Skip to main content

The Role of GPCR Dimerisation/Oligomerisation in Receptor Signalling

  • Conference paper
  • First Online:

Part of the book series: Ernst Schering Foundation Symposium Proceedings ((SCHERING FOUND,volume 2006/2))

Abstract

A wide range of techniques have been employed to examine the quaternary structure of G-protein-coupled receptors (GPCRs). Although it is well established that homo-dimerisation is common, recent studies have sought to explore the physical basis of these interactions and the role of dimerisation in signal transduction. Growing evidence hints at the existence of higher-order organisation of individual GPCRs and the potential for hetero-dimerisation between pairs of co-expressed GPCRs. Here we consider how both homo-dimerisation/oligomerisation and hetero-dimerisation can regulate signal transduction through GPCRs and the potential consequences of this for function of therapeutic medicines that target GPCRs. Hetero-dimerisation is not the sole means by which co-expressed GPCRs may regulate the function of one another. Heterologous desensitisation may be at least as important and we also consider if this can be the basis for physiological antagonism between pairs of co-expressed GPCRs.

Although there may be exceptions (Meyer et al. 2006), a great deal of recent evidence has indicated that most G-protein-coupled receptors (GPCRs) do not exist as monomers but rather as dimers or, potentially, within higher-order oligomers (Milligan 2004b; Park et al. 2004). Support for such models has been provided by a range of studies employing different approaches, including co-immunoprecipitation of differentially epitope-tagged but co-expressed forms of the same GPCR, co-operativity in ligand binding and a variety of resonance energy transfer techniques (Milligan and Bouvier 2005). Only for the photon receptor rhodopsin has the organisational structure of a GPCR been studied in situ. The application of atomic force microscopy to murine rod outer segment discs indicated that rhodopsin is organised in a series of parallel arrays of dimers (Liang et al. 2003) and based on this, molecular models were constructed to try to define and interpret regions of contact between the monomers (Fotiadis et al. 2004). Only for relatively few other GPCRs are details of the molecular basis of dimerisation available but within this limited data set, recent studies on the dopamine D2 receptor suggest a means by which information on the binding of an agonist can be transmitted between the two elements of the dimer via the dimer interface (Guo et al. 2005).

Although the availability of cDNAs encoding molecularly defined GPCRs has allowed high-throughput screening for ligands that modulate GPCR function, this is performed almost exclusively in heterologous cell lines transfected to express only the specific GPCR of interest. Given that the human genome contains some 400–450 genes encoding non-chemosensory GPCRs, it is clear that any individual cell of the body may express a considerable number of GPCRs. Interactions between these, either via hetero-dimerisation, via heterologous desensitisation or via the integration of downstream signals can potentially alter the pharmacology, sensitivity and function of receptor agonists and hence produce varied responses. In this article, we will use specific examples to consider the role of homo-dimerisation/oligomerisation in GPCR function and whether either direct hetero-dimerisation or heterologous desensitisation between pairs of co-expressed GPCRs affects the function of the receptor pairs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen LF, Lefkowitz RJ, Caron MG, Cotecchia S (1991) G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances mitogenesis and tumorigenicity. Proc Natl Acad Sci USA 88:11354–11358

    Article  CAS  PubMed  Google Scholar 

  • Canals M, Jenkins L, Kellett E, Milligan G (2006) Up-regulation of the angiotensin II AT1 receptor by the Mas proto-oncogene is due to constitutive activation of Gq/G11 by Mas. J Biol Chem 281:16767–16767

    Article  Google Scholar 

  • Carrillo JJ, Stevens PA, Milligan G (2002) Measurement of agonist-dependent and -independent signal initiation of α1b-adrenoceptor mutants by direct analysis of guanine nucleotide exchange on the G protein Gα11. J Pharmacol Exp Ther 302:1080–1088

    Article  CAS  PubMed  Google Scholar 

  • Carrillo JJ, Pediani J, Milligan G (2003) Dimers of class A G protein-coupled receptors function via agonist-mediated trans-activation of associated G proteins. J Biol Chem 278:42578–42587

    Article  CAS  PubMed  Google Scholar 

  • Carrillo JJ, Lopez-Gimenez JF, Milligan G (2004) Multiple interactions between transmembrane helices generate the oligomeric alpha1b-adrenoceptor. Mol Pharmacol 66:1123–1137

    Article  CAS  PubMed  Google Scholar 

  • Ellis J, Pediani J, Milasta S, Milligan G (2006) Orexin-1 receptor-cannabinoid CB1 receptor hetero-dimerization results in both ligand-dependent and-independent co-ordinated alterations of receptor localization and function. J Biol Chem 281:38812–38824

    Google Scholar 

  • Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2004) The G protein-coupled receptor rhodopsin in the native membrane. FEBS Lett 564:281–288

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Shi L, Filizola M, Weinstein H, Javitch JA (2005) Crosstalk in G protein-coupled receptors: changes at the transmembrane homodimer interface determine activation. Proc Natl Acad Sci USA 102:17495–17500

    Article  CAS  PubMed  Google Scholar 

  • Ianoul A, Grant DD, Rouleau Y, Bani-Yaghoub M, Johnston LJ, Pezacki JP (2005) Imaging nanometer domains of beta-adrenergic receptor complexes on the surface of cardiac myocytes. Nat Chem Biol 1:196–202

    Article  CAS  PubMed  Google Scholar 

  • Kostenis E, Milligan G, Christopoulos A, Sanchez-Ferrer CF, Heringer-Walther S, Sexton P, Gembardt F, Kellett E, Martini L, Vanderheyden P, Schultheiss HP, Walther T (2005) G protein-coupled receptor Mas is a physiological antagonist of the angiotensin II type 1 receptor. Circulation 111:1806–1813

    Article  CAS  PubMed  Google Scholar 

  • Langmead CJ, Jerman JC, Brough SJ, Scott C, Porter RA, Herdon HJ (2004) Characterisation of the binding of [3H]-SB-674042, a novel nonpeptide antagonist, to the human orexin-1 receptor. Br J Pharmacol 141:340–346

    Article  CAS  PubMed  Google Scholar 

  • Leterrier C, Bonnard D, Carrel D, Rossier J, Lenkei Z (2004) Constitutive endocytic cycle of the CB1 cannabinoid receptor. J Biol Chem 279:36013–36021

    Article  CAS  PubMed  Google Scholar 

  • Leterrier C, Laine J, Darmon M, Boudin H, Rossier J, Lenkei Z (2006) Constitutive activation drives compartment-selective endocytosis and axonal targeting of type 1 cannabinoid receptors. J Neurosci 26:3141–3153

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A (2003) Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J Biol Chem 278:21655–21662

    Article  CAS  PubMed  Google Scholar 

  • Meyer BH, Segura J-M, Martinez KL, Hovius R, George N, Johnsson K, Vogel H (2006) FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc Natl Acad Sci USA 103:2138–2143

    Article  CAS  PubMed  Google Scholar 

  • Milligan G (2004a) Applications of bioluminescence- and fluorescence resonance energy transfer to drug discovery at G protein-coupled receptors. Eur J Pharm Sci 21:397–405

    Article  CAS  PubMed  Google Scholar 

  • Milligan G (2004b) G protein-coupled receptor dimerization: function and ligand pharmacology. Mol Pharmacol 66:1–7

    Article  CAS  PubMed  Google Scholar 

  • Milligan G (2005) The molecular basis of dimerisation of family A G protein-coupled receptors. In: Lundstrom K, Chui M (eds) GPCRs in drug discovery. Marcel Dekker, pp 329–340

    Google Scholar 

  • Milligan G, Bouvier M (2005) Methods to monitor the quaternary structure of G protein-coupled receptors. FEBS J 272:2914–2925

    Article  Google Scholar 

  • Pietila EM, Tuusa JT, Apaja PM, Aatsinki JT, Hakalahti AE, Rajaniemi HJ, Petaja-Repo UE (2005) Inefficient maturation of the rat luteinizing hormone receptor. A putative way to regulate receptor numbers at the cell surface. J Biol Chem 280:26622–26629

    Article  PubMed  Google Scholar 

  • Qian H, Pipolo L, Thomas WG (1999) Identification of protein kinase C phosphorylation sites in the angiotensin II (AT1A) receptor. Biochem J 343:637–644

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi-Carmona M, Le Duigou A, Oustric D, Barth F, Bouaboula M, Carayon P, Casellas P, Le Fur G (1998) Modulation of CB1 cannabinoid receptor functions after a long-term exposure to agonist or inverse agonist in the Chinese hamster ovary cell expression system. J Pharmacol Exp Ther 87:1038–1047

    Google Scholar 

  • Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT. Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263

    Article  CAS  PubMed  Google Scholar 

  • Smith RD, Hunyady L, Olivares-Reyes JA, Mihalik B, Jayadev S, Catt KJ (1998) Agonist-induced phosphorylation of the angiotensin AT1a receptor is localized to a serine/threonine-rich region of its cytoplasmic tail. Mol Pharmacol 54:935–941

    CAS  PubMed  Google Scholar 

  • Stanasila L, Perez JB, Vogel H, Cotecchia S (2003) Oligomerization of the alpha 1a- and alpha 1b-adrenergic receptor subtypes. Potential implications in receptor internalization. J Biol Chem 278:40239–40251

    Article  CAS  PubMed  Google Scholar 

  • Uberti MA, Hall RA, Minneman KP (2003) Subtype-specific dimerization of alpha 1-adrenoceptors: effects on receptor expression and pharmacological properties. Mol Pharmacol 64:1379–1390

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Milligan .

Editor information

H. Bourne R. Horuk J. Kuhnke H. Michel

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this paper

Cite this paper

Milligan, G., Canals, M., Pediani, J.D., Ellis, J., Lopez-Gimenez, J.F. (2007). The Role of GPCR Dimerisation/Oligomerisation in Receptor Signalling. In: Bourne, H., Horuk, R., Kuhnke, J., Michel, H. (eds) GPCRs: From Deorphanization to Lead Structure Identification. Ernst Schering Foundation Symposium Proceedings, vol 2006/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2789_2006_007

Download citation

Publish with us

Policies and ethics