Skip to main content

QSAR Modeling of GPCR Ligands: Methodologies and Examples of Applications

  • Conference paper
  • First Online:
GPCRs: From Deorphanization to Lead Structure Identification

Part of the book series: Ernst Schering Foundation Symposium Proceedings ((SCHERING FOUND,volume 2006/2))

Abstract

GPCR ligands represent not only one of the major classes of current drugs but the major continuing source of novel potent pharmaceutical agents. Because 3D structures of GPCRs as determined by experimental techniques are still unavailable, ligand-based drug discovery methods remain the major computational molecular modeling approaches to the analysis of growing data sets of tested GPCR ligands. This paper presents an overview of modern Quantitative Structure Activity Relationship (QSAR) modeling. We discuss the critical issue of model validation and the strategy for applying the successfully validated QSAR models to virtual screening of available chemical databases. We present several examples of applications of validated QSAR modeling approaches to GPCR ligands. We conclude with the comments on exciting developments in the QSAR modeling of GPCR ligands that focus on the study of emerging data sets of compounds with dual or even multiple activities against two or more of GPCRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Becker OM, Dhanoa DS, Marantz Y, Chen D, Shacham S, Cheruku S, Heifetz A, Mohanty P, Fichman M, Sharadendu A, Nudelman R, Kauffman M, Noiman S (2006) An integrated in silico 3D model-driven discovery of a novel, potent, and selective amidosulfonamide 5-HT1A agonist (PRX-00023) for the treatment of anxiety and depression. J Med Chem 49:3116–3135

    Article  CAS  PubMed  Google Scholar 

  • Bissantz C, Bernard P, Hibert M, Rognan D (2003) Protein-based virtual screening of chemical databases. II. Are homology models of G-protein coupled receptors suitable targets? Proteins 50:5–25

    Article  CAS  PubMed  Google Scholar 

  • Blower PE, Yang C, Fligner MA, Verducci JS, Yu L, Richman S, Weinstein JN (2002) Pharmacogenomic analysis: correlating molecular substructure classes with microarray gene expression data. Pharmacogenomics J 2:259–271

    Article  CAS  PubMed  Google Scholar 

  • Bordas B, Komives T, Szanto Z, Lopata A (2000) Comparative three-dimensional quantitative structure-activity relationship study of safeners and herbicides. J Agric Food Chem 48:926–931

    Article  CAS  PubMed  Google Scholar 

  • Charifson PS, Wyrick SD, Hoffman AJ, Simmons RM, Bowen JP, McDougald DL, Mailman RB (1988) Synthesis and pharmacological characterization of 1-phenyl-, 4-phenyl-, and 1-benzyl-1,2,3,4-tetrahydroisoquinolines as dopamine receptor ligands. J Med Chem 31:1941–1946

    Article  CAS  PubMed  Google Scholar 

  • Charifson PS, Bowen JP, Wyrick SD, Hoffman AJ, Cory M, McPhail AT, Mailman R B (1989) Conformational analysis and molecular modeling of 1-phenyl-, 4-phenyl-, and 1-benzyl-1,2,3,4-tetrahydroisoquinolines as D1 dopamine receptor ligands. J Med Chem 32:2050–2058

    Article  CAS  PubMed  Google Scholar 

  • Chemical Diversity (2004) ChemDiv Chemical Database. www.chemdiv.com. Cited 28 November 2006

    Google Scholar 

  • Cho SJ, Zheng W, Tropsha A (1998) Rational combinatorial library design. Rational design of targeted combinatorial peptide libraries using chemical similarity probe and the inverse QSAR approaches. J Chem Inf Comput Sci 38:259–268

    Article  CAS  PubMed  Google Scholar 

  • Clark RD, Sprous DG, Leonard JM (2001) Validating models based on large dataset. In: Höltje H-D, Sippl W (eds) Rational approaches to drug design, Proceedings of the 13th European Symposium on Quantitative Structure-Activity Relationship, Aug 27–Sept 1. Prous Science, Düsseldorf, pp 475–485

    Google Scholar 

  • Cramer RD III, Patterson DE, Bunce JD (1988) Comparative Molecular Field Analysis (CoMFA) Effect of Shape on Binding of Steroids to Carrier Proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  PubMed  Google Scholar 

  • Cramer RD III, Patterson DE, Bunce JD (1989) Recent advances in comparative molecular field analysis (CoMFA). Prog Clin Biol Res 291:161–165

    CAS  PubMed  Google Scholar 

  • Creese I, Iversen SD (1973) Blockage of amphetamine induced motor stimulation and stereotypy in the adult rat following neonatal treatment with 6-hydroxydopamine. Brain Res 55:369–382

    Article  CAS  PubMed  Google Scholar 

  • De Cerqueira LP, Golbraikh A, Oloff S, Xiao Y, Tropsha A (2006) Combinatorial QSAR modeling of P-glycoprotein substrates. J Chem Inf Model 46:1245–1254

    Article  Google Scholar 

  • Downs GM, Willett P (1996) Similarity searching in databases of chemical structures. In: Lipkowitz KB, Boyd D (eds) Reviews in computational chemistry. VCH Publishers, New York, pp 1–65

    Google Scholar 

  • EduSoft L (2003) MolconnZ version 4.05. http://www.eslc.vabiotech.com/ [4.05]

    Google Scholar 

  • Fan Y, Shi LM, Kohn KW, Pommier Y, Weinstein JN (2001) Quantitative structure-antitumor activity relationships of camptothecin analogues: cluster analysis and genetic algorithm-based studies. J Med Chem 44:3254–3263

    Article  CAS  PubMed  Google Scholar 

  • Flower DR (1999) Modelling G-protein-coupled receptors for drug design. Biochim Biophys Acta 1422:207–234

    Article  CAS  PubMed  Google Scholar 

  • Girones X, Gallegos A, Carbo-Dorca R (2000) Modeling antimalarial activity: application of kinetic energy density quantum similarity measures as descriptors in QSAR. J Chem Inf Comput Sci 40:1400–1407

    Article  CAS  PubMed  Google Scholar 

  • Golbraikh A, Tropsha A (2002a) Beware of q 2! J Mol Graph Model 20:269–276

    Article  CAS  PubMed  Google Scholar 

  • Golbraikh A, Tropsha A (2002b) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J Comput Aided Mol Des 16:357–369

    Article  CAS  PubMed  Google Scholar 

  • Golbraikh A, Shen M, Xiao Z, Xiao YD, Lee KH, Tropsha A (2003) Rational selection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des 17:241–253

    Article  CAS  PubMed  Google Scholar 

  • Gussio R, Pattabiraman N, Kellogg GE, Zaharevitz DW (1998) Use of 3D QSAR methodology for data mining the National Cancer Institute Repository of Small Molecules: application to HIV-1 reverse transcriptase inhibition. Methods 14:255–263

    Article  CAS  PubMed  Google Scholar 

  • Hibert MF, Trumpp-Kallmeyer S, Bruinvels A, Hoflack J (1991) Three-dimensional models of neurotransmitter G-binding protein-coupled receptors. Mol Pharmacol 40:8–15

    CAS  PubMed  Google Scholar 

  • Horn F, Weare J, Beukers MW, Horsch S, Bairoch A, Chen W, Edvardsen O, Campagne F, Vriend G (1998) GPCRDB: an information system for G protein-coupled receptors. Nucleic Acids Res 26:275–279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    Article  CAS  PubMed  Google Scholar 

  • Kovatcheva A, Golbraikh A, Oloff S, Xiao YD, Zheng W, Wolschann P, Buchbauer G, Tropsha A (2004) Combinatorial QSAR of ambergris fragrance compounds. J Chem Inf Comput Sci 44:582–595

    Article  CAS  PubMed  Google Scholar 

  • Kozikowski AP, Roth B, Tropsha A (2006) Why academic drug discovery makes sense. Science 313:1235–1236

    Article  CAS  PubMed  Google Scholar 

  • Kubinyi H, Hamprecht FA, Mietzner T (1998) Three-dimensional quantitative similarity-activity relationships (3D QSiAR) from SEAL similarity matrices. J Med Chem 41:2553–2564

    Article  CAS  PubMed  Google Scholar 

  • Maybridge (2005) http://www.daylight.com/products/databases/Maybridge html

    Google Scholar 

  • Minor DL, Wyrick SD, Charifson PS, Watts VJ, Nichols DE, Mailman RB (1994) Synthesis and molecular modeling of 1-phenyl-1,2,3,4-tetrahydroisoquinolines and related 5,6,8,9-tetrahydro-13bH-dibenzo[a,h]quinolizines as D1 dopamine antagonists. J Med Chem 37:4317–4328

    Article  CAS  PubMed  Google Scholar 

  • Moron JA, Campillo M, Perez V, Unzeta M, Pardo L (2000) Molecular determinants of MAO selectivity in a series of indolylmethylamine derivatives: biological activities, 3D-QSAR/CoMFA analysis, and computational simulation of ligand recognition. J Med Chem 43:1684–1691

    Article  CAS  PubMed  Google Scholar 

  • National Cancer Institute (2004) Smiles strings. http://dtp.nci.nih.gov/docs/3d_database/structural_information/smiles_strings.html. Cited 28 November 2006

    Google Scholar 

  • National Cancer Institute (2005) http://dtp.nci.nih.gov/docs/3d_database/structural_information/smiles_strings html

    Google Scholar 

  • Norinder U (1996) Single and domain made variable selection in 3D QSAR applications. J Chemomet 10:95–105

    Article  CAS  Google Scholar 

  • Novellino E, Fattorusso C, Greco G (1995) Use of comparative molecular field analysis and cluster analysis in series design. Pharm Acta Helv 70:149–154

    Article  CAS  Google Scholar 

  • Okuno Y, Yang J, Taneishi K, Yabuuchi H, Tsujimoto G (2006) GLIDA: GPCR-ligand database for chemical genomic drug discovery. Nucleic Acids Res 34:D673–D677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oloff S, Mailman RB, Tropsha A (2005) Application of validated QSAR models of D1 dopaminergic antagonists for database mining. J Med Chem 48:7322–7332

    Article  CAS  PubMed  Google Scholar 

  • Oprea TI (2001) Rapid estimation of hydrophobicity for virtual combinatorial library analysis. SAR QSAR Environ Res 12:129–141

    Article  CAS  PubMed  Google Scholar 

  • Oprea TI, Garcia A E (1996) Three-dimensional quantitative structure-activity relationships of steroid aromatase inhibitors. J Comput Aided Mol Des 110:186–200

    Article  Google Scholar 

  • Phillips AG, Fibiger HC (1973) Dopaminergic and noradrenergic substrates of positive reinforcement: differential effects of d- and l-amphetamine. Science 179:575–577

    Article  CAS  PubMed  Google Scholar 

  • Pijnenburg AJ, Honig WM, Van der Heyden JA, Van Rossum JM (1976) Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity. Eur J Pharmacol 35:45–58

    Article  CAS  PubMed  Google Scholar 

  • Recanatini M, Cavalli A, Belluti F, Piazzi L, Rampa A, Bisi A, Gobbi S, Valenti P, Andrisano V, Bartolini M, Cavrini V (2000) SAR of 9-amino-1,2,3,4-tetrahydroacridine-based acetylcholinesterase inhibitors: synthesis, enzyme inhibitory activity, QSAR, and structure-based CoMFA of tacrine analogues. J Med Chem 43:2007–2018

    Article  CAS  PubMed  Google Scholar 

  • Roth BL, Kroeze WK (2006) Screening the receptorome yields validated molecular targets for drug discovery. Curr Pharm Des 12:1785–1795

    Article  CAS  PubMed  Google Scholar 

  • Schulz DW, Wyrick SD, Mailman RB (1984) [3H]SCH23390 has the characteristics of a dopamine receptor ligand in the rat central nervous system. Eur J Pharmacol 106:211–212

    Article  CAS  PubMed  Google Scholar 

  • Seeman P, Bzowej NH, Guan HC, Bergeron C, Reynolds GP, Bird ED, Riederer P, Jellinger K, Tourtellotte WW (1987) Human brain D 1 and D 2 dopamine receptors in schizophrenia, Alzheimer's, Parkinson's, and Huntington's diseases. Neuropsychopharmacology 1:5–15

    Article  CAS  PubMed  Google Scholar 

  • Shay JW, Wright WE (2006) Telomerase therapeutics for cancer: challenges and new directions. Nat Rev Drug Discov 5:577–584

    Article  CAS  PubMed  Google Scholar 

  • Shen M, LeTiran A, Xiao Y, Golbraikh A, Kohn H, Tropsha A (2002) Quantitative structure-activity relationship analysis of functionalized amino acid anticonvulsant agents using k nearest neighbor and simulated annealing PLS methods. J Med Chem 45:2811–2823

    Article  CAS  PubMed  Google Scholar 

  • Shen M, Beguin C, Golbraikh A, Stables J, Kohn H, Tropsha A (2004) Application of predictive QSAR models to database mining: identification and experimental validation of novel anticonvulsant compounds. J Med Chem 47:2356–2364

    Article  CAS  PubMed  Google Scholar 

  • Strange PG (1993) Brain biochemistry and brain disorders. Oxford University Press, New York

    Google Scholar 

  • Sutherland JJ, Weaver DF (2004) Three-dimensional quantitative structure-activity and structure-selectivity relationships of dihydrofolate reductase inhibitors. J Comput Aided Mol Des 18:309–331

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Ide K, Ishida M, Shapiro S (2001) Classification of environmental estrogens by physicochemical properties using principal component analysis and hierarchical cluster analysis. J Chem Inf Comput Sci 41:718–726

    Article  CAS  PubMed  Google Scholar 

  • Topliss JG, Edwards RP (1979) Chance factors in studies of quantitative structure-activity relationships. J Med Chem 22:1238–1244

    Article  CAS  PubMed  Google Scholar 

  • Tropsha A, Zheng W (2001) Identification of the descriptor pharmacophores using variable selection QSAR: applications to database mining. Curr Pharm Des 7:599–612

    Article  CAS  PubMed  Google Scholar 

  • Wold S, Eriksson L (1995) Statistical validation of QSAR results. In: Waterbeemd HVD (ed) Chemometrics methods in molecular design. VCH pp 309–318

    Google Scholar 

  • Zefirov NS, Palyulin VA (2001) QSAR for boiling points of “small” sulfides. Are the “high-quality structure-property-activity regressions” the real high quality QSAR models? J Chem Inf Comput Sci 41:1022–1027

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Devries ME, Skolnick J (2006) Structure modeling of all identified G protein-coupled receptors in the human genome. PLoS Comput Biol 2:e13

    Article  PubMed Central  PubMed  Google Scholar 

  • Zheng W, Tropsha A (2000) Novel variable selection quantitative structure–property relationship approach based on the k-nearest-neighbor principle. J Chem Inf Comput Sci 40:185–194

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NIH research grant GM066940 and by Berlex Biosciences. We appreciate fruitful discussions with Drs. R. Horuk and Sabine Schlyer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tropsha .

Editor information

H. Bourne R. Horuk J. Kuhnke H. Michel

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this paper

Cite this paper

Tropsha, A., Wang, S.X. (2007). QSAR Modeling of GPCR Ligands: Methodologies and Examples of Applications. In: Bourne, H., Horuk, R., Kuhnke, J., Michel, H. (eds) GPCRs: From Deorphanization to Lead Structure Identification. Ernst Schering Foundation Symposium Proceedings, vol 2006/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2789_2006_003

Download citation

Publish with us

Policies and ethics