunol 222:97–104

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Binder RJ, Ramalingham T, Srivastava PK (2001) CD91: a receptor for heat shock proteins gp96, hsp90, and calreticulin. Immunity 14:303–313

    Article  PubMed  CAS  Google Scholar 

  • Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729

    Article  PubMed  CAS  Google Scholar 

  • Bausinger H, Lipsker D, Ziylan U, Manie S, Briand JP, Cazenave JP, Muller S, Haeuw JF, Ravanat C, de la SH, Hanau D (2002) Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur J Immunol 32: 3708–3713

    Article  PubMed  CAS  Google Scholar 

  • Becker T, Hartl FU, Wieland F (2002) CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 158:1277–1285

    Article  PubMed  CAS  Google Scholar 

  • Beresfold PJ, Jaju M, Friedman RS, Yoon MJ, Liebermann J (1988) A role for heat shock protein 27 in CTL-mediated cell death. J Immunol 161:161–167

    Google Scholar 

  • Berwin B, Hart JP, Pizzo SV, Nicchitta CV (2002) Cutting edge: CD91-independent crosspresentation of GRP94(gp96)-associated peptides. J Immunol 168:4282–4286

    PubMed  CAS  Google Scholar 

  • Berwin B, Hart JP, Rice S, Gass C, Pizzo SV, Post SR, Nicchitta CV (2003) Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalizationbyantigen-presenting cells. EMBO J 22:6127–6136

    Article  PubMed  CAS  Google Scholar 

  • Binder RJ, Harris ML, Menoret A, Srivastava PK (2000a) Saturation, competition, and specificity in interaction of heat shock proteins (hsp) gp96, hsp90, and hsp70 with CD11b+ cells. J Immunol 165:2582–258

    PubMed  CAS  Google Scholar 

  • Binder RJ, Han DK, Srivastava PK (2000b) CD91: a receptor for heat shock protein gp96. Nat Immunol 1: 151–155

    Article  PubMed  CAS  Google Scholar 

  • Binder RJ, Vatner R, Srivastava P (2004) The heat-shock protein receptors: some answers and more questions. Tissue Antigens 64:442–451

    Article  PubMed  CAS  Google Scholar 

  • Binder RJ, Srivastava PK (2004) Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proc Natl Acad Sci U S A 101:6128–6133

    Article  PubMed  CAS  Google Scholar 

  • Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O, Shirakawa AK, Farber JM, Segal DM, Oppenheim JJ, Kwak LW (2002) Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298:1025–1029

    Article  PubMed  CAS  Google Scholar 

  • Blachere NE, Li Z, Chandawarkar RY, Suto R, Jaikaria NS, Basu S, Udono H, Srivastava PK (1997) Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptidespecific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 186:1315–1322

    Article  PubMed  CAS  Google Scholar 

  • Bogers WM, Bergmeier LA, Oostermeijer H, ten Haaft P, Wang Y, Kelly CG, Singh M, Heeney JL, Lehner T (2004) CCR5 targeted SIV vaccination strategy preventing or inhibiting SIV infection. Vaccine 22:2974–2984

    Article  PubMed  CAS  Google Scholar 

  • Botzler C, Kolb HJ, Issels RD, Multhoff G (1996) Noncytotoxic alkyl-lysophospholipid treatment increases sensitivity of leukemic K562 cells to lysis by natural killer (NK) cells. Int J Cancer 65:633–638

    Article  PubMed  CAS  Google Scholar 

  • Botzler C, Li G, Issels RD, Multhoff G (1998) Definition of extracellular localized epitopes of Hsp70 involved in an NK immune response. Cell Stress Chaperones 3:6–11

    Article  PubMed  CAS  Google Scholar 

  • Braud VM, Allan DS, O’Callaghan CA, Soderstrom K, D’Andrea A, Ogg GS, Lazetic S, Young NT, Bell JI, Phillips JH, Lanier LL, McMichael AJ (1998) HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391:795–799

    Article  PubMed  CAS  Google Scholar 

  • Breloer M, Marti T, Fleischer B, von Bonin A (1998) Isolation of processed, H-2Kb-binding ovalbumin-derived peptides associated with the stress proteins HSP70 and gp96. Eur J Immunol 28:1016–1021

    Article  PubMed  CAS  Google Scholar 

  • Broquet AH, Thomas G, Masliah J, Trugnan G, Bachelet M (2003) Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J Biol Chem 278: 21601–21606

    Article  PubMed  CAS  Google Scholar 

  • Castelli C, Rivoltini L, Rini F, Belli F, Testori A, Maio M, Mazzaferro V, Coppa J, Srivastava PK, Parmiani G (2004) Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol Immunother 53:227–233

    Article  PubMed  CAS  Google Scholar 

  • Chandawarkar RY, Wagh MS, Kovalchin JT, Srivastava P (2004) Immune modulation with high-dose heat-shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis. Int Immunol 16:615–624

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Tao Q, Yu H, Zhang L, Cao X (2002) Tumor cell membrane-bound heat shock protein 70 elicits antitumor immunity. Immunol Lett 84:81–87

    Article  PubMed  CAS  Google Scholar 

  • Chu NR, Wu HB, Wu TC, Boux LJ, Mizzen LA, Siegel MI (2000) Immunotherapy of a human papillomavirus type 16 E7-expressing tumor by administration of fusion protein comprised of Mycobacterium bovis BCG Hsp65 and HPV16 E7. Cell Stress Chaperones 5:401–405

    Article  PubMed  CAS  Google Scholar 

  • Ciocca DR, Rozados VR, Cuello Carrion FD, Gervasoni SI, Matar P, Scharovsky OG (2003) Hsp25 and Hsp70 in rodent tumors treated with doxorubicin and lovastatin. Cell Stress Chaperones 8:26–36

    Article  PubMed  CAS  Google Scholar 

  • Ciupitu AM, Petersson M, O’Donnell CL, Williams K, Jindal S, Kiessling R, Welsh RM (1998) Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T lymphocytes. J Exp Med 187:685–691

    Article  PubMed  CAS  Google Scholar 

  • Cosman D, Mullberg J, Fanslow W, Armitage R, Chin W, Cassiano I (2004) The human cytomegalovirus (HCMV) glycoprotein, UL16, binds to theMHC class I-related protein, MICB/PERB11, and to two novel, MHC class I related molecules ULBP1 and ULBP2. FASEB J 14:1018–1023

    Google Scholar 

  • Csermely P (2001) A nonconventional role of molecular chaperones: involvement in the cytoarchitecture. News Physiol Sci 16:123–126

    PubMed  CAS  Google Scholar 

  • Delneste Y, Magistrelli G, Gauchat J, Haeuw J, Aubry J, Nakamura K, Kawakami-Honda N, Goetsch L, Sawamura T, Bonnefoy J, Jeannin P (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17:353–362

    Article  PubMed  CAS  Google Scholar 

  • Di Cesare S, Poccia F, Mastino A, Colizzi V (1992) Surface expressed heat-shock proteins by stressed or human immunodeficiency virus (HIV)-infected lymphoid cells represent the target for antibody-dependent cellular cytotoxicity. Immunology 76:341–343

    PubMed  Google Scholar 

  • Doody AD, Kovalchin JT, Mihalyo MA, Hagymasi AT, Drake CG, Adler AJ (2004) Glycoprotein 96 can chaperone both MHC class I-and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function. J Immunol 172:6087–6092

    PubMed  CAS  Google Scholar 

  • Feige U, Gasser J (1994) Therapeutic intervention with mycobacterial 65 kDa heat shock protein peptide 180-188 in adjuvant arthritis in Lewis rats. Immunobiol 191:281–288

    Google Scholar 

  • Fuller KJ, Issels RD, Slosman DO, Guillet JG, Soussi T, Polla BS (1994) Cancer and the heat shock response. Eur J Cancer 30:1884–1891

    Article  Google Scholar 

  • Gastpar R, Gross C, Rossbacher L, Ellwart J, Riegger J, Multhoff G (2004) The cell surface-localized heat shock protein 70 epitope TKD induces migration and cytolytic activity selectively in human NK cells. J Immunol 172: 972–980

    PubMed  CAS  Google Scholar 

  • Gehrmann M, Pfister K, Hutzler P, Gastpar R, Margulis B, Multhoff G (2002) Effects of anti-neoplastic agents on cytoplasmic and membrane-bound heat shock protein 70 (Hsp70) levels. Biol Chem 383:1715–1725

    Article  PubMed  CAS  Google Scholar 

  • Gehrmann M, Schmetzer H, Eissner G, Haferlach T, Hiddemann W, Multhoff G (2003) Membrane-bound heat shock protein 70 (Hsp70) in acute myeloid leukemia: a tumor specific recognition structure for the cytolytic activity of autologous NK cells. Haematologica 88:474–476

    PubMed  Google Scholar 

  • Gehrmann M, Brunner M, Pfister K, Reichle A, Kremmer E, Multhoff G (2004) Differential up-regulation of cytosolic and membrane-bound heat shock protein 70 in tumor cells by anti-inflammatory drugs. Clin Cancer Res 10: 3354–3364

    Article  PubMed  CAS  Google Scholar 

  • Gehrmann M, Marienhagen J, Eichholtz-Wirth H, Fritz E, Ellwart J, Jaattela M, Zilch T, Multhoff G (2005) Dual function of membrane-bound heat shock protein 70 (Hsp70), Bag-4, and Hsp40: protection against radiation-induced effects and target structure for natural killer cells. Cell Death Differ 12:38–51

    Article  PubMed  CAS  Google Scholar 

  • Graeff-Meeder ER, van Eden W, Rijkers GT, Prakken BJ, Kuis W, Voorhorst-Ogink MM, van der ZR, Schuurman HJ, Helders PJ, Zegers BJ (1995) Juvenile chronic arthritis: T cell reactivity to human HSP60 in patients with a favorable course of arthritis. J Clin Invest 95:934–940

    Article  PubMed  Google Scholar 

  • Gross C, Hansch D, Gastpar R, Multhoff G (2003a) Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biol Chem 384:267–279

    Article  PubMed  CAS  Google Scholar 

  • Gross C, Schmidt-Wolf IG, Nagaraj S, Gastpar R, Ellwart J, Kunz-Schughart LA, Multhoff G (2003b) Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells. Cell Stress Chaperones 8:348–360

    Article  PubMed  CAS  Google Scholar 

  • Gross C, Koelch W, DeMaio A, Arispe N, Multhoff G (2003c) Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B. J Biol Chem 278: 41173–41181

    Article  PubMed  CAS  Google Scholar 

  • Guillot L, Balloy V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M (2002) Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J Immunol 168: 5989–5992

    PubMed  CAS  Google Scholar 

  • Habich C, Baumgart K, Kolb H, Burkart V (2002) The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J Immunol 168:569–576

    PubMed  CAS  Google Scholar 

  • Hanna J, Bechtel P, Zhai Y, Youssef F, McLachlan K, Mandelboim O (2004) Novel insights on human NK cells’ immunological modalities revealed by gene expression profiling. J Immunol 173:6547–6563

    PubMed  CAS  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  PubMed  CAS  Google Scholar 

  • Hickman-Miller HD, Hildebrand WH (2004) The immune response under stress: the role of HSP-derived peptides. Trends Immunol 25:427–433

    Article  PubMed  CAS  Google Scholar 

  • Hightower LE (1980) Cultured animal cells exposed to amino acid analogues or puromycin rapidly synthesize several polypeptides. J Cell Physiol 102:407–427

    Article  PubMed  CAS  Google Scholar 

  • Hoos A, Levey DL (2003) Vaccination with heat shock protein-peptide complexes: from basic science to clinical applications. Expert Rev Vaccines 2:369–379

    Article  PubMed  CAS  Google Scholar 

  • Huang Q, Richmond JF, Suzue K, Eisen HN, Young RA (2000) In vivo cytotoxic T lymphocyte elicitation by mycobacterial heat shock protein 70 fusion proteins maps to a discrete domain and is CD4(+) T cell independent. J Exp Med 191:403–408

    Article  PubMed  CAS  Google Scholar 

  • Hunter-Lavin C, Davies EL, Bacelar MM, Marshall MJ, Andrew SM, Williams JH (2004) Hsp70 release from peripheral blood mononuclear cells. Biochem Biophys Res Commun 324:511–517

    Article  PubMed  CAS  Google Scholar 

  • Johnson GB, Brunn GJ, Kodaira Y, Platt JL (2002) Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J Immunol 168:5233–5239

    PubMed  CAS  Google Scholar 

  • Kol A, Lichtman AH, Finberg RW, Libby P, Kurt-Jones EA (2000) Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 164:13–17

    PubMed  CAS  Google Scholar 

  • Kuppner MC, Gastpar R, Gelwer S, Nossner E, Ochmann O, Scharner A, Issels RD (2001) The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur J Immunol 31:1602–1609

    Article  PubMed  CAS  Google Scholar 

  • Lamb JR, Bal V, Mendez-Samperio P, Mehlert A, So A, Rothbard J, Jindal S, Young RA, Young DB (1989) Stress proteins may provide a link between the immune response to infection and autoimmunity. Int Immunol 1:191–196

    Article  PubMed  CAS  Google Scholar 

  • Lammert E, Arnold D, Nijenhuis M, Momburg F, Hammerling GJ, Brunner J, Stevanovic S, Rammensee HG, Schild H (1997) The endoplasmic reticulum-resident stress protein gp96 binds peptides translocated by TAP. Eur J Immunol 27:923–927

    Article  PubMed  CAS  Google Scholar 

  • Lanier LL, Ruitenberg JJ, Phillips JH (1988) Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes. J Immunol 141:3478–3485

    PubMed  CAS  Google Scholar 

  • Lanier LL, Corliss B, Wu J, Phillips JH (1998) Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity 8:693–701

    Article  PubMed  CAS  Google Scholar 

  • Lehner T, Wang Y, Whittall T, McGowan E, Kelly CG, Singh M (2004) Functional domains of HSP70 stimulate generation of cytokines and chemokines, maturation of dendritic cells and adjuvanticity. Biochem Soc Trans 32: 629–632

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat shock proteins. Annu Rev Genet 22:631–677

    Article  PubMed  CAS  Google Scholar 

  • Ljunggren HG, Karre K (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11:237–244

    Article  PubMed  CAS  Google Scholar 

  • Long EO (1999) Regulation of immune responses through inhibitory receptors. Annu Rev Immunol 17:875–904

    Article  PubMed  CAS  Google Scholar 

  • Lukacs KV, Lowrie DB, Stokes RW, Colston MJ (1993) Tumor cells transfected with a bacterial heat-shock gene lose tumorigenicity and induce protection against tumors. J Exp Med 178:343–348

    Article  PubMed  CAS  Google Scholar 

  • Massa C, Guiducci C, Arioli I, Parenza M, Colombo MP, Melani C (2004) Enhanced efficacy of tumor cell vaccines transfected with secretable hsp70. Cancer Res 64:1502–1508

    Article  PubMed  CAS  Google Scholar 

  • Matzinger P (2002) The danger model: a renewed sense of self. cience 296:301–305

    CAS  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  PubMed  CAS  Google Scholar 

  • Menoret A, Patry Y, Burg C, Le Pendu J (1995) Co-segregation of tumor immunogenicity with expression of inducible but not constitutive hsp70 in rat colon carcinomas. J Immunol 155:740–747

    PubMed  CAS  Google Scholar 

  • Menoret A, Chandawarkar R (1998) Heat-shock protein-based anticancer immunotherapy: an idea whose time has come. Semin Oncol 25:654–660

    PubMed  CAS  Google Scholar 

  • Michaelsson J, Teixeira DM, Achour A, Lanier LL, Karre K, Soderstrom K (2002) A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J Exp Med 196:1403–1414

    Article  PubMed  CAS  Google Scholar 

  • Milarski KL, Welch WJ, Morimoto RI (1989) Cell cycle-dependent association of HSP70 with specific cellular proteins. J Cell Biol 108:413–423

    Article  PubMed  CAS  Google Scholar 

  • Mizzen L (1998) Immune responses to stress proteins: applications to infectious disease and cancer. Biotherapy 10:173–189

    Article  PubMed  CAS  Google Scholar 

  • Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L (2001) Activating receptors and co-receptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19: 197–223

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259:1409–1410

    Article  PubMed  CAS  Google Scholar 

  • Multhoff G, Botzler C, Wiesnet M, Muller E, Meier T, Wilmanns W, Issels RD (1995a) A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer 61:272–279

    Article  PubMed  CAS  Google Scholar 

  • Multhoff G, Botzler C, Wiesnet M, Eissner G, Issels R (1995b) CD3-large granular lymphocytes recognize a heat-inducible immunogenic determinant associated with the 72-kD heat shock protein on human sarcoma cells. Blood 86:1374–1382

    PubMed  CAS  Google Scholar 

  • Multhoff G, Botzler C, Jennen L, Ellwart J, Issels R (1997) Heat shock protein cell surface expression on colon carcinoma cells correlates with the sensitivity to lysis mediated by NK cells. J Immunol 158:4341–4350

    PubMed  CAS  Google Scholar 

  • Multhoff G, Mizzen L, Winchester CC, Milner CM, Wenk S, Eissner G, Kampinga HH, Laumbacher B, Johnson J (1999) Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol 27:1627–1636

    Article  PubMed  CAS  Google Scholar 

  • Multhoff G, Pfister K, Botzler C, Jordan A, Scholz R, Schmetzer H, Burgstahler R, Hiddemann W (2000) Adoptive transfer of human natural killer cells in mice with severe combined immunodeficiency inhibits growth of Hsp70-expressing tumors. Int J Cancer 88:791–797

    Article  PubMed  CAS  Google Scholar 

  • Nicchitta CV (1998) Biochemical, cell biological and immunological issues surrounding the endoplasmic reticulum chaperone GRP94/gp96. Curr Opin Immunol 10:103–109

    Article  PubMed  CAS  Google Scholar 

  • Nieland TJ, Tan MC, Monne-van Muijen M, Koning F, Kruisbeek AM, van Bleek GM (1996) Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proc Natl Acad Sci U S A 93:6135–6139

    Article  PubMed  CAS  Google Scholar 

  • Nylandsted J, Gyrd-Hansen M, Danielewicz A, Fehrenbacher N, Lademann U, Hoyer-Hansen M, Weber E, Multhoff G, Rohde M, Jaattela M (2004) Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 200:425–435

    Article  PubMed  CAS  Google Scholar 

  • Nylandsted J, Rohde M, Brand K, Bastholm L, Elling F, Jaattela M (2000) Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc Natl Acad Sci U S A 97:7871–7876

    Article  PubMed  CAS  Google Scholar 

  • Ogden CA, de Cathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA, Henson PM (2001) C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194:781–795

    Article  PubMed  CAS  Google Scholar 

  • Oglesbee MJ, Pratt M, Carsillo T (2002) Role for heat shock proteins in the immune response to measles virus infection. Viral Immunol 15:399–416

    Article  PubMed  CAS  Google Scholar 

  • Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, Chow JC, Strauss JF III (2001) The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 276:10229–10233

    Article  PubMed  CAS  Google Scholar 

  • Panjwani NN, Popova L, Srivastava PK (2002) Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J Immunol 168:2997–3003

    PubMed  CAS  Google Scholar 

  • Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, Abraham E (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370–7377

    Article  PubMed  CAS  Google Scholar 

  • Phipps PA, Stanford MR, Sun JB, Xiao BG, Holmgren J, Shinnick T, Hasan A, Mizushima Y, Lehner T (2003) Prevention of mucosally induced uveitis with a HSP60-derived peptide linked to cholera toxin B subunit. Eur J Immunol 33:224–232

    Article  PubMed  CAS  Google Scholar 

  • Pierce SK (1994) Molecular chaperones in the processing and presentation of antigen to helper T cells. Experientia 50:1026–1030

    Article  PubMed  CAS  Google Scholar 

  • Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet 362:469–476

    Article  PubMed  CAS  Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  PubMed  CAS  Google Scholar 

  • Ritossa FM (1962) A new puffing pattern induced by a temperature shock and DNP in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Robert J (2003) Evolution of heat shock protein and immunity. Dev Comp Immunol 27:449–464

    Article  PubMed  CAS  Google Scholar 

  • Robinson HL (2002) New hope for an AIDS vaccine. Nat Rev Immunol 2:239–250

    Article  PubMed  CAS  Google Scholar 

  • Sarge KD, Murphy SP, Morimoto RI (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13:1392–1407

    PubMed  CAS  Google Scholar 

  • Schild H, Rammensee HG (2000) gp96—the immune system’s Swiss army knife. Nat Immunol 1: 100–101

    Article  PubMed  CAS  Google Scholar 

  • SenGupta D, Norris PJ, Suscovich TJ, Hassan-Zahraee M, Moffett HF, Trocha A, Draenert R, Goulder PJ, Binder RJ, Levey DL, Walker BD, Srivastava PK, Brander C (2004) Heat shock protein-mediated cross-presentation of exogenous HIV antigen on HLA class I and class II. J Immunol 173:1987–1993

    PubMed  CAS  Google Scholar 

  • Shin BK, Wang H, Yim AM, Le Naour F, Brichory F, Jang JH, Zhao R, Puravs E, Tra J, Michael CW, Misek DE, Hanash SM (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278:7607–7616

    Article  PubMed  CAS  Google Scholar 

  • Singh-Jasuja H, Toes RE, Spee P, Munz C, Hilf N, Schoenberger SP, Ricciardi-Castagnoli P, Neefjes J, Rammensee HG, Arnold-Schild D, Schild H (2000) Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class Imolecules requires receptor-mediated endocytosis. J Exp Med 191:1965–1974

    Article  PubMed  CAS  Google Scholar 

  • Smiley ST, King JA, Hancock WW (2001) Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol 167:2887–2894

    PubMed  CAS  Google Scholar 

  • Spee P, Neefjes J (1997) TAP-translocated peptides specifically bind proteins in the endoplasmic reticulum, including gp96, protein disulfide isomerase and calreticulin. Eur J Immunol 27:2441–2449

    Article  PubMed  CAS  Google Scholar 

  • Srivastava PK (1994) Heat shock proteins in immune response to cancer: the fourth paradigm. Experientia 50: 1054–1060

    Article  PubMed  CAS  Google Scholar 

  • Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL (1998) Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8:657–665

    Article  PubMed  CAS  Google Scholar 

  • Stanford M, Whittall T, Bergmeier LA, Lindblad M, Lundin S, Shinnick T, Mizushima Y, Holmgren J, Lehner T (2004) Oral tolerization with peptide 336-351 linked to cholera toxin B subunit in preventing relapses of uveitis in Behçet’s disease. Clin Exp Immunol 137:201–208

    Article  PubMed  CAS  Google Scholar 

  • Suzue K, Zhou X, Eisen HN, Young RA (1997) Heat shock fusion proteins as vehicles for antigen delivery into themajor histocompatibility complex class I presentation pathway. Proc Natl Acad Sci U S A 94:13146–13151

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Kimura Y, Mitani A, Yamamoto G, Nishimura H, Spallek R, Singh M, Noguchi T, Yoshikai Y (1999a) Activation of T cells recognizing an epitope of heat-shock protein 70 can protect against rat adjuvant arthritis. J Immunol 163:5560–5565

    PubMed  CAS  Google Scholar 

  • Tanaka T, Yamakawa N, Koike N, Suzuki J, Mizuno F, Usui M (1999b) Behçet’s disease and antibody titers to various heat-shock protein 60s. Ocul Immunol Inflamm 7:69–74

    Article  PubMed  CAS  Google Scholar 

  • Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, Miyake K, Freudenberg M, Galanos C, Simon JC (2002) Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 195: 99–111

    Article  PubMed  CAS  Google Scholar 

  • Tobian AA, Canaday DH, Boom WH, Harding CV (2004) Bacterial heat shock proteins promote CD91-dependent class I MHC cross-presentation of chaperoned peptide to CD8+ T cells by cytosolic mechanisms in dendritic cells versus vacuolar mechanisms in macrophages. J Immunol 172:5277–5286

    PubMed  CAS  Google Scholar 

  • Todryk SM, Gough MJ, Pockley AG (2003) Facets of heat shock protein 70 show immunotherapeutic potential. Immunology 110:1–9

    Article  PubMed  CAS  Google Scholar 

  • Triantafilou M, Triantafilou K (2004) Heat-shock protein 70 and heat-shock protein 90 associate with Toll-like receptor 4 in response to bacterial lipopolysaccharide. Biochem Soc Trans 32:636–639

    Article  PubMed  CAS  Google Scholar 

  • Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47:187–376

    Article  PubMed  CAS  Google Scholar 

  • Tsan MF, Gao B (2004) Endogenous ligands of Toll-like receptors. J Leukoc Biol 76:514–519

    Article  PubMed  CAS  Google Scholar 

  • Udono H, Levey DL, Srivastava PK (1994) Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proc Natl Acad Sci U S A 91:3077–3081

    Article  PubMed  CAS  Google Scholar 

  • Udono H, Srivastava PK (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178:1391–1396

    Article  PubMed  CAS  Google Scholar 

  • Uittenbogaard A, Ying Y, Smart EJ (1998) Characterization of a cytosolic heat shock protein-caveolin chaperone complex. Involvement in cholesterol trafficking. J Biol Chem 273:6525–6532

    Article  PubMed  CAS  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, Da Costa C, Miethke T, Kirschning CJ, Hacker H, Wagner H (2001) Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276:31332–31339

    Article  PubMed  CAS  Google Scholar 

  • Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P, Kirschning CJ, Da Costa C, Rammensee HG, Wagner H, Schild H (2002) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 277:20847–20853

    Article  PubMed  CAS  Google Scholar 

  • Van Eden W, Thole JE, van der Zee R, Noordzij A, van Embden JD, Hensen EJ, Cohen IR (1988) Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature 331:171–173

    Article  PubMed  Google Scholar 

  • Van Eden W, Anderton SM, van der Zee R, Prakken BJ, Broeren CP, Wauben MH (1996) (Altered) self peptides and the regulation of self reactivity in the peripheral T cell pool. Immunol Rev 149:55–73

    Article  PubMed  Google Scholar 

  • Van Eden W, Koets A, van Kooten P, Prakken B, van der ZR (2003) Immunopotentiating heat shock proteins: negotiators between innate danger and control of autoimmunity. Vaccine 21:897–901

    Article  PubMed  Google Scholar 

  • Wang XY, Kaneko Y, Repasky E, Subjeck JR (2000) Heat shock proteins and cancer immunotherapy. Immunol Invest 29:131–137

    Article  PubMed  CAS  Google Scholar 

  • Wang XY, Kazim L, Repasky EA, Subjeck JR (2001) Characterization of heat shock protein 110 and glucose-regulated protein 170 as cancer vaccines and the effect of fever-range hyperthermia on vaccine activity. J Immunol 166: 490–497

    PubMed  CAS  Google Scholar 

  • Wang Y, Kelly CG, Singh M, McGowan EG, Carrara AS, Bergmeier LA, Lehner T (2002) Stimulation of Th1-polarizing cytokines, CC chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol 169:2422–2429

    PubMed  CAS  Google Scholar 

  • Wang M-H, Grossman ME, Young CYE (2004) Forced expression of Hsp70 increases the secretion of Hsp70 and provides protection against tumor growth. Br J Cancer 90:926–931

    Article  PubMed  CAS  Google Scholar 

  • Wells AD, Malkovsky M (2000) Heat shock proteins, tumor immunogenicity and antigen presentation: an integrated view. Immunol Today 21:129–132

    Article  PubMed  CAS  Google Scholar 

  • Wendling U, Paul L, van der Zee R, Prakken B, Singh M, van Eden W (2000) A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue. J Immunol 164:2711–2717

    PubMed  CAS  Google Scholar 

  • Zheng H, Li Z (2004) Cutting edge: cross-presentation of cell-associated antigens to MHC class I molecule is regulated by a major transcription factor for heat shock proteins. J Immunol 173:5929–5933

    PubMed  CAS  Google Scholar 

  • Zugel U, Sponaas AM, Neckermann J, Schoel B, Kaufmann SH (2001) gp96-peptide vaccination of mice against intracellular bacteria. Infect Immun 69:4164–4167

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Multhoff, G. (2006). Heat Shock Proteins in Immunity. In: Starke, K., Gaestel, M. (eds) Molecular Chaperones in Health and Disease. Handbook of Experimental Pharmacology, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29717-0_12

Download citation

Publish with us

Policies and ethics