Skip to main content

Fungal Recognition Responses to Host Derived Signals by Arbuscular Mycorrhizal Fungi

  • Chapter
Microbial Activity in the Rhizoshere

Part of the book series: Soil Biology ((SOILBIOL,volume 7))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  2. Allen MF, Allen EB, Friese CF (1989) Responses of the non-mycotrophic plant Salsola kali to invasion by vesicular-arbuscular mycorrhizal fungi. New Phytol 111:45–49

    Google Scholar 

  3. Åström H, Giovannetti M, Raudaskoski M (1994) Cytoskeletal components in the arbuscular mycorrhizal fungus Glomus mosseae. Mol Plant Microbe Interact 7:309–312

    Google Scholar 

  4. Avio L, Sbrana C, Giovannetti M (1990) The response of different species of Lupinus to VAM endophytes. Symbiosis 9:321–323

    Google Scholar 

  5. Bago B, Zipfel W, Williams RM, Chamberland H, Lafontaine JG, Webb WW, Piche Y (1998) In vivo studies on the nuclear behavior of the arbuscular mycorrhizal fungus Gigaspora rosea grown under axenic conditions. Protoplasma 203:1–15

    Article  Google Scholar 

  6. Bécard G, Pfeffer PE (1993) Status of nuclear division in arbuscular mycorrhizal fungi during in vitro development. Protoplasma 174:62–68

    Article  Google Scholar 

  7. Bécard G, Piché Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325

    PubMed  Google Scholar 

  8. Bécard G, Douds DD, Pfeffer PE (1992) Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Appl Environ Microbiol 58:821–825

    PubMed  Google Scholar 

  9. Bécard G, Taylor LP, Douds DD, Pfeffer PE, Doner LW (1995) Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbioses. Mol Plant Microbe Interact 8:252–258

    Google Scholar 

  10. Ben-Amor B, Shaw SL, Oldroyd GED, Maillet F, Penmetsa RV, Cook D, Long SR, Denarie J, Gough C (2003) The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J 34:495–506

    CAS  Google Scholar 

  11. Bianciotto V, Bonfante P (1993) Evidence of DNA replication in an arbuscular mycorrhizal fungus in the absence of the host plant. Protoplasma 176:100–105

    Article  CAS  Google Scholar 

  12. Bradbury SM, Peterson RL, Bowley SR (1993a) Colonization of three alfalfa (Medicago sativa L.) nodulation phenotypes by indigenous vesicular-arbuscular mycorrhizal fungi. Symbiosis 15:207–215

    Google Scholar 

  13. Bradbury SM, Peterson RL, Bowley SR (1993b) Further evidence for a correlation between nodulation genotypes in alfalfa (Medicago sativa L.) and mycorrhiza formation. New Phytol 124:665–673

    Google Scholar 

  14. Buee M, Rossignol M, Jauneau A, Ranjeva R, Bécard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant Microbe Interact 13:693–698

    CAS  PubMed  Google Scholar 

  15. Burggraaf JP, Beringer JE (1989) Absence of nuclear DNA synthesis in vesicular-arbuscular mycorrhizal fungi during in vitro development. New Phytol 111:25–33

    Google Scholar 

  16. Caetano-Anolles G, Wall LH, DeMicheli AT, Macchi EM, Bauer WD, Favelukes G (1988) Role of motility and chemotaxis in efficiency of nodulation by Rhizobium meliloti. Plant Physiol 86:1228–1235

    Google Scholar 

  17. Calantzis C, Morandi D, Arnould C, Gianinazzi PV (2001) Cellular interactions between G-mosseae and a Myc– dmi2 mutant in Medicago truncatula. Symbiosis 30:97–108

    Google Scholar 

  18. Catoira R, Galera C, de-Billy F, Penmetsa RV, Journet EP, Maillet F, Rosenberg C, Cook D, Gough C, Denarie J (2000) Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway. Plant Cell 12:1647–1665

    Article  CAS  PubMed  Google Scholar 

  19. Cázares E, Smith JE (1992) Occurrence of vesicular-arbuscular mycorrhiza on Douglas fir and Western hemlock seedlings. In: Read DJ, Lewis DH, Fitter AH (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, UK, pp 370–374

    Google Scholar 

  20. Cázares E, Trappe JM (1993) Vesicular endophytes in roots of Pinaceae. Mycorrhiza 2:153–156

    Article  Google Scholar 

  21. David R, Itzhaki H, Ginzberg I, Gafni Y, Galili G, Kapulnik Y (1998) Suppression of tobacco basic chitinase gene expression in response to colonization by the arbuscular mycorrhizal fungus Glomus intraradices. Mol Plant Microbe Interact 11:489–497

    CAS  PubMed  Google Scholar 

  22. David-Schwartz R, Badani H, Smadar W, Levy AA, Galili G, Kapulnik Y (2001) Identification of a novel genetically controlled step in mycorrhizal colonization: plant resistance to infection by fungal spores but not extra-radical hyphae. Plant J 27:561–569

    Article  CAS  PubMed  Google Scholar 

  23. David-Schwartz R, Gadkar V, Wininger S, Bendov R, Galili G, Levy AA, Kapulnik Y (2003) Isolation of a premycorrhizal infection (pmi2) mutant of tomato, resistant to arbuscular mycorrhizal fungal colonization. Mol Plant Microbe Interact 16:382–388

    CAS  PubMed  Google Scholar 

  24. Demars BG, Boerner REJ (1994) Vesicular-arbuscular mycorrhizal fungi colonization in Capsella bursa-pastoris (Brassicaceae). Am Midl Nat 132:377–380

    Google Scholar 

  25. Demars BG, Boerner REJ (1995) Arbuscular development in 3 crucifers. Mycorrhiza 5:405–408

    Google Scholar 

  26. Endre G, Kereszt A, Kevei Z, Mihacea S, Kaló P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966

    Article  CAS  PubMed  Google Scholar 

  27. Frühling M, Roussel H, Gianinazzi-Pearson V, Puhler A, Perlick AM (1997) The Vicia faba leghemoglobin gene VfLb29 is induced in root nodules and in roots colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum. Mol Plant Microbe Interact 10:124–131

    PubMed  Google Scholar 

  28. Gadkar V, David SR, Nagahashi G, Douds DD, Wininger S, Kapulnik Y (2003) Root exudate of pmi tomato mutant M161 reduces AM fungal proliferation in vitro. FEMS Microbiol Lett 223:193–198

    Article  CAS  PubMed  Google Scholar 

  29. Garriock ML, Peterson RL, Ackerley CA (1989) Early stages in colonization of Allium porrum (leek) roots by the vesicular-arbuscular mycorrhizal fungus, Glomus versiforme. New Phytol 112:85–92

    Google Scholar 

  30. Gemma JN, Koske RE (1988) Pre-infection interactions between roots and the mycorrhizal fungus Gigaspora gigantea: chemotropism of germ-tubes and root growth response. Trans Br Mycol Soc 91:123–132

    Google Scholar 

  31. Gianinazzi-Pearson V (1996) Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell 8:1871–1883

    Article  PubMed  Google Scholar 

  32. Giovannetti M (2001) Survival strategies in arbuscular mycorrhizal symbionts. In: Seckbach J (ed) Symbiosis mechanisms and model systems. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 185–196

    Google Scholar 

  33. Giovannetti M, Citernesi AS (1993) Time-course of appressorium formation on host plants by arbuscular mycorrhizal fungi. Mycol Res 98:1140–1142

    Google Scholar 

  34. Giovannetti M, Sbrana C (1998) Meeting a host: the behaviour of AM fungi. Mycorrhiza 8:123–130

    Article  Google Scholar 

  35. Giovannetti M, Avio L, Sbrana C, Citernesi AS (1993a) Factors affecting appressorium development in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe. New Phytol 123:114–122

    Google Scholar 

  36. Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993b) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages. New Phytol 125:587–594

    Google Scholar 

  37. Giovannetti M, Sbrana C, Logi C (1994) Early processes involved in host recognition by arbuscular mycorrhizal fungi. New Phytol 127:703–709

    Google Scholar 

  38. Giovannetti M, Sbrana C, Citernesi AS, Avio L (1996) Analysis of factors involved in fungal recognition responses to host derived signals by arbuscular mycorrhizal fungi. New Phytol 133:65–71

    Google Scholar 

  39. Giovannetti M, Azzolini D, Citernesi AS (1999) Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:5571–5575

    CAS  PubMed  Google Scholar 

  40. Giovannetti M, Sbrana C, Avio L, Strani P (2004) Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol 164:175–181

    Article  Google Scholar 

  41. Glenn MG, Chew FS, Williams PH (1985) Hyphal penetration of Brassica (Cruciferae) roots by a vesicular-arbuscular mycorrhizal fungus. New Phytol 99:463–472

    Google Scholar 

  42. Goedhart J, Bono JJ, Bisseling T, Gadella TWJ Jr (2003) Identical accumulation and immobilization of sulphated and nonsulfated Nod factors in host and nonhost root hair cell walls. Mol Plant Microbe Interact 16:884–892

    CAS  PubMed  Google Scholar 

  43. Gollotte A, Gianinazzi-Pearson V, Giovannetti M, Sbrana C, Avio L, Gianinazzi S (1993) Cellular localization and cytochemical probing of resistance reactions to arbuscular mycorrhizal fungi in a ‘locus a’ Myc– mutant of Pisum sativum L. Planta 191:112–122

    Article  CAS  Google Scholar 

  44. Hawes MC, Smith LY (1989) Requirement for chemotaxis in patogenicity of Agrobacterium tumefaciens on roots of soil-grown pea plants. J Bacteriol 171:5668–5671

    CAS  PubMed  Google Scholar 

  45. Hepper CM (1979) Germination and growth of Glomus caledonium spores: the effects of inhibitors and nutrients. Soil Biol Biochem 11:269–277

    Article  CAS  Google Scholar 

  46. Hepper CM (1984) Regulation of spore germination of the vesicular-arbuscular mycorrhizal fungus Acaulospora laevis by soil pH. Trans Br Mycol Soc 83:154–156

    Google Scholar 

  47. Hoch HC, Staples RC, Whitebread B, Comeau J, Wolf ED (1987) Signaling for growth orientation and cell differentiation by surface topography in Uromyces. Science 235:1659–1662

    Google Scholar 

  48. Jelitto TC, Page HA, Read ND (1994) Role of external signals in regulating the pre-penetration phase of infection by the rice blast fungus, Magnaporthe grisea. Planta 194:471–477

    Article  CAS  Google Scholar 

  49. Journet EP, El-Gachtouli N, Vernoud V, de-Billy F, Pichon M, Dedieu A, Arnould C, Morandi D, Barker DG, Gianinazzi PV (2001) Medicago truncatula ENOD11: A novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Mol Plant Microbe Interact 14:737–748

    CAS  PubMed  Google Scholar 

  50. Koske RE (1982) Evidence for a volatile attractant from plant roots affecting germ tubes of a VA mycorrhizal fungus. Trans Br Mycol Soc 79:305–310

    Google Scholar 

  51. Koske RE, Gemma JN (1991) Fungal reactions to plants prior to mycorrhizal formation. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, London, pp 3–36

    Google Scholar 

  52. Kosuta S, Chabaud M, Lougnon G, Gough C, Denarie J, Barker DG, Becard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962

    Article  CAS  PubMed  Google Scholar 

  53. Logi C (1998) Eventi precoci del riconoscimento ospite-simbionte nelle micorrize arbuscolari. PhD thesis, University of Pisa

    Google Scholar 

  54. Logi C, Sbrana C, Giovannetti M (1998) Cellular events involved in survival of individual arbuscular mycorrhizal symbionts growing in the absence of the host. Appl Environ Microbiol 64:3473–3479

    CAS  PubMed  Google Scholar 

  55. Morandi D, Bailey JA, Gianinazzi-Pearson V (1984) Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungi. Physiol Plant Pathol 24:357–364

    CAS  Google Scholar 

  56. Mosse B (1959) The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing vesicular-arbuscular mycorrhiza. Trans Br Mycol Soc 42:273–286

    Google Scholar 

  57. Mosse B (1973) Advances in the study of vesicular-arbuscular mycorrhiza. Ann Rev Phytopathol 11:171–196

    Google Scholar 

  58. Mosse B, Hepper CM (1975) Vesicular-arbuscular mycorrhizal infections in root organ cultures. Physiol Plant Pathol 5:215–223

    Google Scholar 

  59. Mugnier J, Mosse B (1987) Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T-DNA root grown axenically. Phytopathology 77:1045–1050

    Google Scholar 

  60. Nagahashi G (2000) In vitro and in situ techniques to examine the role of roots and root exudates during AM fungus-host interaction. In: Kapulnick Y, Douds DD Jr (eds) Arbuscular Mycorrhizas: physiology and function. Kluwer Academic Press, pp 287–306

    Google Scholar 

  61. Nagahashi G, Douds DD (1997) Appressorium formation by AM fungi on isolated cell walls of carrot roots. New Phytol 136:299–304

    Article  Google Scholar 

  62. Nagahashi G, Douds DD (1999) Rapid and sensitive bioassay to study signals between root exudates and arbuscular mycorrhizal fungi. Biotechnol Tech 13:893–897

    Article  CAS  Google Scholar 

  63. Nagahashi G, Douds DD Jr, Abney GD (1996) Phosphorus amendment inhibits hyphal branching of the VAM fungus Gigaspora margarita directly and indirectly through its effect on root exudation. Mycorrhiza 6:403–408

    Article  CAS  Google Scholar 

  64. Oba H, Tawaraya K, Wagatsuma T (2002) Inhibition of pre-symbiotic hyphal growth of arbuscular mycorrhizal fungus Gigaspora margarita by root exudates of Lupinus spp. Soil Sci Plant Nutr 48:117–120

    CAS  Google Scholar 

  65. Ocampo JA, Martin J, Hayman DS (1980) Influence of plant interactions on vesicular-arbuscular mycorrhizal infection. I. Host and non-host plants grown together. New Phytol 84:23–25

    Google Scholar 

  66. Parra-Garcia MD, Lo Giudice V, Ocampo JA (1992) Absence of VA colonization in Oxalis pes-caprae inoculated with Glomus mosseae. Plant Soil 145:298–300

    Google Scholar 

  67. Requena N, Mann P, Hampp R, Franken P (2002) Early developmentally regulated genes in the arbuscular mycorrhizal fungus Glomus mosseae: identification of GmGIN1, a novel gene with homology to the C-terminus of metazoan hedgehog proteins. Plant Soil 244:129–139

    Article  CAS  Google Scholar 

  68. Sagan M, Huguet T, Barker D, Duc G (1993) Characterization of two classes of non-fixing mutants of pea plants (Pisum sativum L). Plant Sci 95:55–66

    Article  CAS  Google Scholar 

  69. Sagan M, Morandi D, Tarenghi E, Duc G (1995) Selection of nodulation and mycorrhizal mutants in the model plant Medicago trunculata (Gaertn.) after γ-ray mutagenesis. Plant Sci 111:63–71

    Article  CAS  Google Scholar 

  70. Sbrana C, Giovannetti M (2005) Chemotropism in the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhiza 15:539–545

    Article  CAS  PubMed  Google Scholar 

  71. Schreiner RP, Koide RT (1993) Mustards, mustard oils and mycorrhizas. New Phytol 123:107–113

    CAS  Google Scholar 

  72. Schreurs WJA, Harold RL, Harold FM (1989) Chemotropism and branching as alternative responses of Achlya bisexualis to amino acids. J Gen Microbiol 135:2519–2528

    CAS  PubMed  Google Scholar 

  73. Shirtliffe SJ, Vessey JK (1996) A nodulation (Nod+/Fix–) mutant of Phaseolus vulgaris L has nodule-like structures lacking peripheral vascular bundles (Pvb–) and is resistant to mycorrhizal infection (Myc–). Plant Sci 118:209–220

    Article  CAS  Google Scholar 

  74. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  75. Stasz TE, Sakai WS (1984) Vesicular-arbuscular mycorrhizal fungi in scale-leaves of Zingiberaceae. Mycologia 76:754–757

    Google Scholar 

  76. Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    Article  CAS  PubMed  Google Scholar 

  77. Suriyapperuma SP, Koske RE (1995) Attraction of germ tubes and germination of spores of the arbuscular mycorrhizal fungus gigaspora gigantea in the presence of roots of maize exposed to different concentrations of phosphorus. Mycologia 87:772–778

    Google Scholar 

  78. Sward RJ (1981) The structure of the spores of Gigaspora margarita. II. Changes accompanying germination. New Phytol 88:661–666

    Google Scholar 

  79. Tamasloukht M, Sejalon DN, Kluever A, Jauneau A, Roux C, Becard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468–1478

    Article  CAS  PubMed  Google Scholar 

  80. Tawaraya K, Watanabe S, Yoshida E, Wagatsuma T (1996) Effect of onion (Allium cepa) root exudates on the hyphal growth of Gigaspora margarita. Mycorrhiza 6:57–59

    Google Scholar 

  81. Tawaraya K, Hashimoto K, Wagatsuma T (1998) Effect of root exudate fractions from P-deficient and P-sufficient onion plants on root colonisation by the arbuscular mycorrhizal fungus Gigaspora margarita. Mycorrhiza 8:67–70

    Article  CAS  Google Scholar 

  82. Tommerup IC (1984a) Development of infection by a vesicular-arbuscular mycorrhizal fungus in Brassica napus and Trifolium subterraneum. New Phytol 98:497–502

    Google Scholar 

  83. Tommerup IC (1984b) Persistence of infectivity by germinated spores of vesicular-arbuscular mycorrhizal fungi in soil. Trans Br Mycol Soc 82:275–282

    Google Scholar 

  84. Turrini A, Sbrana C, Nuti MP, Pietrangeli B, Giovannetti M (2004) Development of a model system to assess the impact of genetically modified corn and aubergine plants on arbuscular mycorrhizal fungi. Plant Soil 266:69–75

    CAS  Google Scholar 

  85. van Rhijn P, Fang Y, Galili S, Shaul O, Atzmon N, Wininger S, Eshed Y, Lum M, Li Y, To V, Fujishige N, Kapulnik Y, Hirsch AM (1997) Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and Rhizobium-induced nodules may be conserved. Proc Nat Acad Sci USA 94:5467–5472

    PubMed  Google Scholar 

  86. Vande Broek A, Lambrecht M, Vanderleyden J (1998) Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense. Microbiology 144:2599–2606

    Google Scholar 

  87. Vierheilig H, Bennett R, Kiddle G, Kaldorf M, Ludwig MJ (2000) Differences in glucosinolate patterns and arbuscular mycorrhizal status of glucosinolate-containing plant species. New Phytol 146:343–352

    Article  CAS  Google Scholar 

  88. Wais RJ, Galera C, Oldroyd G, Catoira R, Penmetsa RV, Cook D, Gough C, Denarié J, Long SR (2000) Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula. Proc Nat Acad Sci USA 97:13407–13412

    Article  CAS  PubMed  Google Scholar 

  89. Walker SA, Viprey V, Downie JA (2000) Dissection of nodulation signaling using pea mutants defective for calcium spiking induced by Nod factors and chitin oligomers. Proc Nat Acad Sci USA 97:13413–13418

    CAS  PubMed  Google Scholar 

  90. Wegel E, Schauser L, Sandal N, Stougaard J, Parniske M (1998) Mycorrhiza mutants of Lotus japonicus define genetically independent steps during symbiotic infection. Mol Plant Microbe Interact 11:933–936

    CAS  Google Scholar 

  91. Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Kuster H, Krajinski F (2003) Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Mol Plant Microbe Interact 16:306–314

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this chapter

Cite this chapter

Sbrana, C. (2006). Fungal Recognition Responses to Host Derived Signals by Arbuscular Mycorrhizal Fungi. In: Mukerji, K.G., Manoharachary, C., Singh, J. (eds) Microbial Activity in the Rhizoshere. Soil Biology, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29420-1_12

Download citation

Publish with us

Policies and ethics