Skip to main content

Behavioral Effects of rapid Changes in Aromatase Activity in the Central Nervous System

  • Conference paper
  • 1075 Accesses

Part of the book series: Research and Perspectives in Endocrine Interactions ((RPEI))

Summary

In many vertebrate species, male sexual behavior is activated by the action in the preoptic area of estrogens produced by the local aromatization of testosterone. Estrogens bind to intracellular receptors, which then act as transcription factors to activate the behavior. In parallel, changes in aromatase activity (AA) result from steroid-induced modifications of enzyme transcription. The transcription of aromatase is regulated in a synergistic manner by estrogenic and androgenic metabolites of testosterone. Regulatory proteins such as the steroid receptor coactivator-1 modulate steroid action in the brain, and an increasing amount of data now indicate that this mode of control is also implicated in the activation by steroids of sexual behavior and of aromatase transcription. More recently, rapid non-genomic effects of estrogens have been described in a variety of animal models, and evidence has accumulated in Japanese quail indicating that AA in the preoptic area is modulated by rapid (minute to hour) non-genomic mechanisms in addition to the slower (hours to days) transcriptional changes. Conditions that enhance protein phosphorylation, such as the presence of high concentrations of calcium, magnesium and ATP, rapidly (within min) downregulate AA in hypothalamic homogenates. Similarly, the pharmacological mobilization of intracellular calcium with thapsigargin or stimulation of various glutamate receptors (AMPA, kainate, NMDA) that lead to increased intracellular calcium concentrations depresses within minutes the AA that is measured in quail preoptic explants. Protein kinase inhibitors interfere with the calcium-induced inhibition of AA, and multiple phosphorylation consensus sites are present on the deduced amino acid sequence of quail aromatase. Fast changes in the local availability of estrogens in the brain can thus be caused by aromatase phosphorylations that rapidly regulate neuronal physiology and behavior. Recent studies suggest that the pharmacological blockade of AA by specific inhibitors rapidly down regulates motivational and consummatory aspects of male sexual behavior in quail and decreases responsiveness to painful stimuli within minutes. The rapid and slower changes of AA in the central nervous system thus match well with the genomic and non-genomic actions of estrogens and potentially provide temporal variations in the bioavailability of estrogens that can support the entire range of established effects for this steroid.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Absil P, Baillien M, Ball GF, Panzica G, Balthazart J (2001) The control of preoptic aromatase activity by afferent inputs in Japanese quail. Brain Res Rev 37: 38–58

    Article  PubMed  Google Scholar 

  • Albert KA, Helmer-Matyjek E, Nairn AA, Müller TH, Haycock JW, Greene LA, Goldstein M, Greengard P (1984) Calcium/phospholipid-dependent protein kinase (protein kinase C) phosphorylates and activates tyrosine hydroxylase. Proc Natl Acad Sci USA 81: 7713–7717

    PubMed  Google Scholar 

  • Ames MM, Lerner P, Lovenberg W (1978) Tyrosine hydroxylase: activation by protein phosphorylation and end product inhibition. J Biol Chem 253: 27–31

    PubMed  Google Scholar 

  • Aste N, Balthazart J, Absil P, Grossmann R, Mülhbauer E, Viglietti-Panzica C, Panzica GC (1998) Anatomical and neurochemical definition of the nucleus of the stria terminalis in Japanese quail (Coturnix japonica). J Comp Neurol 396: 141–157

    Article  PubMed  Google Scholar 

  • Baillien M, Ball GF, Bakker J, Balthazart J (2003) Calcium, calmodulin and aromatase: a key trio in the rapid control of estrogen concentration in the brain. Soc Neurosci Abstr 33: 726.3

    Google Scholar 

  • Ball GF, Balthazart J (2002) Neuroendocrine mechanisms regulating reproductive cycles and reproductive behavior in birds. In: Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT (eds) Hormones, brain and behavior. Academic Press, San Diego, CA, pp 649–798

    Google Scholar 

  • Balthazart J (1989) Steroid metabolism and the activation of social behavior. In: Balthazart J (ed) Advances in comparative and environmental physiology. Vol 3. Springer Verlag, Berlin, pp 105–159

    Google Scholar 

  • Balthazart J, Foidart A (1993) Brain aromatase and the control of male sexual behavior. J Steroid Biochem Mol Biol 44: 521–540

    Article  PubMed  Google Scholar 

  • Balthazart J, Ball GF (1998a) New insights into the regulation and function of brain estrogen synthase (aromatase). Trends Neurosci 21: 243–249

    Article  PubMed  Google Scholar 

  • Balthazart J, Ball GF (1998b) The Japanese quail as a model system for the investigation of steroid-catecholamine interactions mediating appetitive and consummatory aspects of male sexual behavior. Ann Rev Sex Res 9: 96–176

    Google Scholar 

  • Balthazart J, Foidart A, Hendrick JC (1990a) The induction by testosterone of aromatase activity in the preoptic area and activation of copulatory behavior. Physiol Behav 47: 83–94

    Article  PubMed  Google Scholar 

  • Balthazart J, Foidart A, Harada N (1990b) Immunocytochemical localization of aromatase in the brain. Brain Res 514: 327–333

    Article  PubMed  Google Scholar 

  • Balthazart J, Foidart A, Surlemont C, Vockel A, Harada N (1990c) Distribution of aromatase in the brain of the Japanese quail, ring dove, and zebra finch: An immunocytochemical study. J Comp Neurol 301: 276–288

    Article  PubMed  Google Scholar 

  • Balthazart J, Foidart A, Surlemont C, Harada N (1991) Neuroanatomical specificity in the colocalization of aromatase and estrogen receptors. J Neurobiol 22: 143–157

    Article  PubMed  Google Scholar 

  • Balthazart J, Stoop R, Foidart A, Harada N (1994) Synergistic control by androgens and estrogens of aromatase in the quail brain. Neuroreport 5: 1729–1732

    PubMed  Google Scholar 

  • Balthazart J, Foidart A, Surlemont C, Harada N, Naftolin F (1992) Neuroanatomical specificity in the autoregulation of aromatase-immunoreactive neurons by androgens and estrogens: An immunocytochemical study. Brain Res 574: 280–290

    Article  PubMed  Google Scholar 

  • Balthazart J, Tlemçani O, Harada N (1996) Localization of testosterone-sensitive and sexually dimorphic aromatase-immunoreactive cells in the quail preoptic area. J Chem Neuroanat 11: 147–171

    Article  PubMed  Google Scholar 

  • Balthazart J, Castagna C, Ball GF (1997) Differential effects of D1 and D2 dopamine receptor agonists and antagonists on appetitive and consummatory aspects of male sexual behavior in Japanese quail. Physiol Behav 62: 571–580

    Article  PubMed  Google Scholar 

  • Balthazart J, Foidart A, Houbart M, Prins GS, Ball GF (1998a) Distribution of androgen receptor-immunoreactive cells in the quail forebrain and their relationship with aromatase immunoreactivity. J Neurobiol 35: 323–340

    Article  PubMed  Google Scholar 

  • Balthazart J, Absil P, Gérd M, Appeltants D, Ball GF (1998b) Appetitive and consummatory male sexual behavior in Japanese quail are differentially regulated by subregions of the preoptic medial nucleus. J Neurosci 18: 6512–6527

    PubMed  Google Scholar 

  • Balthazart J, Baillien M, Ball GF (2001a) Rapid and reversible inhibition of brain aromatase activity. J Neuroendocrinol 13: 61–71

    Article  Google Scholar 

  • Balthazart J, Baillien M, Ball GF (2001b) Phosphorylation processes mediate rapid changes of brain aromatase activity. J Steroid Biochem Mol Biol 79: 261–277

    Article  PubMed  Google Scholar 

  • Balthazart J, Baillien M, Ball GF (2002) Interactions between aromatase (estrogen synthase) and dopamine in the control of male sexual behavior in quail. Comp Biochem Physiol [B] 132: 37–55

    Article  Google Scholar 

  • Balthazart J, Baillien M, Charlier TD, Ball GF (2003a) Calcium-dependent phosphorylation processes control brain aromatase in quail. Eur J Neurosci 17: 1591–1606

    Article  PubMed  Google Scholar 

  • Balthazart J, Baillien M, Charlier TD, Cornil CA, Ball GF (2003b) Multiple mechanisms control brain aromatase activity at the genomic and non-genomic level. J Steroid Biochem Mol Biol 86: 367–379

    Article  PubMed  Google Scholar 

  • Barraclough CA, Wise PM (1982) The role of catecholamines in the regulation of pituitary luteinizing hormone and follicle stimulating-hormone secretion. Endo Rev 3: 91–119

    Google Scholar 

  • Baulieu E-E, Robel P (1990) Neurosteroids: A new brain function? J Steroid Biochem 37: 395–403

    Article  Google Scholar 

  • Baulieu EE, Robel P, Schumacher M (1999) Neurosteroids. A new regulatory function in the nervous system. Humana Press, Totowa, NJ

    Google Scholar 

  • Bayliss WM, Starling EH (1902) The mechanism of pancreatic secretion. J Physiol London 28: 325–353

    Google Scholar 

  • Beach FA (1948) Hormones and behavior. Paul B. Hoeber, Inc., New York

    Google Scholar 

  • Blaustein JD, Olster DH (1989) Gonadal steroid hormone receptors and social behaviors. In: Balthazart J (ed) Advances in comparative and environmental physiology. Vol 3. Springer Verlag, Berlin, pp 31–104

    Google Scholar 

  • Charlier TD, Lakaye B, Ball GF, Balthazart J (2002) Steroid receptor coactivator SRC-1 exhibits high expression in steroid-sensitive brain areas regulating reproductive behaviors in the quail brain. Neuroendocrinology 76: 297–315

    Article  PubMed  Google Scholar 

  • Connolly PB, Roselli CE, Resko JA (1990) Aromatase activity in adult guinea pig brain is androgen dependent. Biol Reprod 43: 698–703

    PubMed  Google Scholar 

  • Corbin CJ, Graham-Lorence S, McPhaul M, Mason JI, Mendelson CR, Simpson ER (1988) Isolation of a full-length cDNA insert encoding human aromatase system cytochrome P-450 and its expression in nonsteroidogenic cells. Proc Natl Acad Sci USA 85: 8948–8952

    PubMed  Google Scholar 

  • Cornil CA, Evrard HC, Ball GF, Balthazart J (2003) Rapid effects of 17\ — Estradiol and vorozole, an aromatase inhibitor, on male sexual behavior in Japanese quail. Soc Neurosci Abstr 33: 726.5

    Google Scholar 

  • Cross E, Roselli CE (1999) 17beta-estradiol rapidly facilitates chemoinvestigation and mounting in castrated male rats. Am J Physiol Regul Integr Comp Physiol 276: R1346–R1350

    Google Scholar 

  • Daubner SC, Lauriano C, Haycock JW, Fitzpatrick PF (1992) Site-directed mutagenesis of serine 40 of rat tyrosine hydroxylase. J Biol Chem 267: 12639–12646

    PubMed  Google Scholar 

  • De Coster R, Wouters W, Bowden CR, Vanden Bossche H, Bruynseels J, Tuman RW, Van Ginckel R, Snoeck E, Van Peer A, Janssen PAJ (1990) New non-steroidal aromatase inhibitors: Focus on R76713. J Steroid Biochem 37: 335–341

    Article  Google Scholar 

  • Evrard HC, Balthazart J (2002a) Localization of oestrogen receptors in the sensory and motor areas of the spinal cord in Japanese quail (Coturnix japonica). J Neuroendocrinol 14: 894–903

    Article  PubMed  Google Scholar 

  • Evrard HC, Balthazart J (2002b) The assessment of nociceptive and non-nociceptive skin sensitivity in the Japanese quail (Coturnix japonica). J Neurosci Meth 116: 135–146

    Article  Google Scholar 

  • Evrard HC, Balthazart J (2003a) Spinal estrogen synthesis rapidly increases responsiveness to noxious stimuli. Abst 4th Congress of the EFIC

    Google Scholar 

  • Evrard HC, Balthazart J (2003b) Long term and short term aromatase inhibitions result in slow and rapid alterations of pain. Trabajos del Instituto Cajal 79: 122–123

    Google Scholar 

  • Evrard H, Baillien M, Foidart A, Absil P, Harada N, Balthazart J (2000) Localization and controls of aromatase in the quail spinal cord. J Comp Neurol 423: 552–564

    Article  PubMed  Google Scholar 

  • Evrard HC, Willems E, Harada N, Balthazart J (2003) Specific innervation of aromatase neurons by substance P fibers in the dorsal horn of the spinal cord in quail. J Comp Neurol 465: 309–318

    Article  PubMed  Google Scholar 

  • Evrard HC, Balthazart J (2004) Aromatization of androgens into estrogens reduces response latency to a noxious thermal stimulus in male quail. Horm Behav 45: 181–189

    Article  PubMed  Google Scholar 

  • Evrard HC, Harada H, Balthazart J (2004) Immunocytochemial localization of aromatase in sensory and integrating nuclei of the hindbrain in Japanese quail (Coturnix japonica). J Comp Neurol 473: 194–212

    Article  PubMed  Google Scholar 

  • Foidart A, Harada N, Balthazart J (1994) Effects of steroidal and non steroidal aromatase inhibitors on sexual behavior and aromatase-immunoreactive cells and fibers in the quail brain. Brain Res 657: 105–123

    Article  PubMed  Google Scholar 

  • Foidart A, Reid J, Absil P, Yoshimura N, Harada N, Balthazart J (1995) Critical re-examination of the distribution of aromatase-immunoreactive cells in the quail forebrain using antibodies raised against human placental aromatase and against the recombinant quail, mouse or human enzyme. J Chem Neuroanat 8: 267–282

    Article  PubMed  Google Scholar 

  • Foidart A, Lakaye B, Grisar T, Ball GF, Balthazart J (1999) Estrogen receptor-beta in quail: Cloning, tissue expression and neuroanatomical distribution. J Neurobiol 40: 327–342

    Article  PubMed  Google Scholar 

  • Harada N (1988) Novel properties of human placental aromatase as cytochrome P-450: purification and characterization of a unique form of aromatase. J Biochem 103: 106–113

    PubMed  Google Scholar 

  • Harada N, Yamada K, Foidart A, Balthazart J (1992) Regulation of aromatase cytochrome P-450 (estrogen synthetase) transcripts in the quail brain by testosterone. Mol Brain Res 15: 19–26

    Article  PubMed  Google Scholar 

  • Harada N, Abe-Dohmae S, Loeffen R, Foidart A, Balthazart J (1993) Synergism between androgens and estrogens in the induction of aromatase and its messenger RNA in the brain. Brain Res 622: 243–256

    Article  PubMed  Google Scholar 

  • Harris GW (1955) Neural control of the pituitary gland. Edward Arnold and Company, London

    Google Scholar 

  • Herbison AE (1998) Multimodal influence of estrogen upon gonadotropin-releasing hormone neurons. Endocrinol Rev 19: 302–330

    Article  Google Scholar 

  • Herbison AE, Theodosis DT (1992) Localization of oestrogen receptors in preoptic neurons containing neurotensin but not tyrosine hydroxylase, cholecystokinin or luteinizing hormone-releasing hormone in the male and female rat. Neuroscience 50: 283–298

    Article  PubMed  Google Scholar 

  • Herbison AE, Pape JR (2001) New evidence for estrogen receptors in gonadotropin-releasing hormone neurons. Frontiers Neuroendocrinol 22: 292–308

    Article  Google Scholar 

  • Herbison AE, Robinson JE, Skinner DC (1993) Distribution of estrogen receptorimmunoreactive cells in the preoptic area of the ewe: Co-localization with glutamic acid decarboxylase but not luteinizing hormone-releasing hormone. Neuroendocrinology 57: 751–759

    PubMed  Google Scholar 

  • Hochberg Z, Bick T, Pelman R, Brandes JM, Barzilai D (1986) The dual effect of calcium on aromatization by cultured human trophoblast. J Steroid Biochem 24: 1217–1219

    Article  PubMed  Google Scholar 

  • Horvath TL, Wikler KC (1999) Aromatase in developing sensory systems of the rat brain. J Neuroendocrinol 11: 77–84

    Article  PubMed  Google Scholar 

  • Hull EM (1995) Dopaminergic influences on male rat sexual behavior. In: Micevych PE, Hammer RPJ (eds) Neurobiological effects of sex steroid hormones. Cambridge University Press, Cambridge, pp 234–253

    Google Scholar 

  • Hull EM, Meisel RL, Sachs BD (2002) Male sexual behavior. In: Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT (eds) Hormones, brain and behavior. Academic Press, San Diego, CA, pp 1–137

    Google Scholar 

  • Hutchison JB, Steimer TH (1986) Formation of behaviorally effective 17beta-estradiol in the dove brain: steroid control of preoptic aromatase. Endocrinology 118: 2180–2187

    PubMed  Google Scholar 

  • Kelly MJ, Ronnekleiv OK (2002) Rapid membrane effects of estrogen in the central nervous system. In: Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT (eds) Hormones, brain and behavior. Academic Press, San Diego, pp 361–380

    Google Scholar 

  • Kuiper GGJM, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JÅ (1996) Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 93: 5925–5930

    Article  PubMed  Google Scholar 

  • Kuiper GGJM, Shughrue PJ, Merchenthaler I, Gustafsson J-Å (1998) The estrogen receptor β, subtype: a novel mediator of estrogen action in neuroendocrine systems. Frontiers Neuroendocrinol 19: 253–286

    Article  Google Scholar 

  • Küppers E, Ivanova T, Karolczak M, Beyer C (2000) Estrogen: a multifunctional messenger to nigrostriatal dopaminergic neurons. J Neurocytol 29: 375–385

    Article  PubMed  Google Scholar 

  • Küppers E, Ivanova T, Karolczak M, Lazarov N, Föhr K, Beyer C (2001) Classical and nonclassical estrogen action in the developing midbrain. Horm Behav 40: 196–202

    Article  PubMed  Google Scholar 

  • Lephart ED (1996) A review of brain aromatase cytochrome P450. Brain Res Rev 22: 1–26

    Article  PubMed  Google Scholar 

  • MacLusky NJ, Philip A, Hurlburt C, Naftolin F (1984) Estrogen metabolism in neuroendocrine structures. In: Celotti F, Naftolin F, Martini L (eds) Metabolism of hormonal steroids in the neuroendocrine structure., Raven Press, New York, pp 103–116

    Google Scholar 

  • McEwen BS (1991) Non-genomic and genomc effects of steroids on neural activity. Trends Pharmacol Sci 12: 141–147

    Article  PubMed  Google Scholar 

  • McEwen BS (1994) Steroid hormone actions on the brain: When is the genome involved? Horm Behav 28: 396–405

    Article  PubMed  Google Scholar 

  • McEwen BS, Pfaff DW (1985) Hormone effects on hypothalamic neurons: analysing gene expression and neuromodulator action. Trends Neurosci 08: 105–110

    Article  Google Scholar 

  • McEwen BS, Alves SE (1999) Estrogen actions in the central nervous system. Endocrinol Rev 20: 279–307

    Article  Google Scholar 

  • McKenna NJ, O’Malley BW (2002) Minireview: Nuclear receptor coactivators — An update. Endocrinology 143: 2461–2465

    Article  PubMed  Google Scholar 

  • McKenna NJ, Lanz RB, O’Malley BW (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocrinol Rev 20: 321–344

    Article  Google Scholar 

  • McPhaul MJ, Noble JF, Simpson ER, Mendelson CR, Wilson JD (1988) The expression of a functional cDNA encoding the chicken cytochrome P-450arom (aromatase) that catalyzes the formation of estrogen from androgen. J Biol Chem 263: 16358–16363

    PubMed  Google Scholar 

  • Means GD, Mahendroo MS, Corbin CJ, Mathis JM, Powell FE, Mendelson CR, Simpson ER (1989) Structural analysis of the gene encoding human aromatase cytochrome P-450, the enzyme responsible for estrogen biosynthesis. J Biol Chem 264: 19385–19391

    PubMed  Google Scholar 

  • Medvi VC (1982) A history of endocrinology. MTP Press Limited, Boston, MA

    Google Scholar 

  • Mermelstein PG, Becker JB, Surmeier DJ (1996) Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor. J Neurosci 16: 595–604

    PubMed  Google Scholar 

  • Molenda HA, Kilts CP, Allen RL, Tetel MJ (2003) Nuclear receptor coactivator function in reproductive physiology and behavior. Biol Reprod 69: 1449–1457

    Article  PubMed  Google Scholar 

  • Naftolin F, Ryan KJ, Petro Z (1972) Aromatization of androstenedione by the anterior hypothalamus of adult male and female rats. Endocrinology 90: 295–298

    PubMed  Google Scholar 

  • Naftolin F, Ryan KJ, Davies IJ, Reddy VV, Flores F, Petro Z, Kuhn M, White RJ, Takaoka Y, Wolin L (1975) The formation of estrogens by central neuroendocrine tissues. Rec Prog Horm Res 31: 295–319

    PubMed  Google Scholar 

  • Naftolin F, Horvath TL, Jakab RL, Leranth C, Harada N, Balthazart J (1996) Aromatase immunoreactivity in axon terminals of the vertebrate brain — an immunocytochemical study on quail, rat, monkey and human tissues. Neuroendocrinology 63: 149–155

    PubMed  Google Scholar 

  • Onagbesan OM, Podie MJ (1989) Calcium-dependent stimulation of estrogen secretion by FSH from theca cells of the domestic hen (Gallus domesticus). Gen Comp Endocrinol 75: 177–186

    Article  PubMed  Google Scholar 

  • Panzica GC, Viglietti-Panzica C, Calcagni M, Anselmetti GC, Schumacher M, Balthazart J (1987) Sexual differentiation and hormonal control of the sexually dimorphic preoptic medial nucleus in quail. Brain Res 416: 59–68

    Article  PubMed  Google Scholar 

  • Panzica GC, Viglietti-Panzica C, Sanchez F, Sante P, Balthazart J (1991) Effects of testosterone on a selected neuronal population within the preoptic sexually dimorphic nucleus of the Japanese quail. J Comp Neurol 303: 443–456

    Article  PubMed  Google Scholar 

  • Panzica GC, Viglietti-Panzica C, Balthazart J (1996) The sexually dimorphic medial preoptic nucleus of quail: a key brain area mediating steroid action on male sexual behavior. Frontiers Neuroendocrinol 17: 51–125

    Article  Google Scholar 

  • Pasqualini C, Olivier V, Guibert B, Frain O, Leviel V (1995) Acute stimulatory effect of estradiol on striatal dopamine synthesis. J Neurochem 65: 1651–1657

    PubMed  Google Scholar 

  • Ramirez VD, Zheng JB, Siddique KM (1996) Membrane receptors for estrogen, progesterone, and testosterone in the rat brain: Fantasy or reality. Cell Mol Neurobiol 16: 175–198

    Article  PubMed  Google Scholar 

  • Roselli CE (1995) Subcellular localization and kinetic properties of aromatase activity in rat brain. J Steroid Biochem Mol Biol 52: 469–477

    Article  PubMed  Google Scholar 

  • Roselli CE, Resko JA (1984) Androgens regulate brain aromatase activity in adult male rats through a receptor mechanism. Endocrinology 114: 2183–2189

    PubMed  Google Scholar 

  • Roselli CE, Resko JA (2001) Cytochrome P450 aromatase (CYP19) in the non-human primate brain: distribution, regulation, and functional significance. J Steroid Biochem Mol Biol 79: 247–253

    Article  PubMed  Google Scholar 

  • Roselli CE, Horton LE, Resko JA (1985) Distribution and regulation of aromatase activity in the rat hypothalamus and limbic system. Endocrinology 117: 2471–2477

    PubMed  Google Scholar 

  • Roselli CE, Horton LE, Resko JA (1987) Time-course and steroid specificity of aromatase induction in rat hypothalamus-preoptic area. Biol Reprod 37: 628–633

    PubMed  Google Scholar 

  • Roselli CE, Stormshak F, Resko JA (1998) Distribution and regulation of aromatase activity in the ram hypothalamus and amygdala. Brain Res 811: 105–110

    Article  PubMed  Google Scholar 

  • Saldanha CJ, Peterson RS, Yarram L, Schlinger BA (2003) The synaptocrine hypothesis: a novel mechanism of estrogen delivery. Horm Behav 44: 74

    Google Scholar 

  • Schlinger BA, Callard GV (1987) A comparison of aromatase, 5α-and 5 β-reductase activities in the brain and pituitary of male and female quail (Coturnix c. Japonica). J Exp Zool 242: 171–180

    Article  PubMed  Google Scholar 

  • Schlinger BA, Callard GV (1989) Localization of aromatase in synaptosomal and microsomal subfractions of quail (Coturnix coturnix japonica) brain. Neuroendocrinology 49: 434–441

    PubMed  Google Scholar 

  • Schumacher M (1990) Rapid membrane effects of steroid hormones: an emerging concept in neuroendocrinology. Trends Neurosci 13: 359–362

    Article  PubMed  Google Scholar 

  • Schumacher M, Balthazart J (1986) Testosterone-induced brain aromatase is sexually dimorphic. Brain Res 370: 285–293

    Article  PubMed  Google Scholar 

  • Schumacher M, Alexandre C, Balthazart J (1987) Interactions des androgènes et des oestrogènes dans le contrôle de la reproduction. C R Acad Sci Paris, Séie III 305: 569–574

    PubMed  Google Scholar 

  • Seiwert CM, Adkins-Regan E (1998) The foam production system of the male Japanese quail: characterization of structure and function. Brain Behav Evol 52: 61–80

    Article  PubMed  Google Scholar 

  • Shen P, Campagnoni CW, Kampf K, Schlinger BA, Arnold AP, Campagnoni AT (1994) Isolation and characterization of a zebra finch aromatase cDNA: in situ hybridization reveals high aromatase expression in brain. Mol Brain Res 24: 227–237

    Article  PubMed  Google Scholar 

  • Shivers BD, Harlan RE, Morrell JI, Pfaff DW (1983) Absence of oestradiol concentration in cell nuclei of LHRH-immunoreactive neurones. Nature 304: 345–347

    Article  PubMed  Google Scholar 

  • Simpson ER, Mahendroo MS, Means GD, Kilgore MW, Hinshelwood MM, Graham-Lorence S, Amarneh B, Ito Y, Fisher CR, Michael MD, Mendelson CR, Bulun SE (1994) Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocrinol Rev 15: 342–355

    Article  Google Scholar 

  • Skynner MJ, Sim JA, Herbison AE (1999) Detection of estrogen receptor alpha and beta messenger ribonucleic acids in adult gonadotropin-releasing hormone neurons. Endocrinology 140: 5195–5201

    Article  PubMed  Google Scholar 

  • Steimer T (1988) Aromatase activity in rat brain synaptosomes. Is an enzyme associated with the neuronal cell membrane involved in mediating non-genomic effects of androgens? Eur J Neurosci Suppl 1988: 9

    Google Scholar 

  • Steimer T, Hutchison JB (1981) Androgen increases formation of behaviorally effective oestrogen in dove brain. Nature 292: 345–347

    PubMed  Google Scholar 

  • Steimer T, Hutchison JB (1991) Micromethods for the in vitro study of steroid metabolism in the brain using radiolabelled tracers. In: Greenstein B (ed) Neuroendocrine research methods. Vol 2. Harwood Academic Publishers, Chur, Switzerland, pp 875–919–870

    Google Scholar 

  • Thompson TL, Moss RL (1994) Estrogen regulation of dopamine release in the nucleus accumbens: genomic-and nongenomic-mediated effects. J Neurochem 62: 1750–1756

    PubMed  Google Scholar 

  • Tsuruo Y, Ishimura K, Osawa Y (1995) Presence of estrogen receptors in aromatase-immunoreactive neurons in the mouse brain. Neurosci Lett 195: 49–52

    Article  PubMed  Google Scholar 

  • Tsuruo Y, Ishimura K, Hayashi S, Osawa Y (1996) Immunohistochemical localization of estrogen receptors within aromatase-immunoreactive neurons in the fetal and neonatal rat brain. Anat Embryol (Berl) 193: 115–121

    Article  PubMed  Google Scholar 

  • Viglietti-Panzica C, Panzica GC, Fiori MG, Calcagni M, Anselmetti GC, Balthazart J (1986) A sexually dimorphic nucleus in the quail preoptic area. Neurosci Lett 64: 129–134

    Article  PubMed  Google Scholar 

  • Waymire JC, Craviso GL (1993) Multiple site phosphorylation and activation of tyrosine hydroxylase. Adv Prot Phosphatases 7: 501–513

    Google Scholar 

  • Weiner RI, Findell PR, Kordon C (1988) Role of classic and peptide neuromediators in the neuroendocrine regulation of LH and prolactin In: Knobil E, Neill J (eds) The physiology of reproduction. Raven Press, New York, pp 1235–1281

    Google Scholar 

  • Wouters W, De Coster R, Krekels M, Van Dun J, Beerens D, Haelterman C, Raeymaekers A, Freyne E, Van Gelder J, Venet M, Janssen PAJ (1989) R 76713, a new specific nonsteroidal aromatase inhibitor. J Steroid Biochem 32: 781–788

    Article  PubMed  Google Scholar 

  • Wouters W, Snoeck E, De Coster R (1994) Vorozole, a specific non-steroidal aromatase inhibitor. Breast Cancer Res Treat 30: 89–94

    Article  PubMed  Google Scholar 

  • Zhou Y, Watters JJ, Dorsa DM (1996) Estrogen rapidly induces the phosphorylation of the cAMP response element binding protein in rat brain. Endocrinology 137: 2163–2166

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balthazart, J., Baillien, M., Cornil, C., Charlier, T., Evrard, H., Ball, G. (2005). Behavioral Effects of rapid Changes in Aromatase Activity in the Central Nervous System. In: Kordon, C., Gaillard, RC., Christen, Y. (eds) Hormones and the Brain. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26940-1_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-26940-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21355-0

  • Online ISBN: 978-3-540-26940-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics