Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allessie MA (1998) Atrial electrophysiologic remodeling: another vicious circle? J Cardiovasc Electrophysiol 9: 1378–1393

    CAS  PubMed  Google Scholar 

  • Alessi R, Nusynowitz M, Abildskov J, Moe G (1959) Nonuniform distribution of vagal effects on the atrial refractory period. Am J Physiol 194: 406–410

    Google Scholar 

  • Allessie MA, Bonke FI, Schopman FJ (1973) Circus movement in rabbit atrial muscle as a mechanism of trachycardia. Circ Res 33: 54–62

    CAS  PubMed  Google Scholar 

  • Allessie MA, Lammers WJ, Bonke IM, Hollen J (1984) Intra-atrial reentry as a mechanism for atrial flutter induced by acetylcholine and rapid pacing in the dog. Circulation 70: 123–135

    CAS  PubMed  Google Scholar 

  • Allessie M, Lammers WJ, Bonke FI, Hollen J (1985) Experimental evaluation of Moe’s multiple wavelet hypothesis on atrial fibrillation. In: Zipes DP (ed) Cardiac electrophysiology and arrhythmias. Grune and Stratton, New York, p 265–275

    Google Scholar 

  • Ausma J, Wijffels M, Thone F, Wouters L, Allessie M, Borgers M (1997) Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation 96: 3157–3163

    CAS  PubMed  Google Scholar 

  • Allessie MA, Ausma J, Schotten U (2002) Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res 54: 230–246

    Article  CAS  PubMed  Google Scholar 

  • Bailey GW, Braniff BA, Hancock EW, Cohn KE (1968) Relation of left atrial pathology to atrial fibrillation in mitral valvular disease. Ann Intern Med 69: 13–20

    CAS  PubMed  Google Scholar 

  • Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA (1994) Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA 271: 840–844

    Article  CAS  PubMed  Google Scholar 

  • Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D (1998) Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation 98: 946–952

    CAS  PubMed  Google Scholar 

  • Borgers M, Thone F, Wouters L, Ausma J, Shivalkar B, Flameng W (1993) Structural correlates of regional myocardial dysfunction in patients with critically coronary artery stenosis: Chronic hibernation? Cardiovasc Pathol 2: 237–245

    Article  Google Scholar 

  • Boyden PA, Tilley LP, Pham TD, Liu SK, Fenoglic JJJ, Wit AL (1982) Effects of left atrial enlargement on atrial transmembrane potentials and structure in dogs with mitral valve fibrosis. Am J Cardiol 49: 1896–1908

    Article  CAS  PubMed  Google Scholar 

  • Chen YJ, Chen SA, Tai CT, Wen ZC, Feng AN, Ding YA, Chang MS (1998) Role of atrial electrophysiology and autonomic nervous system in patients with supraventricular tachycardia and paroxysmal atrial fibrillation. J Am Coll Cardiol 32: 732–738

    CAS  PubMed  Google Scholar 

  • Chiou CW, Eble JN, Zipes DP (1997) Efferent vagal innervation of the canine atria and sinus and atrioventricular nodes. The third fat pad. Circulation 95: 2573–2584

    CAS  PubMed  Google Scholar 

  • Coumel P, Attuel P, Lavallee J, Flammang D, Leclercq JF, Slama R (1978) The atrial arrhythmia syndrome of vagal origin. Arch Mal Coeur Vaiss 71: 645–656

    CAS  PubMed  Google Scholar 

  • Eijsbouts S, Majidi M, von Zandvoort M, Allessie M (2003) The effects of acute atrial dilatation on heterogeneity in conduction in the isolated rabbit heart. J Cardiovasc Electrophysiol (in press)

    Google Scholar 

  • Einthoven W (1903) Ein neues Galvanometer. Ann Physik 4: 1059–1061

    Google Scholar 

  • Einthoven W (1906) Le telecardiogramme. Arch Internat Physiol 4: 132–164

    Google Scholar 

  • Everett TH, Li H, Mangrum JM, McRury ID, Mitchell MA, Redick JA, Haines DE (2000) Electrical, morphological, and ultrastructural remodeling and reverse remodeling in a canine model of chronic atrial fibrillation. Circulation 102: 1454–1460

    PubMed  Google Scholar 

  • Fenoglio JJ Jr, Wagner BM (1973) Studies in rheumatic fever. VI. Ultrastructure of chronic rheumatic heart disease. Am J Pathol 73: 623–640

    PubMed  Google Scholar 

  • Fenoglio JJ Jr, Pham TD, Hordof A, Edie RN, Wit AL (1979) Right atrial ultrastructure in congenital heart disease. II. Atrial septal defect: effects of volume overload. Am J Cardiol 43: 820–827

    Article  PubMed  Google Scholar 

  • Fraser HRL, Turner RWD (1955) Auricular fibrillation with special reference to rheumatic heart disease. British Medical Journal 2: 1414–1418

    Google Scholar 

  • Goldstein, RN, Khrestian, CM, Ryu, K, van Wagoner, D, Stambler, BS, Waldo AL (2003) Prevention of postoperative atrial fibrillation and flutter using steroids. PACE 26: 1068

    Google Scholar 

  • Gurlek A, Erol C, Basesme E (1994) Antiarrhythmic effect of converting enzyme inhibitors in congestive heart failure. Int J Cardiol 43: 315–318

    CAS  PubMed  Google Scholar 

  • Keren G, Etzion T, Sherez J, Zelcer AA, Megidish R, Miller HI, Laniado S (1987) Atrial fibrillation and atrial enlargement in patients with mitral stenosis. Am Heart J 114: 1146–1155

    Article  CAS  PubMed  Google Scholar 

  • Kitzman DW, Edwards WD (1990) Age-related changes in the anatomy of the normal human heart. J Gerontol 45: M33–M39

    CAS  PubMed  Google Scholar 

  • Konings KT, Kirchhof CJ, Smeets JR, Wellens HJ, Penn OC, Allessie MA (1994) High-density mapping of electrically induced atrial fibrillation in humans. Circulation 89: 1665–1680

    CAS  PubMed  Google Scholar 

  • Kumagai K, Khrestian C, Waldo AL (1997) Simultaneous multisite mapping studies during induced atrial fibrillation in the sterile pericarditis model. Insights into the mechanism of its maintenance. Circulation 95: 511–521

    CAS  PubMed  Google Scholar 

  • Kumagai K, Uno K, Khrestian C, Waldo AL (2000) Single site radiofrequency catheter ablation of atrial fibrillation: studies guided by simultaneous multisite mapping in the canine sterile pericarditis model. J Am Coll Cardiol 36: 917–923

    Article  CAS  PubMed  Google Scholar 

  • Lewis T (1909) Auricular fibrillation and its relationship to clinical irregularity of the heart. Heart 1: 306–372

    Google Scholar 

  • Li D, Fareh S, Leung TK, Nattel S (1999) Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation 100: 87–95

    CAS  PubMed  Google Scholar 

  • Li D, Melnyk P, Feng J, Wang Z, Petrecca K, Shrier A, Nattel S (2000) Effects of experimental heart failure on atrial cellular and ionic electrophysiology. Circulation 101: 2631–2638

    CAS  PubMed  Google Scholar 

  • Li D, Shinagawa K, Pang L, Leung TK, Cardin S, Wang Z, Nattel S (2001) Effects of Angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation 104: 2608–2614

    CAS  PubMed  Google Scholar 

  • Madrid AH, Bueno MG, Rebollo JM, Marin I, Pena G, Bernal E, Rodriguez A, Cano L, Cano JM, Cabeza P, Moro C (2002) Use of irbesartan to maintain sinus rhythm in patients with long-lasting persistent atrial fibrillation: a prospective and randomized study. Circulation 106: 331–336

    Article  CAS  PubMed  Google Scholar 

  • Mary RL, Albert A, Pham TD, Hordof A, Fenoglio-JJ J, Malm JR, Rosen MR (1983) The relationship of human atrial cellular electrophysiology to clinical function and ultrastructure. Circ Res 52: 188–199

    Google Scholar 

  • McWilliam J (1887) Fibrillar contraction of the heart. J Physiol 8: 296–310

    Google Scholar 

  • Mines G (1913) On dynamic equilibrium in the heart. J Physiol 46: 349–383

    Google Scholar 

  • Mines G (1914) On circulating excitation in heart muscles and their possible relation to tachycardia and fibrillation. Trans Roy Soc Can 8: 43–52

    Google Scholar 

  • Miyauchi Y, Zhou S, Okuyama Y, Miyauchi M, Hayashi H, Hamabe A, Fishbein MC, Mandel WJ, Chen LS, Chen PS, Karagueuzian HS (2003) Altered atrial electrical restitution and heterogeneous sympathetic hyperinnervation in hearts with chronic left ventricular myocardial infarction: implications for atrial fibrillation. Circulation 108: 360–366

    Article  PubMed  Google Scholar 

  • Moe G, Rheinboldt W, Aboldskov J (1964) A computer model of atrial fibrillation. Am Heart J 67: 200–220

    CAS  PubMed  Google Scholar 

  • Morillo CA, Klein GJ, Jones DL, Guiraudon CM (1995) Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation 91: 1588–1595

    CAS  PubMed  Google Scholar 

  • Neuberger HR, Schotten U, Ausma J, Blaauw Y, Eijsbouts S, van Hunnik A, Allessie M (2002) Atrial remodeling in the goat due to chronic complete atrioventricular block. Eur Heart J 23: 138–138

    Google Scholar 

  • Ohara K, Miyauchi Y, Ohara T, Fishbein MC, Zhou S, Lee MH, Mandel WJ, Chen PS, Karagueuzian HS (2002) Downregulation of immunodetectable atrial connexin40 in a canine model of chronic left ventricular myocardial infarction: implications to atrial fibrillation. J Cardiovasc Pharmacol Ther 7: 89–94

    CAS  PubMed  Google Scholar 

  • Page PL, Plumb VJ, Okumura K, Waldo AL (1986) A new animal model of atrial flutter. J Am Coll Cardiol 8: 872–879

    CAS  PubMed  Google Scholar 

  • Pedersen OD, Bagger H, Kober L, Torp-Pedersen C (1999) The occurrence and prognostic significance of atrial fibrillation/-flutter following acute myocardial infarction. TRACE Study group. TRAndolapril Cardiac Evalution. Eur Heart J 20: 748–754

    Article  CAS  PubMed  Google Scholar 

  • Pedersen OD, Bagger H, Kober L, Torp-Pedersen C (1999) Trandolapril reduces the incidence of atrial fibrillation after acute myocardial infarction in patients with left ventricular dysfunction. Circulation 100: 376–380

    CAS  PubMed  Google Scholar 

  • Pham TD, Fenoglio-JJ (1982) Right atrial ultrastructure in chronic rheumatic heart disease. Int J Cardiol 1: 289–304

    Article  CAS  PubMed  Google Scholar 

  • Pham TD, Wit AL, Hordof AJ, Malm JR, Fenoglio JJ (1978) Right atrial ultrastructure in congenital heart disease. I. Comparison of ventricular septal defect and endocardial cushion defect. Am J Cardiol 42: 973–982

    Article  CAS  PubMed  Google Scholar 

  • Psaty BM, Manolio TA, Kuller LH, Kronmal RA, Cushman M, Fried LP, White R, Furberg CD, Rautaharju PM (1997) Incidence of and risk factors for atrial fibrillation in older adults. Circulation 96: 2455–2461

    CAS  PubMed  Google Scholar 

  • Randall WC, Ardell JL (1985) Selective parasympathectomy of automatic and conductile tissues of the canine heart. Am J Physiol 248: H61–H68

    CAS  PubMed  Google Scholar 

  • Ravelli F, Allessie M (1997) Effects of atrial dilatation on refractory period and vulnerability to atrial fibrillation in the isolated Langendorff-perfused rabbit heart. Circulation 96: 1686–1695

    CAS  PubMed  Google Scholar 

  • Rensma PL, Allessie MA, Lammers WJ, Bonke FI, Schalij MJ (1988) Length of excitation wave and susceptibility to reentrant atrial arrhythmias in normal conscious dogs. Circ Res 62: 395–410

    CAS  PubMed  Google Scholar 

  • Rothberger C, Winterberg H (1909) Vorhofflimmern und arrhythmia perpetua. Wien Klin Wochenschr 22: 839–844

    Google Scholar 

  • Rothberger C, Winterberg H (1915) Archiv Ges Physiol 42 Sanderson (1879) On the time-relations of the excitatory process in the ventricle of the heart of the frog. J Physiol 2: 384–435

    Google Scholar 

  • Sanfilippo AJ, Abascal VM, Sheehan M, Oertel LB, Harrigan P, Hughes RA, Weyman AE (1990) Atrial enlargement as a consequence of atrial fibrillation. A prospective echocardiographic study. Circulation 82: 792–797

    CAS  PubMed  Google Scholar 

  • Satoh T, Zipes DP (1996) Unequal atrial stretch in dogs increases dispersion of refractoriness conducive to developing atrial fibrillation. J Cardiovasc Electrophysiol 7: 833–842

    CAS  PubMed  Google Scholar 

  • Schauerte P, Scherlag BJ, Pitha J, Scherlag MA, Reynolds D, Lazzara R, Jackman WM (2000) Catheter ablation of cardiac autonomic nerves for prevention of vagal atrial fibrillation. Circulation 102: 2774–2780

    CAS  PubMed  Google Scholar 

  • Schotten U, Ausma J, Stellbrink C, Sabatschus I, Vogel M, Frechen D, Schoendube F, Hanrath P, Allessie MA (2001) Cellular mechanisms of depressed atrial contractility in patients with chronic atrial fibrillation. Circulation 103: 691–698

    CAS  PubMed  Google Scholar 

  • Schotten U, Duytschaever M, Ausma J, Eijsbouts S, Neuberger HR, Allessie M (2003) Electrical and contractile remodeling during the first days of atrial fibrillation go hand in hand. Circulation 107: 1433–1439

    Article  PubMed  Google Scholar 

  • Schuessler RB, Grayson TM, Bromberg BI, Cox JL, Boineau JP (1992) Cholinergically mediated tachyarrhythmias induced by a single extrastimulus in the isolated canine right atrium. Circ Res 71: 1254–1267

    CAS  PubMed  Google Scholar 

  • Schuessler RB, Kawamoto T, Hand DE, Mitsuno M, Bromberg BI, Cox JL, Boineau JP (1993) Simultaneous epicardial and endocardial activation sequence mapping in the isolated canine right atrium. Circulation 88: 250–263

    CAS  PubMed  Google Scholar 

  • Sinno H, Derakhchan K, Libersan D, Merhi Y, Leung TK, Nattel S (2003) Atrial ischemia promotes atrial fibrillation in dogs. Circulation 107: 1930–1936

    Article  PubMed  Google Scholar 

  • Thiedemann K-U, Ferrans VJ (1977) Left atrial ultrastructure in mitral valvular disease. Am J Pathol 89: 575–594

    CAS  PubMed  Google Scholar 

  • Vasan RS, Larson MG, Levy D, Evans JC, Benjamin EJ (1997) Distribution and categorization of echocardiographic measurements in relation to reference limits: the Framingham Heart Study: formulation of a height-and sexspecific classification and its prospective validation. Circulation 96: 1863–1873

    CAS  PubMed  Google Scholar 

  • Vaziri SM, Larson MG, Benjamin EJ, Levy D (1994) Echocardiographic predictors of nonrheumatic atrial fibrillation. The Framingham Heart Study. Circulation 89: 724–730

    CAS  PubMed  Google Scholar 

  • Virag N, Jacquemet V, Henriquez CS, Zozor S, Blanc O, Vesin JM, Pruvot E, Kappenberger L (2002) Study of atrial arrhythmias in a computer model based on magnetic resonance images of human atria. Chaos 12: 754–763

    Article  PubMed  Google Scholar 

  • Wang J, Bourne GW, Wang Z, Villemaire C, Talajic M, Nattel S (1993) Comparative mechanisms of antiarrhythmic drug action in experimental atrial fibrillation. Importance of use-dependent effects on refractoriness. Circulation 88: 1030–1044

    CAS  PubMed  Google Scholar 

  • Wang J, Liu L, Feng J, Nattel S (1996) Regional and functional factors determining induction and maintenance of atrial fibrillation in dogs. Am J Physiol 271: H148–H158

    CAS  PubMed  Google Scholar 

  • Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92: 1954–1968

    CAS  PubMed  Google Scholar 

  • Wijffels MCEF, Kirchhof CJHJ, Dorland R, Power J, Allessie MA (1997) Electrical remodeling due to atrial fibrillation in chronically instrumented conscious goats: roles of neurohumoral changes, ischemia, atrial stretch and high rate of electrical activation. Circulation 96: 3710–3720

    CAS  PubMed  Google Scholar 

  • Wouters L, Liu GS, Flameng W, Thijssen VL, Thone F, Borgers M (2001) Structural remodeling of atrial myocardium in patients with cardiac valve disease and atrial fibrillation. Exp Clin Cardiol 5: 158–163

    Google Scholar 

  • Wu TJ, Yashima M, Xie F, Athill CA, Kim YH, Fishbein MC, Qu Z, Garfinkel A, Weiss JN, Karagueuzian HS, Chen PS (1998) Role of pectinate muscle bundles in the generation and maintenance of intra-atrial reentry: potential implications for the mechanism of conversion between atrial fibrillation and atrial flutter. Circ Res 83: 448–462

    CAS  PubMed  Google Scholar 

  • Yared JP, Starr NJ, Torres FK, Bashour CA, Bourdakos G, Piedmonte M, Michener JA, Davis JA, Rosenberger TE (2000) Effects of single dose, postinduction dexamethasone on recovery after cardiac surgery. Ann Thorac Surg 69: 1420–1424

    Article  CAS  PubMed  Google Scholar 

  • Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S (1997) Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res 81: 512–525

    CAS  PubMed  Google Scholar 

  • Zou R, Kneller J, Leon LJ, Nattel S (2002) Development of a computer algorithm for the detection of phase singularities and initial application to analyze simulations of atrial fibrillation. Chaos 12: 764–778

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schotten, U., Blaauw, Y., Allessie, M. (2005). In-Vivo Models of Atrial Fibrillation. In: Dhein, S., Mohr, F.W., Delmar, M. (eds) Practical Methods in Cardiovascular Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26574-0_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-26574-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40763-8

  • Online ISBN: 978-3-540-26574-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics