Skip to main content

Orphan Seven Transmembrane Receptor Screening

  • Conference paper
  • First Online:

Part of the book series: Ernst Schering Foundation Symposium Proceedings ((SCHERING FOUND,volume 2006/2))

Abstract

Drug discovery has successfully exploited the superfamily of seven transmembrane receptors (7TMR), with over 35% of clinically marketed drugs targeting them. However, it is clear that there remains an undefined potential within this protein family for successful drugs of the future. The human genome sequencing project identified approximately 720 genes that belong to the 7TMR superfamily. Around half of these genes encode sensory receptors, while the other half are potential drug targets. Natural ligands have been identified for approximately 215 of these, leaving 155 receptors classified as orphan 7TMRs having no known ligand. Deorphanisation of these receptors by identification of natural ligands has been the traditional method enabling target validation by use of these ligands as tools to define biological relevance and disease association. Such ligands have been paired with their cognate receptor experimentally by screening of small molecule and peptide ligands, reverse pharmacology and the use of bioinformatics to predict candidate ligands. In this manuscript, we review the methodologies developed for the identification of ligands at orphan 7TMRs and exemplify these with case studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albertin G, Malendowicz LK, Macchi C, Markowska A, Nussdorfer GG (2000) Cerebellin stimulates the secretory activity of the rat adrenal gland: in vitro and in vivo studies. Neuropeptides 34:7–11

    CAS  Google Scholar 

  • Ames RS, Li Y, Sarau HM, Nuthulaganti P, Foley JJ, Ellis C, Zeng Z, Su K, Jurewicz AJ, Hertzberg RP, Bergsma DJ, Kumar C (1996) Molecular cloning and characterization of the human anaphylatoxin C3a receptor. J Biol Chem 271:20231–20234

    CAS  Google Scholar 

  • Ames RS, Sarau HM, Chambers JK, Willette RN, Aiyar NV, Romanic AM, Louden CS, Foley JJ, Sauermelch CF, Coatney RW, Ao Z, Disa J, Holmes SD, Stadel JM, Martin JD, Liu WS, Glover GI, Wilson S, McNulty DE, Ellis CE, Elshourbagy NA, Shabon U, Trill JJ, Hay DW, Ohlstein EH, Bergsma DJ, Douglas SA (1999) Human urotensin-II Is a potent vasoconstrictor and agonist for the orphan receptor GPR. Nature 401:282–286

    CAS  Google Scholar 

  • Ames R, Fornwald J, Nuthulaganti P, Trill J, Foley J, Buckley P, Kost T, Wu Z, Romanos M (2004) BacMam recombinant baculoviruses in G protein-coupled receptor drug discovery. Receptors Channels 10:99–107

    CAS  Google Scholar 

  • An S, Bleu T, Huang W, Hallmark OG, Coughlin SR, Goetzl EJ (1997) Identification of CDNAs encoding two G protein-coupled receptors for lysosphingolipids. FEBS Lett 417:279–282

    CAS  Google Scholar 

  • An S, Bleu T, Hallmark OG, Goetzl EJ (1998) Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J Biol Chem 273:7906–7910

    CAS  Google Scholar 

  • Angelone T, Goumon Y, Cerra MC, Metz-Boutigue MH, Aunis D, Tota B (2006) The emerging cardio-inhibitory role of the hippocampal cholinergic neurostimulating peptide. J Pharmacol Exp Ther 318:336–344

    CAS  Google Scholar 

  • Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J, Moepps B, Arenzana-Seisdedos F, Thelen M, Bachelerie F (2005) The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 280:35760–35766

    CAS  Google Scholar 

  • Barak LS, Ferguson SS, Zhang J, Caron MG (1997) A beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J Biol Chem 272:27497–27500

    CAS  Google Scholar 

  • Bertrand L, Parent S, Caron M, Legault M, Joly E, Angers S, Bouvier M, Brown M, Houle B, Menard L (2002) The BRET2/arrestin assay in stable recombinant cells: a platform to screen for compounds that interact with G protein-coupled receptors (GPCRS). J Recept Signal Transduct Res 22:533–541

    CAS  Google Scholar 

  • Blumer KJ, Thorner J (1991) Receptor-G protein signaling in yeast. Annu Rev Physiol 53:37–57

    CAS  Google Scholar 

  • Bockaert J, Dumuis A, Fagni L, Marin P (2004) GPCR-GIP networks: a first step in the discovery of new therapeutic drugs? Curr Opin Drug Discov Devel 7:649–657

    CAS  Google Scholar 

  • Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (2001) Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci USA 98:8966–8971

    CAS  Google Scholar 

  • Boyce FM, Bucher NL (1996) Baculovirus-mediated gene transfer into mammalian cells. Proc Natl Acad Sci USA 93:2348–2352

    CAS  Google Scholar 

  • Breit A, Lagace M, Bouvier M (2004) Hetero-oligomerization between beta2- and beta3-adrenergic receptors generates a beta-adrenergic signaling unit with distinct functional properties. J Biol Chem 279:28756–28765

    CAS  Google Scholar 

  • Breitwieser GE (2004) G protein-coupled receptor oligomerization: implications for G Protein activation and cell signaling. Circ Res 94:17–27

    CAS  Google Scholar 

  • Brezillon S, Lannoy V, Franssen JD, Le Poul E, Dupriez V, Lucchetti J, Detheux M, Parmentier M (2003) Identification of natural ligands for the orphan G protein-coupled receptors GPR7 and GPR8. J Biol Chem 278:776–783

    CAS  Google Scholar 

  • Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278:11303–11311

    CAS  Google Scholar 

  • Broach JR, Thorner J (1996) High-throughput screening for drug discovery. Nature 384:14–16

    CAS  Google Scholar 

  • Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319

    CAS  Google Scholar 

  • Burstein ES, Ott TR, Feddock M, Ma JN, Fuhs S, Wong S, Schiffer HH, Brann MR, Nash NR (2006) Characterization of the Mas-related gene family: structural and functional conservation of human and rhesus MrgX receptors. Br J Pharmacol 147:73–82

    CAS  Google Scholar 

  • Cain SA, Monk PN (2002) The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a Des-Arg(74). J Biol Chem 277:7165–7169

    CAS  Google Scholar 

  • Campana WM, Hiraiwa M, O'Brien JS (1998) Prosaptide activates the MAPK pathway by a G-protein-dependent mechanism essential for enhanced sulfatide synthesis by Schwann cells. FASEB J 12:307–314

    CAS  Google Scholar 

  • Chambers J, Ames RS, Bergsma D, Muir A, Fitzgerald LR, Hervieu G, Dytko GM, Foley JJ, Martin J, Liu WS, Park J, Ellis C, Ganguly S, Konchar S, Cluderay J, Leslie R, Wilson S, Sarau HM (1999) Melanin-concentrating hormone is the cognate ligand for the orphan G-Protein-coupled receptor SLC-1. Nature 400:261–265

    CAS  Google Scholar 

  • Chambers JK, Macdonald LE, Sarau HM, Ames RS, Freeman K, Foley JJ, Zhu Y, McLaughlin MM, Murdock P, McMillan L, Trill J, Swift A, Aiyar N, Taylor P, Vawter L, Naheed S, Szekeres P, Hervieu G, Scott C, Watson JM, Murphy AJ, Duzic E, Klein C, Bergsma DJ, Wilson S, Livi GP (2000) A G protein-coupled receptor for UDP-glucose. J Biol Chem 275:10767–10771

    CAS  Google Scholar 

  • Chen G, Jayawickreme C, Way J, Armour S, Queen K, Watson C, Ignar D, Chen WJ, Kenakin T (1999) Constitutive receptor systems for drug discovery. J Pharmacol Toxicol Methods 42:199–206

    CAS  Google Scholar 

  • Chen H, Ikeda SR (2004) Modulation of ion channels and synaptic transmission by a human sensory neuron-specific G-protein-coupled receptor, SNSR4/MrgX1, heterologously expressed in cultured rat neurons. J Neurosci 24:5044–5053

    CAS  Google Scholar 

  • Choi SS, Lahn BT (2003) Adaptive evolution of MRG, a neuron-specific gene family implicated in nociception. Genome Res 13:2252–2259

    CAS  Google Scholar 

  • Christopoulos A, Christopoulos G, Morfis M, Udawela M, Laburthe M, Couvineau A, Kuwasako K, Tilakaratne N, Sexton PM (2003) Novel receptor partners and function of receptor activity-modifying proteins. J Biol Chem 278:3293–3297

    CAS  Google Scholar 

  • Condreay JP, Witherspoon SM, Clay WC, Kost TA (1999) Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc Natl Acad Sci USA 96:127–132

    CAS  Google Scholar 

  • De Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95:322–327

    Google Scholar 

  • Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106:619–632

    CAS  Google Scholar 

  • Dowell SJ, Brown AJ (2002) Yeast assays for G-protein-coupled receptors. Receptors Channels 8:343–352

    CAS  Google Scholar 

  • Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964

    CAS  Google Scholar 

  • Durocher Y, Perret S, Thibaudeau E, Gaumond MH, Kamen A, Stocco R, Abramovitz M (2000) A reporter gene assay for high-throughput screening of G-protein-coupled receptors stably or transiently expressed in HEK293 EBNA cells grown in suspension culture. Anal Biochem 284:316–326

    CAS  Google Scholar 

  • Eglen RM (2005) Functional G protein-coupled receptor assays for primary and secondary screening. Comb Chem High Throughput Screen 8:311–318

    CAS  Google Scholar 

  • Elagoz A, Henderson D, Babu PS, Salter S, Grahames C, Bowers L, Roy MO, Laplante P, Grazzini E, Ahmad S, Lembo PM (2004) A truncated form of CKbeta8-1 is a potent agonist for human formyl peptide-receptor-like 1 receptor. Br J Pharmacol 141:37–46

    CAS  Google Scholar 

  • Elshourbagy NA, Ames RS, Fitzgerald LR, Foley JJ, Chambers JK, Szekeres PG, Evans NA, Schmidt DB, Buckley PT, Dytko GM, Murdock PR, Milligan G, Groarke DA, Tan KB, Shabon U, Nuthulaganti P, Wang DY, Wilson S, Bergsma DJ, Sarau HM (2000) Receptor for the pain modulatory neuropeptides FF and AF is an orphan G protein-coupled receptor. J Biol Chem 275:25965–25971

    CAS  Google Scholar 

  • Erickson JR, Wu JJ, Goddard JG, Tigyi G, Kawanishi K, Tomei LD, Kiefer MC (1998) Edg-2/Vzg-1 couples to the yeast pheromone response pathway selectively in response to lysophosphatidic acid. J Biol Chem 273:1506–1510

    CAS  Google Scholar 

  • Ernst S, Lange C, Wilbers A, Goebeler V, Gerke V, Rescher U (2004) An annexin 1 N-terminal peptide activates leukocytes by triggering different members of the formyl peptide receptor family. J Immunol 172:7669–7676

    CAS  Google Scholar 

  • Evans NA, Groarke DA, Warrack J, Greenwood CJ, Dodgson K, Milligan G, Wilson S (2001) Visualizing differences in ligand-induced beta-arrestin-GFP interactions and trafficking between three recently characterized G protein-coupled receptors. J Neurochem 77:476–485

    CAS  Google Scholar 

  • Fathi Z, Corjay MH, Shapira H, Wada E, Benya R, Jensen R, Viallet J, Sausville EA, Battey JF (1993) BRS-3: a novel bombesin receptor subtype selectively expressed in testis and lung carcinoma cells. J Biol Chem 268:5979–5984

    CAS  Google Scholar 

  • Feighner SD, Tan CP, McKee KK, Palyha OC, Hreniuk DL, Pong SS, Austin CP, Figueroa D, MacNeil D, Cascieri MA, Nargund R, Bakshi R, Abramovitz M, Stocco R, Kargman S, O'Neill G, Van der Ploeg LH, Evans J, Patchett AA, Smith RG, Howard AD (1999) Receptor for motilin identified in the human gastrointestinal system. Science 284:2184–2188

    CAS  Google Scholar 

  • Fiore S, Maddox JF, Perez HD, Serhan CN (1994) Identification of a human CDNA encoding a functional high affinity lipoxin A4 receptor. J Exp Med 180:253–260

    CAS  Google Scholar 

  • Fujii R, Yoshida H, Fukusumi S, Habata Y, Hosoya M, Kawamata Y, Yano T, Hinuma S, Kitada C, Asami T, Mori M, Fujisawa Y, Fujino M (2002) Identification of a neuropeptide modified with bromine as an endogenous ligand for GPR7. J Biol Chem 277:34010–34016

    CAS  Google Scholar 

  • Fukusumi S, Yoshida H, Fujii R, Maruyama M, Komatsu H, Habata Y, Shintani Y, Hinuma S, Fujino M (2003) A new peptidic ligand and its receptor regulating adrenal function in rats. J Biol Chem 278:46387–46395

    CAS  Google Scholar 

  • Gabarin N, Gavish H, Muhlrad A, Chen YC, Namdar-Attar M, Nissenson RA, Chorev M, Bab I (2001) Mitogenic G(i) protein-MAP kinase signaling cascade in MC3T3-E1 osteogenic cells: activation by C-terminal pentapeptide of osteogenic growth peptide [OGP(10–14)] and attenuation of activation by CAMP. J Cell Biochem 81:594–603

    CAS  Google Scholar 

  • Galindo E, Mendez M, Calvo S, Gonzalez-Garcia C, Cena V, Hubert P, Bader MF, Aunis D (1992) Chromostatin receptors control calcium channel activity in adrenal chromaffin cells. J Biol Chem 267:407–412

    CAS  Google Scholar 

  • George SR, Fan T, Xie Z, Tse R, Tam V, Varghese G, O'Dowd BF (2000) Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J Biol Chem 275:26128–26135

    CAS  Google Scholar 

  • Gerard NP, Lu B, Liu P, Craig S, Fujiwara Y, Okinaga S, Gerard C (2005) An anti-inflammatory function for the complement anaphylatoxin C5a-binding protein, C5L2. J Biol Chem 280:39677–39680

    CAS  Google Scholar 

  • Goetz AS, Liacos J, Yingling J, Ignar DM (1999) A combination assay for simultaneous assessment of multiple signaling pathways. J Pharmacol Toxicol Methods 42:225–235

    CAS  Google Scholar 

  • Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA (2000) Heterodimerization of mu and delta opioid receptors: a role in opiate synergy. J Neurosci 20:RC110

    CAS  Google Scholar 

  • Gomes I, Gupta A, Filipovska J, Szeto HH, Pintar JE, Devi LA (2004) A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci USA 101:5135–5139

    CAS  Google Scholar 

  • Gonzalez-Yanes C, Santos-Alvarez J, Sanchez-Margalet V (1999) Characterization of pancreastatin receptors and signaling in adipocyte membranes. Biochim Biophys Acta 1451:153–162

    CAS  Google Scholar 

  • Gonzalez-Yanes C, Santos-Alvarez J, Sanchez-Margalet V (2001) Pancreastatin, a chromogranin A-derived peptide, activates Galpha(16) and phospholipase C-beta(2) by interacting with specific receptors in rat heart membranes. Cell Signal 13:43–49

    CAS  Google Scholar 

  • Goumon Y, Angelone T, Schoentgen F, Chasserot-Golaz S, Almas B, Fukami MM, Langley K, Welters ID, Tota B, Aunis D, Metz-Boutigue MH (2004) The hippocampal cholinergic neurostimulating peptide, the N-terminal fragment of the secreted phosphatidylethanolamine-binding protein, possesses a new biological activity on cardiac physiology. J Biol Chem 279:13054–13064

    CAS  Google Scholar 

  • Graminski GF, Jayawickreme CK, Potenza MN, Lerner MR (1993) Pigment dispersion in frog melanophores can be induced by a phorbol ester or stimulation of a recombinant receptor that activates phospholipase C. J Biol Chem 268:5957–5964

    CAS  Google Scholar 

  • Grazzini E, Puma C, Roy MO, Yu XH, O'Donnell D, Schmidt R, Dautrey S, Ducharme J, Perkins M, Panetta R, Laird JM, Ahmad S, Lembo PM (2004) Sensory neuron-specific receptor activation elicits central and peripheral nociceptive effects in rats. Proc Natl Acad Sci USA 101:7175–7180

    CAS  Google Scholar 

  • Green A, Milligan G, Dobias SB (1992) Gi down-regulation as a mechanism for heterologous desensitization in adipocytes. J Biol Chem 267:3223–3229

    CAS  Google Scholar 

  • Habata Y, Fujii R, Hosoya M, Fukusumi S, Kawamata Y, Hinuma S, Kitada C, Nishizawa N, Murosaki S, Kurokawa T, Onda H, Tatemoto K, Fujino M (1999) Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochim Biophys Acta 1452:25–35

    CAS  Google Scholar 

  • Hamdan FF, Audet M, Garneau P, Pelletier J, Bouvier M (2005) High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay. J Biomol Screen 10:463–475

    CAS  Google Scholar 

  • Han SK, Dong X, Hwang JI, Zylka MJ, Anderson DJ, Simon MI (2002) Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinctively activated by RF-amide-related peptides through the Galpha Q/11 pathway. Proc Natl Acad Sci USA 99:14740–14745

    CAS  Google Scholar 

  • Harada M, Habata Y, Hosoya M, Nishi K, Fujii R, Kobayashi M, Hinuma S (2004) N-formylated humanin activates both formyl peptide receptor-like 1 and 2. Biochem Biophys Res Commun 324:255–261

    CAS  Google Scholar 

  • He W, Miao FJ, Lin DC, Schwandner RT, Wang Z, Gao J, Chen JL, Tian H, Ling L (2004) Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429:188–193

    CAS  Google Scholar 

  • Heise CE, O'Dowd BF, Figueroa DJ, Sawyer N, Nguyen T, Im DS, Stocco R, Bellefeuille JN, Abramovitz M, Cheng R, Williams DL Jr, Zeng Z, Liu Q, Ma L, Clements MK, Coulombe N, Liu Y, Austin CP, George SR, O'Neill GP, Metters KM, Lynch KR, Evans JF (2000) Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem 275:30531–30536

    CAS  Google Scholar 

  • Hemmila II (1999) LANCEtrade mark: homogeneous assay platform for HTS. J Biomol Screen 4:303–308

    CAS  Google Scholar 

  • Heusler P, Pauwels PJ, Wurch T, Newman-Tancredi A, Tytgat J, Colpaert FC, Cussac D (2005) Differential ion current activation by human 5-HT(1A) receptors in Xenopus Oocytes: evidence for agonist-directed trafficking of receptor signalling. Neuropharmacology 49:963–976

    CAS  Google Scholar 

  • Hill J, Duckworth M, Murdock P, Rennie G, Sabido-David C, Ames RS, Szekeres P, Wilson S, Bergsma DJ, Gloger IS, Levy DS, Chambers JK, Muir AI (2001) Molecular cloning and functional characterization of MCH2, a novel human MCH receptor. J Biol Chem 276:20125–20129

    CAS  Google Scholar 

  • Hinuma S, Habata Y, Fujii R, Kawamata Y, Hosoya M, Fukusumi S, Kitada C, Masuo Y, Asano T, Matsumoto H, Sekiguchi M, Kurokawa T, Nishimura O, Onda H, Fujino M (1998) A prolactin-releasing peptide in the brain. Nature 393:272–276

    CAS  Google Scholar 

  • Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori Y, Ichimasa M, Sugamura K, Nakamura M, Takano S, Nagata K (2001) Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 193:255–261

    CAS  Google Scholar 

  • Hiraiwa M, Campana WM, Martin BM, O'Brien JS (1997) Prosaposin receptor: evidence for a G-protein-associated receptor. Biochem Biophys Res Commun 240:415–418

    CAS  Google Scholar 

  • Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11:90–94

    CAS  Google Scholar 

  • Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202–207

    CAS  Google Scholar 

  • Hosoi T, Koguchi Y, Sugikawa E, Chikada A, Ogawa K, Tsuda N, Suto N, Tsunoda S, Taniguchi T, Ohnuki T (2002) Identification of a novel human eicosanoid receptor coupled to G(i/o). J Biol Chem 277:31459–31465

    CAS  Google Scholar 

  • Howard AD, Wang R, Pong SS, Mellin TN, Strack A, Guan XM, Zeng Z, Williams DL Jr, Feighner SD, Nunes CN, Murphy B, Stair JN, Yu H, Jiang Q, Clements MK, Tan CP, McKee KK, Hreniuk DL, McDonald TP, Lynch KR, Evans JF, Austin CP, Caskey CT, Van der Ploeg LH, Liu Q (2000) Identification of receptors for neuromedin U and its role in feeding. Nature 406:70–74

    CAS  Google Scholar 

  • Hsu CS, Ho YC, Wang KC, Hu YC (2004) Investigation of optimal transduction conditions for baculovirus-mediated gene delivery into mammalian cells. Biotechnol Bioeng 88:42–51

    CAS  Google Scholar 

  • Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD, Hsueh AJ (2002) Activation of orphan receptors by the hormone relaxin. Science 295:671–674

    CAS  Google Scholar 

  • Idzko M, Panther E, Bremer HC, Windisch W, Sorichter S, Herouy Y, Elsner P, Mockenhaupt M, Girolomoni G, Norgauer J (2004) Inosine stimulates chemotaxis, Ca2+-transients and actin polymerization in immature human dendritic cells via a pertussis toxin-sensitive mechanism independent of adenosine receptors. J Cell Physiol 199:149–156

    CAS  Google Scholar 

  • Im DS, Heise CE, Ancellin N, O'Dowd BF, Shei GJ, Heavens RP, Rigby MR, Hla T, Mandala S, McAllister G, George SR, Lynch KR (2000a) Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. J Biol Chem 275:14281–14286

    CAS  Google Scholar 

  • Im DS, Heise CE, Harding MA, George SR, O'Dowd BF, Theodorescu DD, Lynch KR (2000b) Molecular cloning and characterization of a lysophosphatidic acid receptor, Edg-7, expressed in prostate. Mol Pharmacol 57:753–759

    CAS  Google Scholar 

  • Im DS, Heise CE, Nguyen T, O'Dowd BF, Lynch KR (2001) Identification of a molecular target of psychosine and its role in globoid cell formation. J Cell Biol 153:429–434

    CAS  Google Scholar 

  • Inbe H, Watanabe S, Miyawaki M, Tanabe E, Encinas JA (2004) Identification and characterization of a cell-surface receptor, P2Y15, for AMP and adenosine. J Biol Chem 279:19790–19799

    CAS  Google Scholar 

  • Ishii S, Kihara Y, Shimizu T (2005) Identification of T cell death-associated gene 8 (TDAG8) as a novel acid sensing G-protein-coupled receptor. J Biol Chem 280:9083–9087

    CAS  Google Scholar 

  • Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H, Matsumura F, Noguchi Y, Shinohara T, Hinuma S, Fujisawa Y, Fujino M (2003) Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422:173–176

    CAS  Google Scholar 

  • Jayawickreme CK, Sauls H, Bolio N, Ruan J, Moyer M, Burkhart W, Marron B, Rimele T, Shaffer J (1999) Use of a cell-based, lawn format assay to rapidly screen a 442,368 bead-based peptide library. J Pharmacol Toxicol Methods 42:189–197

    CAS  Google Scholar 

  • Johnson EC, Bohn LM, Barak LS, Birse RT, Nassel DR, Caron MG, Taghert PH (2003) Identification of Drosophila neuropeptide receptors by G protein-coupled receptors-beta-arrestin2 interactions. J Biol Chem 278:52172–52178

    CAS  Google Scholar 

  • Jones CE, Holden S, Tenaillon L, Bhatia U, Seuwen K, Tranter P, Turner J, Kettle R, Bouhelal R, Charlton S, Nirmala NR, Jarai G, Finan P (2003) Expression and characterization of a 5-Oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid receptor highly expressed on human eosinophils and neutrophils. Mol Pharmacol 63:471–477

    CAS  Google Scholar 

  • Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M, Yao WJ, Johnson M, Gunwaldsen C, Huang LY, Tang C, Shen Q, Salon JA, Morse K, Laz T, Smith KE, Nagarathnam D, Noble SA, Branchek TA, Gerald C (1998) GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396:674–679

    CAS  Google Scholar 

  • Jonsson JR, Moschen AR, Hickman IJ, Richardson MM, Kaser S, Clouston AD, Powell EE, Tilg H (2005) Adiponectin and its receptors in patients with chronic hepatitis C. J Hepatol 43:929–936

    CAS  Google Scholar 

  • Jordan BA, Devi LA (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399:697–700

    CAS  Google Scholar 

  • Kabarowski JH, Zhu K, Le LQ, Witte ON, Xu Y (2001) Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science 293:702–705

    CAS  Google Scholar 

  • Kalant D, Cain SA, Maslowska M, Sniderman AD, Cianflone K, Monk PN (2003) The chemoattractant receptor-like protein C5L2 binds the C3a Des-Arg77/acylation-stimulating protein. J Biol Chem 278:11123–11129

    CAS  Google Scholar 

  • Kalant D, MacLaren R, Cui W, Samanta R, Monk PN, Laporte SA, Cianflone K (2005) C5L2 Is a functional receptor for acylation-stimulating protein. J Biol Chem 280:23936–23944

    CAS  Google Scholar 

  • Kamohara M, Takasaki J, Matsumoto M, Saito T, Ohishi T, Ishii H, Furuichi K (2000) Molecular cloning and characterization of another leukotriene B4 receptor. J Biol Chem 275:27000–27004

    CAS  Google Scholar 

  • Kamohara M, Matsuo A, Takasaki J, Kohda M, Matsumoto M, Matsumoto S, Soga T, Hiyama H, Kobori M, Katou M (2005) Identification of MrgX2 as a human G-protein-coupled receptor for proadrenomedullin N-terminal peptides. Biochem Biophys Res Commun 330:1146–1152

    CAS  Google Scholar 

  • Kanda N, Watanabe S (2003) 17beta-estradiol enhances the production of nerve growth factor in THP-1-derived macrophages or peripheral blood monocyte-derived macrophages. J Invest Dermatol 121:771–780

    CAS  Google Scholar 

  • Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin A, Bettler B (1998) GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396:683–687

    CAS  Google Scholar 

  • Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, Habata Y, Itoh T, Shintani Y, Hinuma S, Fujisawa Y, Fujino M (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278:9435–9440

    CAS  Google Scholar 

  • Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660

    CAS  Google Scholar 

  • Kojima M, Haruno R, Nakazato M, Date Y, Murakami N, Hanada R, Matsuo H, Kangawa K (2000) Purification and identification of neuromedin U as an endogenous ligand for an orphan receptor GPR66 (FM3). Biochem Biophys Res Commun 276:435–438

    CAS  Google Scholar 

  • Kost TA, Condreay JP, Jarvis DL (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23:567–575

    CAS  Google Scholar 

  • Kostenis E (2001) Is Galpha16 the optimal tool for fishing ligands of orphan G-protein-coupled receptors? Trends Pharmacol Sci 22:560–564

    CAS  Google Scholar 

  • Kotarsky K, Nilsson NE, Flodgren E, Owman C, Olde B (2003) A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem Biophys Res Commun 301:406–410

    CAS  Google Scholar 

  • Kraakman L, Lemaire K, Ma P, Teunissen AW, Donaton MC, Van Dijck P, Winderickx J, de Winde JH, Thevelein JM (1999) A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the CAMP pathway during the transition to growth on glucose. Mol Microbiol 32:1002–1012

    CAS  Google Scholar 

  • Krasnoperov VG, Bittner MA, Beavis R, Kuang Y, Salnikow KV, Chepurny OG, Little AR, Plotnikov AN, Wu D, Holz RW, Petrenko AG (1997) Alpha-latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron 18:925–937

    CAS  Google Scholar 

  • Kunapuli P, Ransom R, Murphy KL, Pettibone D, Kerby J, Grimwood S, Zuck P, Hodder P, Lacson R, Hoffman I, Inglese J, Strulovici B (2003) Development of an intact cell reporter gene beta-lactamase assay for G protein-coupled receptors for high-throughput screening. Anal Biochem 314:16–29

    CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B et al. (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    CAS  Google Scholar 

  • Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, Menzeleev R, Spiegel S, Hla T (1998) Sphingosine-1-phosphate as a ligand for the g protein-coupled receptor EDG-1. Science 279:1552–1555

    CAS  Google Scholar 

  • Lee SP, Xie Z, Varghese G, Nguyen T, O'Dowd BF, George SR (2000) Oligomerization of dopamine and serotonin receptors. Neuropsychopharmacology 23:S32–S40

    CAS  Google Scholar 

  • Lembo PM, Grazzini E, Cao J, Hubatsch DA, Pelletier M, Hoffert C, St Onge S, Pou C, Labrecque J, Groblewski T, O'Donnell D, Payza K, Ahmad S, Walker P (1999) The receptor for the orexigenic peptide melanin-concentrating hormone is a G-protein-coupled receptor. Nat Cell Biol 1:267–271

    CAS  Google Scholar 

  • Lembo PM, Grazzini E, Groblewski T, O'Donnell D, Roy MO, Zhang J, Hoffert C, Cao J, Schmidt R, Pelletier M, Labarre M, Gosselin M, Fortin Y, Banville D, Shen SH, Strom P, Payza K, Dray A, Walker P, Ahmad S (2002) Proenkephalin A gene products activate a new family of sensory neuron-specific GPCRs. Nat Neurosci 5:201–209

    CAS  Google Scholar 

  • Lerner MR (1994) Tools for investigating functional interactions between ligands and G-protein-coupled receptors. Trends Neurosci 17:142–146

    CAS  Google Scholar 

  • Liu C, Ma X, Jiang X, Wilson SJ, Hofstra CL, Blevitt J, Pyati J, Li X, Chai W, Carruthers N, Lovenberg TW (2001) Cloning and pharmacological characterization of a fourth histamine receptor (H(4)) expressed in bone marrow. Mol Pharmacol 59:420–426

    CAS  Google Scholar 

  • Liu PS, Wang PY (2004) DHEA attenuates catecholamine secretion from bovine adrenal chromaffin cells. J Biomed Sci 11:200–205

    CAS  Google Scholar 

  • Lorenzen A, Stannek C, Lang H, Andrianov V, Kalvinsh I, Schwabe U (2001) Characterization of a G protein-coupled receptor for nicotinic acid. Mol Pharmacol 59:349–357

    CAS  Google Scholar 

  • Luo XH, Guo LJ, Yuan LQ, Xie H, Zhou HD, Wu XP, Liao EY (2005) Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp Cell Res 309:99–109

    CAS  Google Scholar 

  • Lynch KR, O'Neill GP, Liu Q, Im DS, Sawyer N, Metters KM, Coulombe N, Abramovitz M, Figueroa DJ, Zeng Z, Connolly BM, Bai C, Austin CP, Chateauneuf A, Stocco R, Greig GM, Kargman S, Hooks SB, Hosfield E, Williams DL Jr, Ford-Hutchinson AW, Caskey CT, Evans JF (1999) Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 399:789–793

    CAS  Google Scholar 

  • Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y (2002) Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 8:731–737

    CAS  Google Scholar 

  • Maggiolini M, Vivacqua A, Fasanella G, Recchia AG, Sisci D, Pezzi V, Montanaro D, Musti AM, Picard D, Ando S (2004) The G protein-coupled receptor GPR30 mediates C-Fos up-regulation by 17beta-estradiol and phytoestrogens in breast cancer cells. J Biol Chem 279:27008–27016

    CAS  Google Scholar 

  • Maidan MM, De Rop L, Serneels J, Exler S, Ru S, Tournu H, Thevelein JM, Van Dijck P (2005) The G protein-coupled receptor Gpr1 and the Galpha protein Gpa2 Act through the CAMP-protein kinase A pathway to induce morphogenesis in Candida albicans. Mol Biol Cell 16:1971–1986

    CAS  Google Scholar 

  • Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, Nakamura T, Itadani H, Tanaka K (2002) Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun 298:714–719

    CAS  Google Scholar 

  • Maslowska M, Legakis H, Assadi F, Cianflone K (2006) Targeting the signaling pathway of acylation stimulating protein. J Lipid Res 47:643–652

    CAS  Google Scholar 

  • McClintock TS, Graminski GF, Potenza MN, Jayawickreme CK, Roby-Shemkovitz A, Lerner MR (1993) Functional expression of recombinant G-protein-coupled receptors monitored by video imaging of pigment movement in melanophores. Anal Biochem 209:298–305

    CAS  Google Scholar 

  • McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393:333–339

    CAS  Google Scholar 

  • Meder W, Wendland M, Busmann A, Kutzleb C, Spodsberg N, John H, Richter R, Schleuder D, Meyer M, Forssmann WG (2003) Characterization of human circulating TIG2 as a ligand for the orphan receptor ChemR23. FEBS Lett 555:495–499

    CAS  Google Scholar 

  • Medici R, Bianchi E, Di Segni G, Tocchini-Valentini GP (1997) Efficient signal transduction by a chimeric yeast-mammalian G protein alpha subunit Gpa1-Gsalpha covalently fused to the yeast receptor Ste2. EMBO J 16:7241–7249

    CAS  Google Scholar 

  • Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour JL, Guillemot JC, Ferrara P, Monsarrat B et al (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377:532–535

    CAS  Google Scholar 

  • Milasta S, Pediani J, Appelbe S, Trim S, Wyatt M, Cox P, Fidock M, Milligan G (2006) Interactions between the Mas-related receptors MrgD and MrgE alter signalling and trafficking of MrgD. Mol Pharmacol 69:479–491

    CAS  Google Scholar 

  • Milligan G (2000) Insights into ligand pharmacology using receptor-G-protein fusion proteins. Trends Pharmacol Sci 21:24–28

    CAS  Google Scholar 

  • Milligan G (2003) Principles: extending the utility of [35S]GTP gamma S binding assays. Trends Pharmacol Sci 24:87–90

    CAS  Google Scholar 

  • Mody SM, Ho MK, Joshi SA, Wong YH (2000) Incorporation of Galpha(z)-specific sequence at the carboxyl terminus increases the promiscuity of Galpha(16) toward G(i)-coupled receptors. Mol Pharmacol 57:13–23

    CAS  Google Scholar 

  • Mori M, Sugo T, Abe M, Shimomura Y, Kurihara M, Kitada C, Kikuchi K, Shintani Y, Kurokawa T, Onda H, Nishimura O, Fujino M (1999) Urotensin II is the endogenous ligand of a G-protein-coupled orphan receptor, SENR (GPR14). Biochem Biophys Res Commun 265:123–129

    CAS  Google Scholar 

  • Morse KL, Behan J, Laz TM, West RE Jr, Greenfeder SA, Anthes JC, Umland S, Wan Y, Hipkin RW, Gonsiorek W, Shin N, Gustafson EL, Qiao X, Wang S, Hedrick JA, Greene J, Bayne M, Monsma FJ Jr (2001) Cloning and characterization of a novel human histamine receptor. J Pharmacol Exp Ther 296:1058–1066

    CAS  Google Scholar 

  • Nakamura T, Itadani H, Hidaka Y, Ohta M, Tanaka K (2000) Molecular cloning and characterization of a new human histamine receptor, HH4R. Biochem Biophys Res Commun 279:615–620

    CAS  Google Scholar 

  • Nguyen T, Shapiro DA, George SR, Setola V, Lee DK, Cheng R, Rauser L, Lee SP, Lynch KR, Roth BL, O'Dowd BF (2001) Discovery of a novel member of the histamine receptor family. Mol Pharmacol 59:427–433

    CAS  Google Scholar 

  • Nothacker HP, Wang Z, McNeill AM, Saito Y, Merten S, O'Dowd B, Duckles SP, Civelli O (1999) Identification of the natural ligand of an orphan G-protein-coupled receptor involved in the regulation of vasoconstriction. Nat Cell Biol 1:383–385

    CAS  Google Scholar 

  • Nothacker HP, Wang Z, Zhu Y, Reinscheid RK, Lin SH, Civelli O (2000) Molecular cloning and characterization of a second human cysteinyl leukotriene receptor: discovery of a subtype selective agonist. Mol Pharmacol 58:1601–1608

    CAS  Google Scholar 

  • O'Dowd BF, Ji X, Alijaniaram M, Rajaram RD, Kong MM, Rashid A, Nguyen T, George SR (2005) Dopamine receptor oligomerization visualized in living cells. J Biol Chem 280:37225–37235

    Google Scholar 

  • Oakley RH, Hudson CC, Cruickshank RD, Meyers DM, Payne RE Jr, Rhem SM, Loomis CR (2002) The cellular distribution of fluorescently labeled arrestins provides a robust, sensitive, and universal assay for screening g protein-coupled receptors. Assay Drug Dev Technol 1:21–30

    CAS  Google Scholar 

  • Oda T, Morikawa N, Saito Y, Masuho Y, Matsumoto S (2000) Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J Biol Chem 275:36781–36786

    CAS  Google Scholar 

  • Offermanns S, Simon MI (1995) G alpha 15 and G alpha 16 couple a wide variety of receptors to phospholipase C. J Biol Chem 270:15175–15180

    CAS  Google Scholar 

  • Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M (2001) Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411:613–617

    CAS  Google Scholar 

  • Okinaga S, Slattery D, Humbles A, Zsengeller Z, Morteau O, Kinrade MB, Brodbeck RM, Krause JE, Choe HR, Gerard NP, Gerard C (2003) C5L2, a nonsignaling C5A binding protein. Biochemistry 42:9406–9415

    CAS  Google Scholar 

  • Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS, Griffin G, Jackson HC, Procter MJ, Rasamison CM, Tang-Christensen M, Widdowson PS, Williams GM, Reynet C (2006) Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 3:167–175

    CAS  Google Scholar 

  • Pausch MH, Lai M, Tseng E, Paulsen J, Bates B, Kwak S (2004) Functional expression of human and mouse P2Y12 receptors in Saccharomyces cerevisiae. Biochem Biophys Res Commun 324:171–177

    CAS  Google Scholar 

  • Perroy J, Adam L, Qanbar R, Chenier S, Bouvier M (2003) Phosphorylation-independent desensitization of GABA(B) Receptor by GRK4. EMBO J 22:3816–3824

    CAS  Google Scholar 

  • Pike NB, Wise A (2004) Identification of a nicotinic acid receptor: is this the molecular target for the oldest lipid-lowering drug? Curr Opin Investig Drugs 5:271–275

    CAS  Google Scholar 

  • Rees S, Martin DP, Scott SV, Brown SH, Fraser N, O'Shaughnessy C, Beresford IJ (2001) Development of a homogeneous MAp kinase reporter gene screen for the identification of agonists and antagonists at the CXCR1 chemokine receptor. J Biomol Screen 6:19–27

    CAS  Google Scholar 

  • Rezgaoui M, Susens U, Ignatov A, Gelderblom M, Glassmeier G, Franke I, Urny J, Imai Y, Takahashi R and Schaller HC (2006) The neuropeptide head activator is a high-affinity ligand for the orphan G-Protein-coupled receptor GPR37. J Cell Sci 119:542–549

    CAS  Google Scholar 

  • Robas N, Mead E and Fidock M (2003) MrgX2 is a high potency cortistatin receptor expressed in dorsal root ganglion. J Biol Chem 278:44400–44404

    CAS  Google Scholar 

  • Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC (2000) Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288:154–157

    CAS  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    CAS  Google Scholar 

  • Santos-Alvarez J, Gonzalez-Yanes C, Sanchez-Margalet V (1998) Pancreastatin receptor is coupled to a guanosine triphosphate-binding protein of the G(q/11)alpha family in rat liver membranes. Hepatology 27:608–614

    CAS  Google Scholar 

  • Satoh F, Takahashi K, Murakami O, Totsune K, Ohneda M, Mizuno Y, Sone M, Miura Y, Takase S, Hayashi Y, Sasano H, Mouri T (1997) Cerebellin and cerebellin MRNA in the human brain, adrenal glands and the tumour tissues of adrenal tumour, ganglioneuroblastoma and neuroblastoma. J Endocrinol 154:27–34

    CAS  Google Scholar 

  • Schrick K, Garvik B, Hartwell LH (1997) Mating in Saccharomyces cerevisiae: the role of the pheromone signal transduction pathway in the chemotropic response to pheromone. Genetics 147:19–32

    CAS  Google Scholar 

  • Shenoy SK, Lefkowitz RJ (2005) Seven-transmembrane receptor signaling through beta-arrestin. Sci STKE 2005:cm10

    Google Scholar 

  • Shenoy SK, Drake MT, Nelson CD, Houtz DA, Xiao K, Madabushi S, Reiter E, Premont RT, Lichtarge O, Lefkowitz RJ (2006) Beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem 281:1261–1273

    CAS  Google Scholar 

  • Shichiri M, Ishimaru S, Ota T, Nishikawa T, Isogai T and Hirata Y (2003) Salusins: newly identified bioactive peptides with hemodynamic and mitogenic activities. Nat Med 9:1166–1172

    CAS  Google Scholar 

  • Shimomura Y, Harada M, Goto M, Sugo T, Matsumoto Y, Abe M, Watanabe T, Asami T, Kitada C, Mori M, Onda H, Fujino M (2002) Identification of neuropeptide W as the endogenous ligand for orphan G-protein-coupled receptors GPR7 and GPR8. J Biol Chem 277:35826–35832

    CAS  Google Scholar 

  • Shinohara T, Harada M, Ogi K, Maruyama M, Fujii R, Tanaka H, Fukusumi S, Komatsu H, Hosoya M, Noguchi Y, Watanabe T, Moriya T, Itoh Y, Hinuma S (2004) Identification of a G protein-coupled receptor specifically responsive to beta-alanine. J Biol Chem 279:23559–23564

    CAS  Google Scholar 

  • Simmons MA (2005) Functional selectivity, ligand-directed trafficking, conformation-specific agonism: what's in a name? Mol Interv 5:154–157

    CAS  Google Scholar 

  • Smit MJ, Verzijl D, Casarosa P, Navis M, Timmerman H, Leurs R (2002) Kaposi's sarcoma-associated herpesvirus-encoded G protein-coupled receptor ORF74 constitutively activates P44/P42 MAPK and Akt Via G(i) and phospholipase C-dependent signaling pathways. J Virol 76:1744–1752

    CAS  Google Scholar 

  • Soga T, Kamohara M, Takasaki J, Matsumoto S, Saito T, Ohishi T, Hiyama H, Matsuo A, Matsushime H, Furuichi K (2003) Molecular identification of nicotinic acid receptor. Biochem Biophys Res Commun 303:364–369

    CAS  Google Scholar 

  • Stables J, Green A, Marshall F, Fraser N, Knight E, Sautel M, Milligan G, Lee M, Rees S (1997) A bioluminescent assay for agonist activity at potentially any G-protein-coupled receptor. Anal Biochem 252:115–126

    CAS  Google Scholar 

  • Su SB, Gong W, Gao JL, Shen W, Murphy PM, Oppenheim JJ, Wang JM (1999) A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid a for human phagocytic cells. J Exp Med 189:395–402

    CAS  Google Scholar 

  • Szekeres PG, Muir AI, Spinage LD, Miller JE, Butler SI, Smith A, Rennie GI, Murdock PR, Fitzgerald LR, Wu H, McMillan LJ, Guerrera S, Vawter L, Elshourbagy NA, Mooney JL, Bergsma DJ, Wilson S, Chambers JK (2000) Neuromedin U is a potent agonist at the orphan G protein-coupled receptor FM3. J Biol Chem 275:20247–20250

    CAS  Google Scholar 

  • Takeda S, Yamamoto A, Okada T, Matsumura E, Nose E, Kogure K, Kojima S, Haga T (2003) Identification of surrogate ligands for orphan G protein-coupled receptors. Life Sci 74:367–377

    CAS  Google Scholar 

  • Tanaka H, Yoshida T, Miyamoto N, Motoike T, Kurosu H, Shibata K, Yamanaka A, Williams SC, Richardson JA, Tsujino N, Garry MG, Lerner MR, King DS, O'Dowd BF, Sakurai T, Yanagisawa M (2003) Characterization of a family of endogenous neuropeptide ligands for the G protein-coupled receptors GPR7 and GPR8. Proc Natl Acad Sci USA 100:6251–6256

    CAS  Google Scholar 

  • Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C, Kurokawa T, Onda H, Fujino M (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251:471–476

    CAS  Google Scholar 

  • Tunaru S, Kero J, Schaub A, Wufka C, Blaukat A, Pfeffer K, Offermanns S (2003) PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat Med 9:352–355

    CAS  Google Scholar 

  • Ueda H, Inoue M (2000) In vivo signal transduction of nociceptive response by kyotorphin (tyrosine-arginine) through Galpha(i)- and inositol trisphosphate-mediated Ca(2+) Influx. Mol Pharmacol 57:108–115

    CAS  Google Scholar 

  • Venter JC, Adams MD, Myers EW et al. (2001) The sequence of the human genome. Science 291:1304–1351

    CAS  Google Scholar 

  • Vischer HF, Leurs R, Smit MJ (2006) HCMV-encoded G-Protein-coupled receptors as constitutively active modulators of cellular signaling networks. Trends Pharmacol Sci 27:56–63

    CAS  Google Scholar 

  • Vrecl M, Jorgensen R, Pogacnik A, Heding A (2004) Development of a BRET2 screening assay using beta-arrestin 2 mutants. J Biomol Screen 9:322–333

    CAS  Google Scholar 

  • Wellendorph P, Hansen KB, Balsgaard A, Greenwood JR, Egebjerg J, Brauner-Osborne H (2005) Deorphanization of GPRC6A: a promiscuous L-alpha-amino acid receptor with preference for basic amino acids. Mol Pharmacol 67:589–597

    CAS  Google Scholar 

  • White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH (1998) Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 396:679–682

    CAS  Google Scholar 

  • Whitman SC, Daugherty A, Post SR (2000) Macrophage colony-stimulating factor rapidly enhances beta-migrating very low density lipoprotein metabolism in macrophages through activation of a Gi/o protein signaling pathway. J Biol Chem 275:35807–35813

    CAS  Google Scholar 

  • Windh RT, Lee MJ, Hla T, An S, Barr AJ, Manning DR (1999) Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G(12) families of heterotrimeric G proteins. J Biol Chem 274:27351–27358

    CAS  Google Scholar 

  • Wise A, Gearing K, Rees S (2002) Target validation of G-protein coupled receptors. Drug Discov Today 7:235–246

    CAS  Google Scholar 

  • Wise A, Foord SM, Fraser NJ, Barnes AA, Elshourbagy N, Eilert M, Ignar DM, Murdock PR, Steplewski K, Green A, Brown AJ, Dowell SJ, Szekeres PG, Hassall DG, Marshall FH, Wilson S, Pike NB (2003) Molecular identification of high and low affinity receptors for nicotinic acid. J Biol Chem 278:9869–9874

    CAS  Google Scholar 

  • Wise A, Jupe SC, Rees S (2004) The identification of ligands at orphan G-protein coupled receptors. Annu Rev Pharmacol Toxicol 44:43–66

    CAS  Google Scholar 

  • Wittau N, Grosse R, Kalkbrenner F, Gohla A, Schultz G, Gudermann T (2000) The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to G(q), G(i) and G(12) proteins. Oncogene 19:4199–4209

    CAS  Google Scholar 

  • Xu Y, Zhu K, Hong G, Wu W, Baudhuin LM, Xiao Y, Damron DS (2000) Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nat Cell Biol 2:261–267

    CAS  Google Scholar 

  • Xu YL, Reinscheid RK, Huitron-Resendiz S, Clark SD, Wang Z, Lin SH, Brucher FA, Zeng J, Ly NK, Henriksen SJ, De Lecea L, Civelli O (2004) Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron 43:487–497

    CAS  Google Scholar 

  • Xue Y, Batlle M, Hirsch JP (1998) GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Galpha subunit and functions in a Ras-Independent pathway. EMBO J 17:1996–2007

    CAS  Google Scholar 

  • Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762–769

    CAS  Google Scholar 

  • Yamazaki Y, Kon J, Sato K, Tomura H, Sato M, Yoneya T, Okazaki H, Okajima F, Ohta H (2000) Edg-6 as a putative sphingosine 1-phosphate receptor coupling to Ca(2+) signaling pathway. Biochem Biophys Res Commun 268:583–589

    CAS  Google Scholar 

  • Ying G, Iribarren P, Zhou Y, Gong W, Zhang N, Yu ZX, Le Y, Cui Y, Wang JM (2004) Humanin, a newly identified neuroprotective factor, uses the G protein-coupled formylpeptide receptor-like-1 as a functional receptor. J Immunol 172:7078–7085

    CAS  Google Scholar 

  • Zeilhofer HU, Selbach UM, Guhring H, Erb K, Ahmadi S (2000) Selective suppression of inhibitory synaptic transmission by nocistatin in the rat spinal cord dorsal horn. J Neurosci 20:4922–4929

    CAS  Google Scholar 

  • Zhang JV, Ren PG, Avsian-Kretchmer O, Luo CW, Rauch R, Klein C, Hsueh AJ (2005a) Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake. Science 310:996–999

    CAS  Google Scholar 

  • Zhang L, Taylor N, Xie Y, Ford R, Johnson J, Paulsen JE, Bates B (2005b) Cloning and expression of MRG receptors in macaque, mouse, and human. Brain Res Mol Brain Res 133:187–197

    CAS  Google Scholar 

  • Zhu K, Baudhuin LM, Hong G, Williams FS, Cristina KL, Kabarowski JH, Witte ON, Xu Y (2001a) Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4. J Biol Chem 276:41325–41335

    CAS  Google Scholar 

  • Zhu Y, Michalovich D, Wu H, Tan KB, Dytko GM, Mannan IJ, Boyce R, Alston J, Tierney LA, Li X, Herrity NC, Vawter L, Sarau HM, Ames RS, Davenport CM, Hieble JP, Wilson S, Bergsma DJ, Fitzgerald LR (2001b) Cloning, expression, and pharmacological characterization of a novel human histamine receptor. Mol Pharmacol 59:434–441

    CAS  Google Scholar 

  • Zhu WZ, Chakir K, Zhang S, Yang D, Lavoie C, Bouvier M, Hebert TE, Lakatta EG, Cheng H, Xiao RP (2005) Heterodimerization of beta1- and beta2-adrenergic receptor subtypes optimizes beta-adrenergic modulation of cardiac contractility. Circ Res 97:244–251

    CAS  Google Scholar 

  • Zylka MJ, Dong X, Southwell AL, Anderson DJ (2003) Atypical expansion in mice of the sensory neuron-specific Mrg G protein-coupled receptor family. Proc Natl Acad Sci USA 100:10043–10048

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Wigglesworth .

Editor information

H. Bourne R. Horuk J. Kuhnke H. Michel

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this paper

Cite this paper

Wigglesworth, M.J., Wolfe, L.A., Wise, A. (2007). Orphan Seven Transmembrane Receptor Screening. In: Bourne, H., Horuk, R., Kuhnke, J., Michel, H. (eds) GPCRs: From Deorphanization to Lead Structure Identification. Ernst Schering Foundation Symposium Proceedings, vol 2006/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2789_2006_006

Download citation

Publish with us

Policies and ethics