Skip to main content

CyberKnife System

  • Chapter

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

The CyberKnife delivers a great number of independently targeted, non-coplanar radiation beams with high precision under continuous X-ray and optic image guidance for motion management. This targeted delivery of tumor dose with the capability of sparing surrounding normal tissue has proven highly effective for stereotactic body radiation therapy delivery. This chapter provides an overview of the CyberKnife system from a single institutional perspective, covering target tracking and motion management features, pretreatment patient set-up, treatment planning, and treatment delivery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adler JR, Cox RS (1996) Preliminary clinical experience with the CyberKnife: image-guided stereotactic radiosurgery. In: Alexander Iii E, Kondziolka D, Loeffler JS (eds) Radiosurgery 1995. Karger, Basel, pp 316–326

    Google Scholar 

  • Anantham D, Feller-Kopman D, Shanmugham LN, Berman SM, Decamp MM, Gangadharan SP, Eberhardt R, Herth F, Ernst A (2007) Electromagnetic navigation bronchoscopy guided fiducial placement for robotic stereotactic radiosurgery of lung tumors—a feasibility study. Chest 132:930–935

    Google Scholar 

  • Antypas C, Pantelis E (2008) Performance evaluation of a CyberKnife G4 image-guided robotic stereotactic radiosurgery system. Phys Med Biol 53:4697–4718

    Article  PubMed  Google Scholar 

  • Brown WT, Wu X, Fayad F, Fowler JF, Garcia S, Monterroso MI, De La Zerda A, Schwade JG (2009) Application of robotic stereotactic radiotherapy to peripheral stage I non-small cell lung cancer with curative intent. Clin Oncol (R Coll Radiol) 21:623–631

    Article  CAS  Google Scholar 

  • Chang DT, Schellenberg D, Shen J, Kim J, Goodman KA, Fisher GA, Ford JM, Desser T, Quon A, Koong AC (2009) Stereotactic radiotherapy for unresectable adenocarcinoma of the pancreas. Cancer 115:665–672

    Article  PubMed  Google Scholar 

  • Choi BO, Choi IB, Jang HS, Kang YN, Jang JS, Bae SH, Yoon SK, Chai GY, Kang KM (2008) Stereotactic body radiation therapy with or without transarterial chemoembolization for patients with primary hepatocellular carcinoma: preliminary analysis. BMC Cancer 8:351

    Article  PubMed  Google Scholar 

  • Collins BT, Vahdat S, Erickson K, Collins SP, Suy S, Yu X, Zhang Y, Subramaniam D, Reichner CA, Sarikaya I, Esposito G, Yousefi S, Jamis-Dow C, Banovac F, Anderson ED (2009) Radical Cyberknife radiosurgery with tumor tracking: an effective treatment for inoperable small peripheral stage I non-small cell lung cancer. J Hematol Oncol 2:1

    Article  PubMed  Google Scholar 

  • Coon D, Gokhale AS, Burton SA, Heron DE, Ozhasoglu C, Christie N (2008) Fractionated stereotactic body radiation therapy in the treatment of primary, recurrent, and metastatic lung tumors: the role of positron emission tomography/computed tomography-based treatment planning. Clin Lung Cancer 9:217–221

    Article  PubMed  Google Scholar 

  • Echner GG, Kilby W, Lee M, Earnst E, Sayeh S, Schlaefer A, Rhein B, Dooley JR, Lang C, Blanck O, Lessard E, Maurer CR Jr, Schlegel W (2009) The design, physical properties and clinical utility of an iris collimator for robotic radiosurgery. Phys Med Biol 54:5359–5380

    Article  PubMed  CAS  Google Scholar 

  • Freeman DE, King CR (2011) Stereotactic body radiotherapy for low-risk prostate cancer: five-year outcomes. Radiat Oncol 6:3

    Article  PubMed  Google Scholar 

  • Friedland JL, Freeman DE, Masterson-Mcgary ME, Spellberg DM (2009) Stereotactic body radiotherapy: an emerging treatment approach for localized prostate cancer. Technol Cancer Res Treat 8:387–392

    PubMed  CAS  Google Scholar 

  • Fu D, Kuduvalli G (2006) Enhancing skeletal features in digitally reconstructed radiographs. Proc SPIE 6144:846–851

    Google Scholar 

  • Fu D, Kuduvalli G (2008) A fast, accurate, and automatic 2D–3D image registration for image-guided cranial radiosurgery. Med Phys 35:2180–2194

    Article  PubMed  Google Scholar 

  • Fu D, Kuduvalli G, Maurer CR Jr, Allison JW, Adler JR Jr (2006) 3D target localization using 2D local displacements of skeletal structures in orthogonal X-ray images for image-guided spinal radiosurgery. Int J Comput Assist Radiol Surg 1:198–200

    Google Scholar 

  • Fu D, Kahn R, Wang B, Wang H, Mu Z, Park J, Kuduvalli G, Maurer CR Jr (2007) Xsight lung tracking system: a fiducial-less method for respiratory motion tracking. In: Urschel HC Jr, Kresl JJ, Luketich JD, Papiez L (eds) Robotic radiosurgery: treating tumors that move with respiration. Springer, Berlin, pp 265–282

    Google Scholar 

  • Furweger C, Drexler C, Kufeld M, Muacevic A, Wowra B, Schlaefer A (2010) Patient motion and targeting accuracy in robotic spinal radiosurgery: 260 single-fraction fiducial-free cases. Int J Radiat Oncol Biol Phys 78:937–945

    Article  PubMed  Google Scholar 

  • Goodman KA, Anderson EM, Maturen KE, Zhang Z, Mo Q, Yang G, Gibbs IC, Fisher GA, Koong AC (2010) Dose escalation study of stereotactic body radiotherapy for liver malignancies. Int J Radiat Oncol Biol Phys 78:486–493

    Article  PubMed  Google Scholar 

  • Hatipoglu S, Mu Z, Fu D, Kuduvalli G (2007) Evaluation of a robust fiducial tracking algorithm for image-guided radiosurgery. Proc SPIE 6509:65090A

    Article  Google Scholar 

  • Ho AK, Fu D, Cotrutz C, Hancock SL, Chang SD, Gibbs IC, Maurer CR Jr, Adler JR Jr (2007) A study of the accuracy of Cyberknife spinal radiosurgery using skeletal structure tracking. Neurosurgery 60:147–156

    Article  Google Scholar 

  • Hong JC, Yu Y, Rao AK, Dieterich S, Maxim PG, Le QT, Diehn M, Sze DY, Kothary N, Loo BW Jr (2011) High retention and safety of percutaneously implanted endovascular embolization coils as fiducial markers for image-guided stereotactic ablative radiotherapy of pulmonary tumors. Int J Radiat Oncol Biol Phys 81:85–90

    Article  PubMed  Google Scholar 

  • Hoogeman M, Marijnissen J, Hol J, Van Der Baan P, Levendag PC, Heijmen, BJM (2009a) Validation of Monte Carlo based dose calculation in MultiPlan 2.1 for dose prediction in treatment of small lung tumors and comparison with ray tracing in MultiPlan 1.4.0 regarding GTV and PTV coverage. In: CyberKnife users’ meeting, CyberKnife User’s Society

    Google Scholar 

  • Hoogeman M, Prevost JB, Nuyttens J, Poll J, Levendag P, Heijmen B (2009b) Clinical accuracy of the respiratory tumor tracking system of the cyberknife: assessment by analysis of log files. Int J Radiat Oncol Biol Phys 74:297–303

    Google Scholar 

  • Jabbari S, Weinberg VK, Kaprealian T, Hsu IC, Ma L, Chuang C, Descovich M, Shiao S, Shinohara K, Roach M III, Gottschalk AR (2011) Stereotactic body radiotherapy as monotherapy or post-external beam radiotherapy boost for prostate cancer: technique, early toxicity, and PSA response. Int J Radiat Oncol Biol Phys 56:7767–7775

    Google Scholar 

  • Katz AJ, Santoro M, Ashley R, Diblasio F, Witten M (2010) Stereotactic body radiotherapy for organ-confined prostate cancer. BMC Urol 10:1

    Article  PubMed  Google Scholar 

  • Kilby W, Dooley JR, Kuduvalli G, Sayeh S, Maurer CR Jr (2010) The CyberKnife robotic radiosurgery system in 2010. Technol Cancer Res Treat 9:433–452

    PubMed  CAS  Google Scholar 

  • King CR, Brooks JD, Gill H, Pawlicki T, Cotrutz C, Presti JC Jr (2009) Stereotactic body radiotherapy for localized prostate cancer: interim results of a prospective phase II clinical trial. Int J Radiat Oncol Biol Phys 73:1043–1048

    Article  PubMed  Google Scholar 

  • King CR, Brooks JD, Gill H, Presti JC Jr (2011) Long-term outcomes from a prospective trial of stereotactic body radiotherapy for low-risk prostate cancer. Int J Radiat Oncol Biol Phys (in press)

    Google Scholar 

  • Lanciano R, Lamond J, Yang J, Feng J, Arrigo S, Good M, Brady L (2011) Stereotactic body radiation therapy for patients with heavily pretreated liver metastases and liver tumors. Int J Radiat Oncol Biol Phys 81:s354

    Google Scholar 

  • Louis C, Dewas S, Mirabel X, Lacornerie T, Adenis A, Bonodeau F, Lartigau E (2010) Stereotactic radiotherapy of hepatocellular carcinoma: preliminary results. Technol Cancer Res Treat 9:479–487

    PubMed  CAS  Google Scholar 

  • Mahadevan A, Miksad R, Goldstein M, Sullivan R, Bullock A, Buchbinder E, Pleskow D, Sawhney M, Kent T, Vollmer C, Callery M (2011) Induction Gemcitabine and stereotactic body radiotherapy for locally advanced nonmetastatic pancreas cancer. Int J Radiat Oncol Biol Phys 81:e615–e622

    Google Scholar 

  • Mardirossian G, Muniruzaman M, Lee C, Jin H (2009) Validation of accuracy Multiplan Monte Carlo treatment plans. In: CyberKnife users’ meeting, CyberKnife User’s Society

    Google Scholar 

  • Mu Z, Fu D, Kuduvalli G (2006) Multiple fiducial identification using the hidden Markov model in image guided radiosurgery. In: Computer vision and pattern recognition, IEEE Computer Society, p 92

    Google Scholar 

  • Mu Z, Fu D, Kuduvalli G (2008) A probabilistic framework based on hidden Markov model for fiducial identification in image-guided radiation treatments. IEEE Trans Med Imaging 27:1288–1300

    Article  PubMed  Google Scholar 

  • Muacevic A, Staehler M, Drexler C, Wowra B, Reiser M, Tonn JC (2006) Technical description, phantom accuracy, and clinical feasibility for fiducial-free frameless real-time image-guided spinal radiosurgery. J Neurosurg Spine 5:303–312

    Article  PubMed  Google Scholar 

  • Muacevic A, Drexler C, Wowra B, Schweikard A, Schlaefer A, Hoffmann RT, Wilkowski R, Winter H, Reiser M (2007) Technical description, phantom accuracy, and clinical feasibility for single-session lung radiosurgery using robotic image-guided real-time respiratory tumor tracking. Technol Cancer Res Treat 6:321–328

    PubMed  CAS  Google Scholar 

  • Murphy MJ (1997) An automatic six-degree-of-freedom image registration algorithm for image-guided frameless stereotaxic radiosurgery. Med Phys 24:857–866

    Article  PubMed  CAS  Google Scholar 

  • Murphy MJ (2002) Fiducial-based targeting accuracy for external-beam radiotherapy. Med Phys 29:334–344

    Article  PubMed  Google Scholar 

  • Murphy MJ, Balter J, Balter S, Bencomo JA Jr, Das IJ, Jiang SB, Ma CM, Olivera GH, Rodebaugh RF, Ruchala KJ, Shirato H, Yin FF (2007) The management of imaging dose during image-guided radiotherapy: report of the AAPM task group 75. Med Phys 34:4041–4063

    Article  PubMed  Google Scholar 

  • Nioutsikou E, Seppenwoolde Y, Symonds-Tayler JR, Heijmen B, Evans P, Webb S (2008) Dosimetric investigation of lung tumor motion compensation with a robotic respiratory tracking system: an experimental study. Med Phys 35:1232–1240

    Article  PubMed  Google Scholar 

  • Papanikoulaou N, Battista J, Boyer A, Kappas C, Klein E, Mackie T, Sharpe M, Van Dyke J (2004) Tissue inhomogeneity corrections for megavoltage photon beams. http://www.aapm.org/pubs/reports/RPT_85.pdf

  • Reichner CA, Collins BT, Gagnon GJ, Malik S, Jamis-Dow C, Anderson ED (2005) The placement of gold fiducials for CyberKnife stereotactic radiosurgery using a modified transbronchial needle aspiration technique. J. Bronchol. 12:193–195

    Article  Google Scholar 

  • Rwigema JC, Heron DE, Ferris RL, Gibson M, Quinn A, Yang Y, Ozhasoglu C, Burton S (2010) Fractionated stereotactic body radiation therapy in the treatment of previously-irradiated recurrent head and neck carcinoma: updated report of the University of Pittsburgh experience. Am J Clin Oncol 33:286–293

    Google Scholar 

  • Sayeh S, Wang J, Main WT, Kilby W, Maurer CR Jr (2007) Respiratory motion tracking for robotic radiosurgery. In: Urschel HC, Kresl JJ, Luketich JD, Papiez L, Timmerman RD (eds) Robotic radiosurgery: treating tumors that move with respiration. Springer, Berlin, pp 15–29

    Google Scholar 

  • Stintzing S, Hoffmann RT, Heinemann V, Kufeld M, Muacevic A (2010) Frameless single-session robotic radiosurgery of liver metastases in colorectal cancer patients. Eur J Cancer 46:1026–1032

    Article  PubMed  CAS  Google Scholar 

  • Van Der Voort Van Zyp NC, Prevost JB, Hoogeman MS, Praag J, Van Der Holt B, Levendag PC, Van Klaveren RJ, Pattynama P, Nuyttens JJ (2009) Stereotactic radiotherapy with real-time tumor tracking for non-small cell lung cancer: clinical outcome. Radiother Oncol 91:296–300

    Google Scholar 

  • Van Der Voort Van Zyp NC, Hoogeman MS, Van De Water S, Levendag PC, Van Der Holt B, Heijmen BJ, Nuyttens JJ (2010a) Clinical introduction of Monte Carlo treatment planning; a different prescription dose for non-small cell lung cancer according to tumor location and size. Radiat Oncol 96:55–60

    Google Scholar 

  • Van Der Voort Van Zyp NC, Prevost JB, Van Der Holt B, Braat C, Van Klaveren RJ, Pattynama PM, Levendag PC, Nuyttens JJ (2010b) Quality of life after stereotactic radiotherapy for stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 77:31–37

    Google Scholar 

  • Vautravers-Dewas C, Dewas S, Bonodeau F, Adenis A, Lacornerie T, Penel N, Lartigau E, Mirabel X (2011) Image-guided robotic stereotactic body radiation therapy for liver metastases: is there a dose response relationship? Int J Radiat Oncol Biol Phys 81:e39–47

    Google Scholar 

  • Whitaker TJ, Mclaughlin M, Haile K (2009) Reducing monitor units and improving plan quality using combined isocentric and conformal collimators as opposed to conformal collimators along. In: CyberKnife users’ meeting, CyberKnife User’s Society

    Google Scholar 

  • Wong KH, Dieterich S, Tang J, Cleary K (2007) Quantitative measurement of CyberKnife robotic arm steering. Technol Cancer Res Treat 6:589–594

    PubMed  CAS  Google Scholar 

  • Wu X, Fu D, De La Zerda A, Bossart E, Shao H, Both J, Nikesch W, Huang Z, Markkoe A, Schwade J (2007) Patient alignment and target tracking in radiosurgery of soft-tissue tumors using combined fiducial and skeletal structures tracking techniques. In: Urschel HC Jr, Kresl JJ, Luketich JD, Papiez L, Timmerman RD (eds) Robotic radiosurgery: treating tumors that move with respiration. Springer, Berlin, pp 31–36

    Google Scholar 

  • Wu X, Dieterich S, Orton CG (2009) Point/counterpoint: only a single implanted marker is needed for tracking lung cancers for IGRT. Med Phys 36:4845–4847

    Article  PubMed  Google Scholar 

  • Xie Y, Djajaputra D, King CR, Hossain S, Ma L, Xing L (2008) Intrafractional motion of the prostate during hypofractionated radiotherapy. Int J Radiat Oncol Biol Phys 72:236–246

    Article  PubMed  Google Scholar 

  • Yang J, Feng J, Lamond J (2009a) Dose gradient analysis with beam concentricity in conformal planning. In: CyberKnife users’ meeting, CyberKnife User’s Society

    Google Scholar 

  • Yang J, Lamond J, Feng J, Lanciano R, Arrigo S, Lavere N, Curtin L, Brady L (2009b) A quality control procedure for using Xsight lung. In: CyberKnife users’ meeting, CyberKnife User’s Society

    Google Scholar 

  • Yang J, Lamond J, Lanciano R, Feng J, Gilman S, Brady L (2011) Using foldable gold anchor markers for fiducial tracking with the CyberKnife. In: Robotic radiosurgery summit

    Google Scholar 

Download references

Acknowledgments

We thank Pam Commike, PhD (Accuray Incorporated) for editorial assistance. The views expressed here are entirely the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, J., Lamond, J.P., Feng, J., Wu, X., Lanciano, R., Brady, L.W. (2012). CyberKnife System. In: Lo, S., Teh, B., Lu, J., Schefter, T. (eds) Stereotactic Body Radiation Therapy. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_505

Download citation

  • DOI: https://doi.org/10.1007/174_2011_505

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25604-2

  • Online ISBN: 978-3-642-25605-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics