Skip to main content

Inteins — A Historical Perspective

  • Chapter

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 16))

Abstract

Protein splicing elements, termed inteins, were first identified in 1990. Since then, post-translational protein splicing has been demonstrated and the selfcatalytic mechanism deciphered. The robust nature of these single turnover enzymes is evidenced by the expanding list of naturally occurring variations in the protein splicing mechanism. Protein splicing must be efficient and neutral, and must not cause detrimental effects to the spliced extein; otherwise, selective pressure would lead to intein loss. Inteins are probably ancient elements, but their original function can only be speculated upon, because invasion by homing endonucleases mobilized them into new locations and converted them into selfish DNA. To date, there is no evidence of regulation of protein splicing in native systems. The sporadic distribution of inteins may relate more to the types of genes found in mobile elements capable of spreading inteins, than to the function of those genes. Inteins tend to be found in conserved host protein motifs, which may be due to conservation of homing endonuclease recognition sites, difficulty in removing inteins from essential regions or the ease of accepting an insertion sequence in a conserved substrate or cofactor binding site designed to interact with the environment. The ability to cleave peptide bonds, to ligate protein fragments and to generate carboxy-terminal alpha-thioesters have made inteins the fastest growing tool for protein engineering and biotechnology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amitai G, Belenkiy O, Dassa B, Shainskaya A, Pietrokovski S (2003) Distribution and function of new bacterial intein-like protein domains. Mol Microbiol 47:61–73

    Article  PubMed  CAS  Google Scholar 

  • Amitai G, Dassa B, Pietrokovski S (2004) Protein splicing of inteins with atypical glutamine and aspartate C-terminal residues. J Biol Chem 279:3121–3131

    PubMed  CAS  Google Scholar 

  • Beachy PA, Cooper MK, Young KE, von Kessler DP, Park W, Hall TMT, Leahy DJ, Porter JA (1997) Multiple roles of cholesterol in hedgehog protein biogenesis and signaling. Cold Spring Harbor Symp Quant Biol 62:191–204

    PubMed  CAS  Google Scholar 

  • Chen L, Benner J, Perler FB (2000) Protein splicing in the absence of an intein penultimate histidine. J Biol Chem 275:20431–20435

    PubMed  CAS  Google Scholar 

  • Chin HG, Kim GD, Marin I, Mersha F, Evans TC Jr, Chen L, Xu MQ, Pradhan S (2003) Protein trans-splicing in transgenic plant chloroplast: reconstruction of herbicide resistance from split genes. Proc Natl Acad Sci USA 100:4510–4515

    PubMed  CAS  Google Scholar 

  • Chong S, Xu MQ (1997) Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. J Biol Chem 272:15587–15590

    Article  PubMed  CAS  Google Scholar 

  • Chong S, Shao Y, Paulus H, Benner J, Perler FB, Xu MQ (1996) Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J Biol Chem 271:22159–22168

    PubMed  CAS  Google Scholar 

  • Chong S, Mersha FB, Comb DG, Scott ME, Landry D, Vence LM, Perler FB, Benner J, Kucera RB, Hirvonen CA, Pelletier JJ, Paulus H, Xu MQ (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192:271–281

    Article  PubMed  CAS  Google Scholar 

  • Chong S, Williams KS, Wotkowicz C, Xu MQ (1998) Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. J Biol Chem 273:10567–10577

    Article  PubMed  CAS  Google Scholar 

  • Clarke ND (1994) A proposed mechanism for the self-splicing of proteins. Proc Natl Acad Sci USA 91:11084–11088

    PubMed  CAS  Google Scholar 

  • Cooper AA, Chen Y, Lindorfer MA, Stevens TH (1993) Protein splicing of the yeast tfp1 intervening protein sequence: a model for self-excision. EMBO J 12:2575–2583

    PubMed  CAS  Google Scholar 

  • Dalgaard JZ, Klar AJ, Moser MJ, Holley WR, Chatterjee A, Mian IS (1997a) Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the HNH family. Nucleic Acids Res 25:4626–4638

    Article  PubMed  CAS  Google Scholar 

  • Dalgaard JZ, Moser MJ, Hughey R, Mian IS (1997b) Statistical modeling, phylogenetic analysis and structure prediction of a protein splicing domain common to inteins and hedgehog proteins. J Comput Biol 4:193–214

    Article  PubMed  CAS  Google Scholar 

  • Davis EO, Sedgwick SG, Colston MJ (1991) Novel structure of the recA locus of Mycobacterium tuberculosis implies processing of the gene product. J Bacteriol 173:5653–5662

    PubMed  CAS  Google Scholar 

  • Davis EO, Jenner PJ, Brooks PC, Colston MJ, Sedgwick SG (1992) Protein splicing in the maturation of M. tuberculosis RecA protein: a mechanism for tolerating a novel class of intervening sequence. Cell 71:201–210

    PubMed  CAS  Google Scholar 

  • Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    PubMed  CAS  Google Scholar 

  • Derbyshire V, Wood DW, Wu W, Dansereau JT, Dalgaard JZ, Belfort M (1997) Genetic definition of a protein-splicing domain: functional mini-inteins support structure predictions and a model for intein evolution. Proc Natl Acad Sci USA 94:11466–11471

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Xu M-Q, Ghosh I, Chen X, Ferrandon S, Lesage G, Rao Z (2003) Crystal structure of a mini-intein reveals a conserved catalytic module involved in side chain cyclization of asparagine during protein splicing. J Biol Chem 278:39133–39142

    PubMed  CAS  Google Scholar 

  • Evans TC, Benner J, Xu M-Q (1998) Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci 7:2256–2264

    PubMed  CAS  Google Scholar 

  • Evans TC Jr, Benner J, Xu M-Q (1999) The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum. J Biol Chem 274:3923–3926

    PubMed  CAS  Google Scholar 

  • Fsihi H, Vincent V, Cole ST (1996) Homing events in the GyrA gene of some mycobacteria. Proc Natl Acad Sci USA 93:3410–3415

    Article  PubMed  CAS  Google Scholar 

  • Ghosh I, Sun L, Xu MQ (2001) Zinc inhibition of protein trans-splicing and identification of regions essential for splicing and association of a split intein. J Biol Chem 276:24051–24058

    PubMed  CAS  Google Scholar 

  • Gimble FS (2000) Invasion of a multitude of genetic niches by mobile endonuclease genes. FEMS Microbiol Lett 185:99–107

    Article  PubMed  CAS  Google Scholar 

  • Gimble FS, Thorner J (1992) Homing of a DNA endonuclease gene by meiotic gene conversion in Saccharomyces cerevisiae. Nature 357:301–306

    Article  PubMed  CAS  Google Scholar 

  • Gorbalenya AE (1998) Non-canonical inteins. Nucleic Acids Res 26:1741–1748

    Article  PubMed  CAS  Google Scholar 

  • Gu HH, Xu J, Gallagher M, Dean GE (1993) Peptide splicing in the vacuolar ATPase subunit a from Candida tropicalis. J Biol Chem 268:7372–7381

    PubMed  CAS  Google Scholar 

  • Hall TM, Porter JA, Young KE, Koonin EV, Beachy PA, Leahy DJ (1997) Crystal structure of a hedgehog autoprocessing domain: homology between hedgehog and self-splicing proteins. Cell 91:85–97

    Article  PubMed  CAS  Google Scholar 

  • Hanada K, Yewdell JW, Yang JC (2004) Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature 427:252–256

    Article  PubMed  CAS  Google Scholar 

  • Hirata R, Anraku Y (1992) Mutations at the putative junction sites of the yeast vma1 protein, the catalytic subunit of the vacuolar membrane H+-ATPase, inhibit its processing by protein splicing. Biochem Biophys Res Commun 188:40–47

    Article  PubMed  CAS  Google Scholar 

  • Hirata R, Ohsumi Y, Nakano A, Kawasaki H, Suzuki K, Anraku Y (1990) Molecular structure of a gene, vma1, encoding the catalytic subunit of H+-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 265:6726–6733

    PubMed  CAS  Google Scholar 

  • Hodges RA, Perler FB, Noren CJ, Jack WE (1992) Protein splicing removes intervening sequences in an archaea DNA polymerase. Nucleic Acids Res 20:6153–6157

    PubMed  CAS  Google Scholar 

  • Kane PM, Yamashiro CT, Wolczyk DF, Neff N, Goebl M, Stevens TH (1990) Protein splicing converts the yeast tfp1 gene product to the 69-kD subunit of the vacuolar H+-adenosine triphosphatase. Science 250:651–657

    PubMed  CAS  Google Scholar 

  • Kawasaki M, Nogami S, Satow Y, Ohya Y, Anraku Y (1997) Identification of three core regions essential for protein splicing of the yeast VMA1 protozyme. J Biol Chem 272:15668–15674

    PubMed  CAS  Google Scholar 

  • Koonin EV (1995) A protein splice-junction motif in hedgehog family proteins. Trends Biochem Sci 20:141–142

    PubMed  CAS  Google Scholar 

  • Lew BM, Mills KV, Paulus H (1998) Protein splicing in vitro with a semisynthetic two-component minimal intein. J Biol Chem 273:15887–15890

    Article  PubMed  CAS  Google Scholar 

  • Liu XQ, Yang J (2003) Split-DnaE genes encoding multiple novel inteins in Trichodesmium erythraeum. J Biol Chem 24:24

    Google Scholar 

  • Martin DD, Xu M-Q, Evans TC (2001) Characterization of a naturally occurring trans-splicing intein from Synechocystis sp. PCC6803. Biochemistry 40:1393–1402

    PubMed  CAS  Google Scholar 

  • Mathys S, Evans TC, Chute IC, Wu H, Chong S, Benner J, Liu XQ, Xu M-Q (1999) Characterization of a self-splicing mini-intein and its conversion into autocatalytic N-and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene 231:1–13

    Article  PubMed  CAS  Google Scholar 

  • Mills KV, Lew BM, Jiang S, Paulus H (1998) Protein splicing in trans by purified N-and Cterminal fragments of the mycobacterium tuberculosis RecA intein. Proc Natl Acad Sci USA 95:3543–3548

    Article  PubMed  CAS  Google Scholar 

  • Mills KV, Manning JS, Garcia AM, Wuerdeman LA (2004) Protein splicing of a Pyrococcus abyssi intein with a C-terminal glutamine. J Biol Chem 279:20685–20691

    PubMed  CAS  Google Scholar 

  • Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci USA 95:6705–6710

    Article  PubMed  CAS  Google Scholar 

  • Nichols NM, Benner JS, Martin DD, Evans TC Jr (2003) Zinc ion effects on individual Ssp DnaE intein splicing steps: regulating pathway progression. Biochemistry 42:5301–5311

    Article  PubMed  CAS  Google Scholar 

  • Nogami S, Satow Y, Ohya Y, Anraku Y (1997) Probing novel elements for protein splicing in the yeast VMA1 protozyme: a study of replacement mutagenesis and intragenic suppression. Genetics 147:73–85

    PubMed  CAS  Google Scholar 

  • Noren CJ, Wang J, Perler FB (2000) Dissecting the chemistry of protein splicing and its applications. Angew Chem Int Ed 39:450–466

    Article  CAS  Google Scholar 

  • Otomo T, Ito N, Kyogoku Y, Yamazaki T (1999) NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry 38:16040–16044

    Article  PubMed  CAS  Google Scholar 

  • Perler FB (1998) Breaking up is easy with esters. Nat Struct Biol 5:249–252

    Article  PubMed  CAS  Google Scholar 

  • Perler FB (2002) InBase: the intein database. Nucleic Acids Res 30:383–384

    Article  PubMed  CAS  Google Scholar 

  • Perler FB, Comb DG, Jack WE, Moran LS, Qiang B, Kucera RB, Benner J, Slatko BE, Nwankwo DO, Hempstead SK, Carlow CKS, Jannasch H (1992) Intervening sequences in an archaea DNA polymerase gene. Proc Natl Acad Sci USA 89:5577–5581

    PubMed  CAS  Google Scholar 

  • Perler FB, Davis EO, Dean GE, Gimble FS, Jack WE, Neff N, Noren CJ, Thorner J, Belfort M (1994) Protein splicing elements: inteins and exteins-a definition of terms and recommended nomenclature. Nucleic Acids Res 22:1125–1127

    PubMed  CAS  Google Scholar 

  • Perler FB, Olsen GJ, Adam E (1997a) Compilation and analysis of intein sequences. Nucleic Acids Res 25:1087–1093

    Article  PubMed  CAS  Google Scholar 

  • Perler FB, Xu M-Q, Paulus H (1997b) Protein splicing and autoproteolysis mechanisms. Curr Opin Chem Biol 1:292–299

    Article  PubMed  CAS  Google Scholar 

  • Pietrokovski S (1994) Conserved sequence features of inteins (protein introns) and their use in identifying new inteins and related proteins. Protein Sci 3:2340–2350

    PubMed  CAS  Google Scholar 

  • Pietrokovski S (1998a) Modular organization of inteins and C-terminal autocatalytic domains. Protein Sci 7:64–71

    PubMed  CAS  Google Scholar 

  • Pietrokovski S (1998b) Identification of a virus intein and a possible variation in the protein-splicing reaction. Curr Biol 8:R634–R635

    Article  PubMed  CAS  Google Scholar 

  • Poland BW, Xu M-Q, Quiocho FA (2000) Structural insights into the protein splicing mechanism of PI-SceI. J Biol Chem 275:16408–16413

    Article  PubMed  CAS  Google Scholar 

  • Saves I, Eleaume H, Dietrich J, Masson JM (2000) The Thy pol-2 intein of Thermococcus hydrothermalis is an isoschizomer of PI-TliI and PI-TfuI endonucleases. Nucleic Acids Res 28:4391–4396

    Article  PubMed  CAS  Google Scholar 

  • Shao Y, Xu MQ, Paulus H (1995) Protein splicing: characterization of the aminosuccinimide residue at the carboxyl terminus of the excised intervening sequence. Biochemistry 34:10844–10850

    Article  PubMed  CAS  Google Scholar 

  • Shao Y, Xu M-Q, Paulus H (1996) Protein splicing: evidence for an N-O acyl rearrangement as the initial step in the splicing process. Biochemistry 35:3810–3815

    Article  PubMed  CAS  Google Scholar 

  • Shih C, Wagner R, Feinstein S, Kanik-Ennulat C, Neff N (1988) A dominant trifluoperazine resistance gene from Saccharomyces cerevisiae has homology with fof1 ATP synthase and confers calcium-sensitive growth. Mol Cell Biol 8:3094–3103

    PubMed  CAS  Google Scholar 

  • Shingledecker K, Jiang S, Paulus H (1998) Molecular dissection of the Mycobacteriumtuberculosis RecA intein: design of a minimal intein and of a trans-splicing system involving two intein fragments. Gene 207:187–195

    Article  PubMed  CAS  Google Scholar 

  • Southworth MW, Perler FB (2002) Protein splicing of the Deinococcus radiodurans strain R1 Snf2 intein. J Bacteriol 184:6387–6388

    Article  PubMed  CAS  Google Scholar 

  • Southworth MW, Adam E, Panne D, Byer R, Kautz R, Perler FB (1998) Control of protein splicing by intein fragment reassembly. EMBO J 17:918–926

    Article  PubMed  CAS  Google Scholar 

  • Southworth MW, Amaya K, Evans TC, Xu M-Q, Perler FB (1999) Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. BioTechniques 27:110–120

    PubMed  CAS  Google Scholar 

  • Southworth MW, Benner J, Perler FB (2000) An alternative protein splicing mechanism for inteins lacking an N-terminal nucleophile. EMBO J 19:5019–5026

    Article  PubMed  CAS  Google Scholar 

  • Southworth MW, Yin J, Perler FB (2004) Rescue of protein splicing activity from a Magnetospirillum magnetotacticum intein-like element. Biochem Soc Trans 32:250–254

    Article  PubMed  CAS  Google Scholar 

  • Vigneron N, Stroobant V, Chapiro J, Ooms A, Degiovanni G, Morel S, van der Bruggen P, Boon T, van den Eynde B J (2004) An antigenic peptide produced by peptide splicing in the proteasome. Science 304:587–590

    Article  PubMed  CAS  Google Scholar 

  • Wallace CJ (1993) The curious case of protein splicing: mechanistic insights suggested by protein semisynthesis. Protein Sci 2:697–705

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Liu XQ (1997) Identification of an unusual intein in chloroplast clpp protease of Chlamydomonas eugametos. J Biol Chem 272:11869–11873

    PubMed  CAS  Google Scholar 

  • Wood DW, Derbyshire V, Wu W, Chartrain M, Belfort M, Belfort G (2000) Optimized singlestep affinity purification with a self-cleaving intein applied to human acidic fibroblast growth factor. Biotechnol Prog 16:1055–1063

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Hu Z, Liu XQ (1998a) Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci USA 95:9226–9231

    PubMed  CAS  Google Scholar 

  • Wu H, Xu M-Q, Liu XQ (1998b) Protein trans-splicing and functional mini-inteins of a cyanobacterial DnaB intein. Biochem Biophys Acta 1387:422–432

    PubMed  CAS  Google Scholar 

  • Wu W, Wood DW, Belfort G, Derbyshire V, Belfort M (2002) Intein-mediated purification of cytotoxic endonuclease I-TevI by insertional inactivation and pH-controllable splicing. Nucleic Acids Res 30:47864–47871

    Google Scholar 

  • Xu M, Perler FB (1996) The mechanism of protein splicing and its modulation by mutation. EMBO J 15:5146–5153

    PubMed  CAS  Google Scholar 

  • Xu M, Southworth MW, Mersha FB, Hornstra LJ, Perler FB (1993) In vitro protein splicing of purified precursor and the identification of a branched intermediate. Cell 75:1371–1377

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Comb DG, Paulus H, Noren CJ, Shao Y, Perler FB (1994) Protein splicing: an analysis of the branched intermediate and its resolution by succinimide formation. EMBO J 13:5517–5522

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Low B, Rutherford SA, Rajagopalan M, Madiraju MV (2001) The Mycobacterium avium-intracellulare complex DnaB locus and protein intein splicing. Biochem Biophys Res Commun 280:898–903

    PubMed  CAS  Google Scholar 

  • Yang J, Fox GC Jr, Henry-Smith TV (2003) Intein-mediated assembly of a functional betaglucuronidase in transgenic plants. Proc Natl Acad Sci USA 100:3513–3518

    PubMed  CAS  Google Scholar 

  • Yang J, Meng Q, Liu XQ (2004) Intein harbouring large tandem repeats in replicative DNA helicase of Trichodesmium erythraeum. Mol Microbiol 51:1185–1192

    Article  PubMed  CAS  Google Scholar 

  • Zeidler MP, Tan C, Bellaiche Y, Cherry S, Hader S, Gayko U, Perrimon N (2004) Temperature-sensitive control of protein activity by conditionally splicing inteins. Nat Biotechnol 22:871–876

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Perler, F.B. (2005). Inteins — A Historical Perspective. In: Belfort, M., Wood, D.W., Stoddard, B.L., Derbyshire, V. (eds) Homing Endonucleases and Inteins. Nucleic Acids and Molecular Biology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29474-0_12

Download citation

Publish with us

Policies and ethics