Skip to main content

Nucleic Acid Extraction from Soil

  • Chapter

Part of the book series: Soil Biology ((SOILBIOL,volume 8))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aakra AÅ, Hesselsoe M, Bakken LR (2000) Surface attachment of ammonia-oxidizing bacteria in soil. Microb Ecol 39:222–235

    PubMed  CAS  Google Scholar 

  • Alm EW, Zheng D, Raskin L (2000) The presence of humic substances and DNA in RNA extracts affects hybridization results. Appl Environ Microbiol 66:4547–4554

    PubMed  CAS  Google Scholar 

  • Amaral JA, Ren T, Knowles R (1998) Atmosphericmethane consumption by forest soils and extracted bacteria at different pH values. Appl Environ Microbiol 64: 2397–2402

    PubMed  CAS  Google Scholar 

  • Anderson IC, Campbell CD, Prosser JI (2003) Potential bias of fungal 18S rDNA and internal transcribedspacer polymerase chain reactionprimers for estimating fungal biodiversity in soil. Environ Microbiol 5:36–47

    PubMed  CAS  Google Scholar 

  • Andrews BA, Asenjo JA (1987) Enzymatic lysis and disruption of microbial cells. Trends Biotechnol 5:273–277

    CAS  Google Scholar 

  • Bakken LR (1985) Separation and purification of bacteria fromsoil. Appl Environ Microbiol 49:1482–1487

    PubMed  Google Scholar 

  • Bakken LR, Lindahl V (1995) Recovery of bacterial cells from soil. In: Trevors JT, Van Elsas JD (eds) Nucleic acids in the environment, methods and applications. Springer, Berlin Heidelberg New York, pp 9–26

    Google Scholar 

  • Barsotti N, Moran MA, Hodson RE (1988) Achromopeptidase for rapid lysis of oral anaerobic Gram-positive rods. Oral Microbiol 3:86–88

    CAS  Google Scholar 

  • Berry AE, Chiocchini C, Selby T, Sosio M, Wellington EMH (2003) Isolation of high molecular weight DNA from soil for cloning into BAC vectors. FEMS Microbiol Lett 223:15–20

    PubMed  CAS  Google Scholar 

  • Bingle WH, Paul EA (1986) A method for separating fungal hyphae from soil. Can J Microbiol 32:62–66

    Google Scholar 

  • Blair TC, Buckton G, Bloomfield SF (1991) On the mechanism of kill of microbial contaminants during tablet compression. Int J Pharmaceut 72:111–115

    CAS  Google Scholar 

  • Blanck H (2002) A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Human Ecol Risk Assess 8:1003–1034

    Google Scholar 

  • Blumberg DD (1987) Creating a ribonuclease-free environment. Methods Enzymol 152:20–24

    PubMed  CAS  Google Scholar 

  • Bøckelmann U, Szewzyk U, Grohmann E (2003) A new enzymatic method for the detachment of particle associated bacteria. J Microbiol Methods 55:201–211

    PubMed  Google Scholar 

  • Borneman J, Skroch PW, O’Sullivan KM, Palus JA, Rumanjek NG, Jansen JL, Nienhuis JA, Triplett EW (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62:1935–1943

    PubMed  CAS  Google Scholar 

  • Braid MD, Daniels LM, Kitts CL (2003) Removal of PCR inhibitors from soil DNA by chemical flocculation. J Microbiol Methods 52:389–393

    PubMed  CAS  Google Scholar 

  • Briglia M, Eggen RIL, DeVos WM, VanElsas JD (1996) Rapid and sensitive method for the detection of Mycobacterium chlorophenolicum PCP-1 in soil based on 16SrRNA gene-targeted PCR. Appl Environ Microbiol 62:1478–1480

    PubMed  CAS  Google Scholar 

  • Bürgmann H, Pesaro M, Widmer F, Zeyer J (2001) A strategy for optimizing quality and quantity of DNA extracted from soil. J Microbiol Methods 45:7–20

    PubMed  Google Scholar 

  • Bürgmann H, Widmer F, Sigler WV, Zeyer J (2003) mRNA extraction and reverse transcription-PCR protocol for detection of nifH gene expression by Azotobacter vinelandii in soil. Appl Environ Microbiol 69:1928–1935

    PubMed  Google Scholar 

  • Burmølle M, Hansen LH, Sørensen SJ (2003) Presence of N-acylhomoserine lactones in soil detected by a whole-cell biosensor and flow cytometry. Microb Ecol 45:226–236

    PubMed  Google Scholar 

  • Christensen H, Bakken LR, Olsen RA (1993) Soil bacterial DNA and biovolume profiles measured by flow cytometry. FEMS Microbiol Ecol 102:129–140

    CAS  Google Scholar 

  • Christensen H, Olsen RA, Bakken LR (1995) Flow cytometric measurements of cell volumes and DNA contents during culture of indigenous soil bacteria. Microb Ecol 29: 49–62

    CAS  Google Scholar 

  • Claassen VP, Zasoski RJ, Tyler BM (1996) A method for direct soil extraction and PCR amplification of endomycorrhizal fungal DNA. Mycorrhiza 6:447–450

    CAS  Google Scholar 

  • Clegg CD, Ritz K, Griffiths BS (1997) Direct extraction of microbial community DNA from humified upland soils. Lett Appl Microbiol 25:30–33

    PubMed  CAS  Google Scholar 

  • Courtois S, Frostegård A, Göransson P, Depret G, Jeannin P, Simonet P (2001) Quantification of bacterial subgroups in soil: comparison of DNA extracted directly from soil or from cells previously released by density gradient centrifugation. Environ Microbiol 3:431–439

    PubMed  CAS  Google Scholar 

  • Cullen DC, Hirsch PR (1998) Simple and rapid method for direct extraction of microbial DNA from soil for PCR. Soil Biol Biochem 30:983–993

    CAS  Google Scholar 

  • Diaz-Ravina M, Baath E (2002) Response of soil bacterial communities pre-exposed to different metals and reinoculated in an unpolluted soil. Soil Biol Biochem 33:241–248

    Google Scholar 

  • Duineveld BM, Kowalchuk GA, Keijzer A, Van Elsas JD, Van Veen JA (2001) Analysis of bacterial communities in the rhizosphere of Chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl Environ Microbiol 67:172–178

    PubMed  CAS  Google Scholar 

  • Fægri A, Torsvik V, Goksøyr J (1977) Bacterial and fungal activities in soil: separation of bacteria and fungi by a rapid fractionated centrifugation technique. Soil Biol Biochem 9:105–112

    Google Scholar 

  • Fedorko DP, Nelson NA, Didier ES, Bertucci D, Delgado RM, Hruszkewycz AM(2001) Speciation of human microsporidia by polymerase chain reaction single-strand conformation polymorphism. Am J Trop Med Hyg 65:297–401

    Google Scholar 

  • Felske A, Akkermans ADL (1998) Spatial homogeneity of abundant bacterial 16S rRNA molecules in grassland soil. Microb Ecol 36:31–36

    PubMed  CAS  Google Scholar 

  • Fortin N, Beaumier D, Lee K, Greer CW (2004) Soil washing improves the recovery of total community DNA from polluted and high organic content sediments. J Microbiol Methods 56:181–191

    PubMed  CAS  Google Scholar 

  • Fredslund L, Ekelund F, Jacobsen CS, Johnsen K (2001) Development and application of a most-probable-number-PCR assay to quantify flagellate populations in soil samples. Appl Environ Microbiol 67:1613–1618

    PubMed  CAS  Google Scholar 

  • Fritze H, Baath E (1993) Microfungal species compositionand fungal biomass in a coniferous forest soil polluted by alkaline deposition. Microb Ecol 25:83–92

    Google Scholar 

  • Frostegård A, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme X, Simonet P (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 65:5409–5420

    PubMed  Google Scholar 

  • Gabor EM, de Vries EJ, Janssen DB (2003) Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol Ecol 44:153–163

    CAS  Google Scholar 

  • Gabor EM, Alkema WBL, Janssen DB (2004) Quantifying the accessibility of the metagenome by random expression cloning techniques. Environ Microbiol 6:879–886

    PubMed  CAS  Google Scholar 

  • Gams W, Domsch K (1967) Contribution of soil washing technique for isolation of soil fungi. Archiv Mikrobiol 58:134–138

    Google Scholar 

  • Geciova J, Bury D, Jelen P (2002) Methods for disruption of microbial cells for potential use in the dairy industry — a review. Int Dairy J 12:541–553

    CAS  Google Scholar 

  • Ginolhac A, Jarrin C, Gillet B, Robe P, Pujic P, Tuphile K, Bertrand H, Vogel TM, Perrière G, Simonet P, Nalin R (2004) Phylogenetic analysis of polyketide sythase 1 domains from soil metagenomic libraries allows selection of promising clones. Appl Environ Microbiol 70:5522–5527

    PubMed  CAS  Google Scholar 

  • Gomes NC, Fagbola O, Costa R, Rumanjek NG, Buchner A, Mendonça-Hagler L, Smalla K (2003) Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl Environ Microbiol 69:3758–3766

    PubMed  CAS  Google Scholar 

  • Harry M, Gambier B, Bourezgui Y, Garnier-Sillam E (1999) Evaluation of purification procedures for DNA extracted from organic rich samples: interference with humic substances. Analusis 27:439–442

    CAS  Google Scholar 

  • Herron PR, Wellington EMH (1990) New method for extraction of streptomycete spores from soil and application to the study of lysogeny in sterile amended and nonsterile soil. Appl Environ Microbiol 56:1406–1412

    PubMed  Google Scholar 

  • Holben WE, Jansson JK, Chelm BK, Tiedje JM (1988) DNA probe methods for the detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol 54:703–711

    PubMed  CAS  Google Scholar 

  • Howeler M, Ghiorse WC, Walker LP (2003) A quantitative analysis of DNA extraction and purification from compost. J Microbiol Methods 54:37–45

    PubMed  CAS  Google Scholar 

  • Hurt RA, Qiu X, Roh Y, Palumbo AV, Tiedje JM, Zhou J (2001) Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microbiol 67:4495–4503

    PubMed  CAS  Google Scholar 

  • Jackson CR, Harper JP, Willoughby D, Roden EE, Churchill PF (1997) A simple, efficient method for the separation of humic substances and DNA from environmental samples. Appl Environ Microbiol 63:4993–4995

    PubMed  CAS  Google Scholar 

  • Jacobsen CS (1995) Microscale detection of specific bacterial DNA in soil with a magnetic capture-hybridization and PCR amplification assay. Appl Environ Microbiol 61:3347–3352

    PubMed  CAS  Google Scholar 

  • Jacobsen CS, Rasmussen OF (1992) Development and application of a new method to extract bacterial DNA from soil based on separation of bacteria from soil with cation-exchange resin. Appl Environ Microbiol 58:2458–2462

    PubMed  CAS  Google Scholar 

  • Kabir S, Rajendran N, Amemiya T, Itoh K (2003) Quantitative measurement of fungal DNA extracted by three different methods using real-time polymerase chain reaction. J Biosci Bioeng 96:337–343

    PubMed  CAS  Google Scholar 

  • Katz M, Tsubery H, Kolusheva S, Shames A, Fridkin M, Jelinek R (2003) Lipid binding and membrane penetration of polymyxin B derivatives studied in a biomimetic vesicle system. Biochem J 375:405–413

    PubMed  CAS  Google Scholar 

  • Kauffmann IM, Schmitt J, Schmid RD (2004) DNA isolation from soil samples for cloning in different hosts. Appl Microbiol Biotechnol 64:665–670

    PubMed  CAS  Google Scholar 

  • Kelemen MV, Sharpe JE (1979) Controlled cell disruption: a comparison of the forces required to disrupt different microorganisms. J Cell Sci 35:431–441

    PubMed  CAS  Google Scholar 

  • Kleinig AR, Middelberg APJ (1998) On the mechanism of microbial cell disruption in high pressure homogenization. Chem Eng Sci 53:891–898

    CAS  Google Scholar 

  • Koch AL (2001) Bacterial growth and form. Kluwer Academic Publishers, Dordrecht, pp 1–470

    Google Scholar 

  • Kuo MJ, Alexander M (1967) Inhibition of the lysis of fungi by melanins. J Bacteriol 94:624–629

    PubMed  CAS  Google Scholar 

  • Kuske RK, Banton KL, Adorada DL, Stark PC, Hill KK, Jackson PK (1998) Small scale DNA sample preparation method for field PCR detection ofmicrobial cells and spores in soil. Appl Environ Microbiol 64:2463–2472

    PubMed  CAS  Google Scholar 

  • LaMontagne MG, Michel FC, Holden PA, Reddy CA (2002) Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. J Microbiol Methods 49:255–264

    PubMed  CAS  Google Scholar 

  • Landeweert R, Veenman C, Kuyper TW, Fritze H, Wernars K, Smit E (2003) Quantification of ectomycorrhizal mycelium in soil by real-time PCR compared to conventional quantification techniques. FEMS Microbiol Ecol 45:283–292

    CAS  Google Scholar 

  • Lantz PG, Matsson M, Wadström T, Rådström P (1997) Removal of PCR inhibitors from human faecal samples through the use of an aqueous two-phase system for sample preparation prior to PCR. J Microbiol Methods 28:159–167

    CAS  Google Scholar 

  • Lee S, Bollinger J, Bezdicek D, Ogram A (1996) Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method. Appl Environ Microbiol 62:3787–3793

    PubMed  CAS  Google Scholar 

  • Lee S, Won K, Lim HK, Kim J, Choi GJ, Cho KY (2004) Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl Microbiol Biotechnol 65:720–726

    PubMed  CAS  Google Scholar 

  • Li S, Norioka S, Sakiyama F (1997) Purification, staphylolytic activity, and cleavage sites of alpha-lytic protease from Achromobacter lyticus. J Biochem 122:772–778

    PubMed  CAS  Google Scholar 

  • Li S, Norioka S, Sakiyama F (1998) Bacteriolytic activity and specificity of Achromobacter beta-lytic protease. J Biochem 124:332–339

    PubMed  CAS  Google Scholar 

  • Li S, Norioka S, Sakiyama F (2000) Purification, characterization, and primary structure of a novel cell wall hydrolytic amidase, Cwha, from Achromobacter lyticus. J Biochem 127:1033–1039

    PubMed  CAS  Google Scholar 

  • Lindahl V, Bakken LR (1995) Evaluation of methods for extraction of bacteria from soil. FEMS Microbiol Ecol 16:135–142

    CAS  Google Scholar 

  • Lindahl V, Aa K, Olsen RA (1996) Effects on microbial activity by extraction of indigenous cells from slurries. FEMS Microbiol Ecol 21:221–230

    CAS  Google Scholar 

  • Lorenz P, Schleper C (2002) Metagenome — a challenging source of enzyme discovery. JMol Catal B: Enzymatic 19/20:13–19

    Google Scholar 

  • MacDonald R (1986) Sampling soil microfloras: dispersion of soil by ion exchange and extraction of specific microorganisms by specific elutriation. Soil Biol Biochem 18:399–406

    Google Scholar 

  • Masschalck B, VanHoudt R, VanHaver EGR, Michiels CW (2001) Inactivation of gram-negative bacteria by lysozyme, denatured lysozyme, and lysozyme-derived peptides under high hydrostatic pressure. Appl Environ Microbiol 67:339–344

    PubMed  CAS  Google Scholar 

  • Mayr C, Winding A, Hendriksen NB (1999) Community level physiological profile of soil bacteria unaffected by extraction method. J Microbiol Methods 36:29–33

    PubMed  CAS  Google Scholar 

  • Miller DN, Bryant JE, Madsen EL, Ghiorce WC (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65:4715–4724

    PubMed  CAS  Google Scholar 

  • Moran MA, Torsvik V, Torsvik T, Hodson RE (1993) Direct extraction and purification of rRNA for ecological studies. Appl Environ Microbiol 59:915–918

    PubMed  CAS  Google Scholar 

  • Moré MI, Herrick JB, Silva MC, Ghiorce WC, Madsen EL (1994) Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediments. Appl Environ Microbiol 60:1572–1580

    PubMed  Google Scholar 

  • Mori T, Itou T, Yamamoto H, Fujie K, Katayama A (2000) Direct isolation of fungal hyphae degrading 2,4,5,6,-tetrachloroisophthalonitrile from soil. Soil Sci Plant Nutr 46:745–749

    Google Scholar 

  • Nandakumar R, Gounot AM, Mattiasson B (2000) Gentle lysis of mucous producing cold-adapted bacteria by surfactant treatment combined with mechanical disruption. J Biotechnol 83:211–217

    PubMed  CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Google Scholar 

  • Nazar RN, Robb EJ, Volossiouk T (1996) Direct extraction of fungal DNA from soil. In: Akkermans ADL, Van Elsas JD, Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht, pp 1–8

    Google Scholar 

  • Nicholson AW (1999) Function, mechanism and regulation of bacterial ribonucleases. FEMS Microbiol Rev 23:371–390

    PubMed  CAS  Google Scholar 

  • Ogram A, Sun W, Brockman J, Fredrickson JK (1995) Isolation and characterization of RNA from low-biomass deep-subsurface sediments. Appl Environ Microbiol 61:763–768

    PubMed  CAS  Google Scholar 

  • Picard C, Ponsonnet C, Paget E, Nesme X, Simonet P (1992) Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl Environ Microbiol 58:2717–2772

    PubMed  CAS  Google Scholar 

  • Pisabaro AG, dePedro MA, Vasquez D (1985) Structural modification in the peptidoglycan of E. coli associated with the stages of growth of the culture. J Bacteriol 161:238–242

    Google Scholar 

  • Pooart J, Torikata T, Araki T (2004) The primary structure of a novel goose-type lysozyme from rhea egg white. Biosci Biotechnol Biochem 68:159–169

    PubMed  CAS  Google Scholar 

  • Porteous LA, Armstrong JL (1991) Recovery of bulk DNA from soil by a rapid, small-scale extraction method. Curr Microbiol 22:345–348

    CAS  Google Scholar 

  • Priemé A, Sitaula JIB, Klemedtsson ÅK, Bakken LR (1996) Extraction of methane-oxidizing bacteria from soil particles. FEMS Microbiol Ecol 21:59–68

    Google Scholar 

  • Purcell EM (1977) Life at low Reynold’s number. Am J Phys 45:3–11

    Google Scholar 

  • Raddadi N, Cherif A, Mora D, Boudabous A, Molinan F, Daffonchio D (2004) The autolytic phenotype of Bacillus thuringiensis. J Appl Microbiol 97:158

    PubMed  CAS  Google Scholar 

  • Ranjard L, Nazaret S, Gourbiere F, Thioulouse J, Linet P, Richaume A (2000) A soil microscale study to reveal the heterogeneity of Hg(II) impact on indigenous bacteria by quantification of adapted phenotypes and analysis of community DNA fingerprints. FEMS Microbiol Ecol 31:107–115

    PubMed  CAS  Google Scholar 

  • Rasmussen LD, Sørensen SJ (2001) Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil. FEMS Microbiol Ecol 36:1–9

    PubMed  CAS  Google Scholar 

  • Robe P, Nalin R, Capellano C, Vogel TA, Simonet P (2003) Extraction of DNA from soil. Eur J Soil Biol 39:183–190

    CAS  Google Scholar 

  • Robinson HL, Deacon JW (2001) Protoplast preparation and transient transformation of Rhizoctonia solani. Mycol Res 105:1295–1303

    Google Scholar 

  • Rochelle PA, Fry JC, Parkes RJ, Weightman AJ (1992) DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol Lett 100:59–66

    CAS  Google Scholar 

  • Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547

    PubMed  CAS  Google Scholar 

  • Roose-Amsaleg CL, Garnier-Sillam E, Harry M (2001) Extraction and purification of microbial DNA from soil and sediment samples. Appl Soil Ecol 18:47–60

    Google Scholar 

  • Saano A, Tas E, Pippola S, Lindström K, VanElsas JD (1995) Extraction and analysis of microbial DNA from soils. In: Trevors JT, Van Elsas JD (eds) Nucleic acids in the environment, methods and applications. Springer, Berlin Heidelberg New York, pp 49–65

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (2004) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Press, New York.

    Google Scholar 

  • Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Aman R (2003) An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol 69:2928–2935

    PubMed  CAS  Google Scholar 

  • Sjöstedt A, Eriksson U, Ramisse V, Garrigue H (1997) Detection of Bacillus anthracis spores in soil by PCR. FEMS Microbiol Ecol 23:159–168

    Google Scholar 

  • Smalla K, Cresswell N, Mendonça-Hagler LC, Wolters A, VanElsas JD (1993) Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification. J Appl Bacteriol 74:78–85

    CAS  Google Scholar 

  • Smith AE, Zhang Z, Thomas CR, Moxham KE, Middelberg, APJ (2000) The mechanical properties of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:9871–9874

    PubMed  CAS  Google Scholar 

  • Smith G, Stoker C (1949) Inhibition of crystalline lysozyme. Arch Biochem Biophys 21:383–393

    CAS  Google Scholar 

  • Stach JEM, Bathe S, Clapp JP, Burns RG (2001) PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods. FEMS Microbiol Ecol 36:139–151

    PubMed  CAS  Google Scholar 

  • Stapleton RD, Ripp S, Jimenez L, Cheol-Koh S, Flemming JT, Gregory IR, Sayler GS (1998) Nucleic acid analytical approaches in bioremediation: site assessment and characterization. J Microbiol Methods 32:165–178

    CAS  Google Scholar 

  • Steffan RJ, Goksøyr J, Bej AK, Atlas RM (1988) Recovery of DNA from soils and sediments. Appl Environ Microbiol 54:2908–2915

    PubMed  CAS  Google Scholar 

  • Takeshita K, Hashimoto Y, Ueda T, Imoto T (2003) A small chimerically bifunctional monomeric protein: Tapes japonica enzyme. Cell Mol Life Sci 60:1944–1951

    PubMed  CAS  Google Scholar 

  • Takeshita K, Hashimoto Y, Thujihata Y, So T, Ueda T, Iomoto T (2004) Determination of the complete cDNA sequence, construction of expression systems, and elucidation of fibrinolyic activity of Tapes japonica lysozyme. Protein Expression Purification 36:254–262

    PubMed  CAS  Google Scholar 

  • Tebbe CC, Vahjen W (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and yeast. Appl Environ Microbiol 59:2657–2665

    PubMed  CAS  Google Scholar 

  • Torsvik V, Daae FL, Goksøyr J (1995) Extraction, purification and analysis of DNA from soil bacteria. In: Trevors JT, Van Elsas JD (eds) Nucleic acids in the environment, methods and applications. Springer, Berlin Heidelberg New York, pp 30–48

    Google Scholar 

  • Trevors JT (1992) DNA extraction from soil. Microb Rel 1:3–9

    CAS  Google Scholar 

  • Trevors JT, Van Elsas JD (1995) Introduction to nucleic acids in the environment: methods and applications. In: Trevors JT, Van Elsas JD (eds) Nucleic acids in the environment, methods and applications. Springer, Berlin Heidelberg New York, 1–7

    Google Scholar 

  • Tsai Y, Olson BH (1991) Rapid method for direct extraction of DNA from soil and sediment. Appl Environ Microbiol 57:1070–1074

    PubMed  CAS  Google Scholar 

  • Tsunasawa S, Masaki T, Hirose M, Soejima M, Sakiyama F (1989) The primary structure and structural characteristics of Achromobacter lyticus protease I, a lysine-specific serine protease. J Biol Chem 264:3832–3839

    PubMed  CAS  Google Scholar 

  • Unge A, Tombolini R, Mølbak L, Jansson JK (1999) Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Appl Environ Microbiol 65:813–821

    PubMed  CAS  Google Scholar 

  • Van Elsas JD, Smalla K (1995) Extraction of microbial community DNA from soils. In: Akkermans ADL, Van Elsas JD, de Brujin FJ (eds) Molecularmicrobial ecologymanual. Kluwer Academic Publishers, Dordrecht, pp 1–14

    Google Scholar 

  • Van Elsas JD, Mantynen V, Wolters AC (1997) Soil DNA extraction and assessment of the fate of Mycobacterium chlorophenolicum strain PCP-1 in different soils by 16S ribosomal RNA gene sequence based most-probable-number PCR and immunofluorescence. Biol Fertil Soils 24:188–195

    Google Scholar 

  • Van Elsas JD, Duarte GF, Keijzer-Wolters A, Smit E (2000) Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J Microbiol Methods 43:133–151

    PubMed  Google Scholar 

  • Varma A, Kwonchung KJ (1991) Rapid method to extract DNA from Cryptococcus neoformans. J Clin Microbiol 29:810–812

    PubMed  CAS  Google Scholar 

  • Watson RD (1960) Soil washing improves the value of the soil dilution and plate count method of estimating populations of soil fungi. Phytopathology 50:792–794

    Google Scholar 

  • Watt SR, Clarke AJ (1994) Role of autolysins in the EDTA-induced lysis of Pseudomonas aeruginosa. FEMS Microbiol Lett 124:113–119

    PubMed  CAS  Google Scholar 

  • Wellington EMH, Berry A, Krsek M (2003) Resolving functional diversity in relation to microbial community structure in soil: exploiting genomics and stable isotope probing. Curr Opin Microbiol 6:295–301

    PubMed  CAS  Google Scholar 

  • Westergaard K, Müller AK, Christensen S, Bloem J, Sørensen SJ (2001) Effects of tylosin as a disturbance on the soil microbial community. Soil Biol Biochem 33:2061–2071

    CAS  Google Scholar 

  • Wilson IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63:3741–3751

    PubMed  CAS  Google Scholar 

  • Ye RW, Wang T, Bedzyk L, Croker KM (2001) Applications of DNA microarrays in microbial systems. J Microbiol Methods 47:257–272

    PubMed  CAS  Google Scholar 

  • Yukogawa K, Kawata S, Nishimura S, Ikeda Y, Yoshimura Y (1974) Mutanolysin, bacteriolytic agent for cariogenic Streptococci: partial purification and properties. Antimicrob Agents Chemother 6:156–165

    Google Scholar 

  • Zhou JZ, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bakken, L.R., Frostegård, Å. (2006). Nucleic Acid Extraction from Soil. In: Nannipieri, P., Smalla, K. (eds) Nucleic Acids and Proteins in Soil. Soil Biology, vol 8. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-29449-X_3

Download citation

Publish with us

Policies and ethics