Skip to main content

Imaging of Great Vessels

  • Chapter
  • 3966 Accesses

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Imaging the great vessels is important in the clinical management of many forms of cardiovascular disease. Cross-sectional imaging has many advantages when assessing the great vessels and in this chapter the role of MRI will be reviewed. Specifically, the uses of different MRI sequences will be discussed in relation to different great vessel diseases. This will be followed by an in-depth discussion of important great vessel diseases and the most suitable types of MRI. By the end of this chapter the reader should have a better idea of how to use MRI when assessing the great vessels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andrews J, Al-Nahhas A, Pennell DJ et al (2004) Non-invasive imaging in the diagnosis and management of Takayasu’s arteritis. Annals Rheumatic Dis 63:995–1000

    CAS  Google Scholar 

  • Araoz PA, Reddy GP, Tarnoff H, Roge CL, Higgins CB (2003) MR findings of collateral circulation are more accurate measures of hemodynamic significance than arm-leg blood pressure gradient after repair of coarctation of the aorta. JMRI 17:177–183

    PubMed  Google Scholar 

  • Bartels LW, Bakker CJ, Viergever MA (2002) Improved lumen visualization in metallic vascular implants by reducing RF artifacts. Magn Reson Med 47:171–180

    PubMed  Google Scholar 

  • Becker AE, Becker MJ, Edwards JE (1970) Anomalies associated with coarctation of aorta: particular reference to infancy. Circulation 41:1067–1075

    PubMed  CAS  Google Scholar 

  • Bernard Y, Zimmermann H, Chocron S et al (2001) False lumen patency as a predictor of late outcome in Aortic Dissection. Am J Cardiol 15;87(12):1378–1382

    Google Scholar 

  • Baerlocher L, Kretschmar O, Harpes P et al (2008) Stent implantation and balloon angioplasty for treatment of branch pulmonary artery stenosis in children. Clin Res Cardiol 97:310–317

    PubMed  Google Scholar 

  • Beekman RP, Hazekamp MG, Sobotka MA et al (1998) A new diagnostic approach to vascular rings and pulmonary slings: the role of MRI. Magn Reson Imaging 16:137–145

    PubMed  CAS  Google Scholar 

  • Bogaert J, Gewillig M, Rademakers F et al (1995) Transverse arch hypoplasia predisposes to aneurysm formation at the repair site after patch angioplasty for coarctation of the aorta. J Am Coll Cardiol 26:521–527

    PubMed  CAS  Google Scholar 

  • Bogaert J, Meyns B, Rademakers F et al (1997) Aortic dissection: contribution of MR angiography for evaluation of the abdominal aorta and its branches. Eur Radiol 7:695–702

    PubMed  CAS  Google Scholar 

  • Bogaert J, Kuzo R, Dymarkowski S et al (2000) Follow-up of patients with previous treatment for coarctation of the thoracic aorta: comparison between contrast-enhanced MR angiography and fast spin-echo MR imaging. Eur Radiol 10:1847–1854

    PubMed  CAS  Google Scholar 

  • Bogaert J, Dymarkowski S, Budts W, Daenen W, Gewillig M (2001) Graft dilatation after redo surgery for aneurysm formation following patch angioplasty for coarctation of the aorta. Europ J Thorac Cardiovasc Surg 19:274–278

    CAS  Google Scholar 

  • Buonocore MH, Bogren H (1991) Optimized pulse sequence for magnetic resonance measurment of aortic cross-sectional areas. Magn Reson Imaging 9(3):435–447

    PubMed  CAS  Google Scholar 

  • Cai K, Caruthers SD, Huang W et al (2010) MR molecular imaging of aortic angiogenesis. JACC Cardiovasc Imag 3(8):824–832

    Google Scholar 

  • Canter CE, Gutierrez FR, Mirowitz SA, Martin TC, Hartmann A F Jr (1989) Evaluation of pulmonary arterial morphology in cyanotic congenital heart disease by magnetic resonance imaging. Am Heart J 118:347–354

    PubMed  CAS  Google Scholar 

  • Carpenter JP, Holland GA, Baum RA, Owen RS, Carpenter JT, Cope C (1993) Magnetic resonance venography for the detection of deep venous thrombosis: comparison with contrast venography and duplex Doppler ultrasonography. J Vasc Surg 18:734–741

    PubMed  CAS  Google Scholar 

  • Carr J, Simonetti O, Bundy J et al (2001) Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 219:828–834

    PubMed  CAS  Google Scholar 

  • Carr JC, Finn JP (2003) MR imaging of the thoracic aorta. Magn Reson Imaging Clin N Am 11:135–148

    PubMed  Google Scholar 

  • Chien D, Saloner D, Laub Anderson C M (1994) High resolution cine MRI of vessel distension. J Comput Assisst Tomogr. 18(4):576–580

    CAS  Google Scholar 

  • Choe YH, Han BK, Koh EM et al (2000) Takayasu’s arteritis: assessment of disease activity with contrast- enhanced MR imaging. AJR 175:505–511

    PubMed  CAS  Google Scholar 

  • Choudhury RP, Fuster V, Badimon JJ, Fisher EA, Fayad ZA (2002) MRI and characterization of atherosclerotic plaque: emerging applications and molecular imaging. Arterioscler Thromb Vasc Biol 22:1065–1074

    PubMed  CAS  Google Scholar 

  • Clough RE, Schaeffter T, Taylor PR (2010) Magnetic Resonance imaging for aortic dissection. Eur J Vasc Endovasc Surg 39:514–517

    PubMed  CAS  Google Scholar 

  • Dake MD, Miller DC, Mitchell RS, Semba CP, Moore KA, Sakai T (1998) The “first generation” of endovascular stent-grafts for patients with aneurysms of the descending thoracic aorta. J Thorac Cardiovasc Surg 116:689–704

    PubMed  CAS  Google Scholar 

  • Daniels SR, James FW, Loggie JM et al (1987) Correlates of resting and maximal exercise systolic blood pressure after repair of coarctation of the aorta: a multivariable analysis. Am Heart J 113:349–353

    PubMed  CAS  Google Scholar 

  • DeBakey ME, Henly WS, Cooley DA et al (1965) Surgical management of dissecting aneurysms of the aorta. J Thorac Cardiovasc Surg 49:130–148

    PubMed  CAS  Google Scholar 

  • De Leval MR, Elliott MJ (2006) Vascular rings. In: Stark JF, de Leval MR, Tsang VT (eds) Surgery for Congenital Heart Defects. Wiley-Blackwell, London, pp 307–318

    Google Scholar 

  • Didier D, Ratib O, Beghetti M, Oberhaensli I, Friedli B (1999) Morphologic and functional evaluation of congenital heart disease by magnetic resonance imaging. JMRI 10:639–655

    PubMed  CAS  Google Scholar 

  • Dietl CA, Torres AR, Favaloro RG, Fessler CL, Grunkemeier GL (1992) Risk of recoarctation in neonates and infants after repair with patch aortoplasty, subclavian flap, and the combined resection-flap procedure. J Thorac Cardiovasc Surg 103:724–732

    PubMed  CAS  Google Scholar 

  • Dymarkowski S, Bosmans H, Marchal G, Bogaert J (1999) 3D MR angiography of thoracic outlet. Am J Roentgenol 173:1005–1008

    CAS  Google Scholar 

  • Earls JP, Rofsky NM, DeCorato DR, Krinsky GA, Weinreb JC (1996) Breath-hold single-dose gadolinium-enhanced three-dimensional MR aortography: usefulness of a timing examination and MR power injector. Radiology 201:705–710

    PubMed  CAS  Google Scholar 

  • Edwards JE (1948) Anomalies of the derivatives of the aortic arch system. Med Clin North Am 33:925–949

    Google Scholar 

  • Elefteriades JA, Farkas EA (2010) Thoracic aortic aneurysm. clinically pertinent controversies and uncertainties. JACC 55:841–857

    PubMed  CAS  Google Scholar 

  • Engellau L, Olsrud J, Brockstedt S et al (2000) MR evaluation ex vivo and in vivo of a covered stent-graft for abdominal aortic aneurysms: ferromagnetism, heating, artifacts, and velocity mapping. JMRI 12:112–121

    PubMed  CAS  Google Scholar 

  • Erbel R, Alfonso F, Boileau C et al (2001) Diagnosis and management of aortic dissection. Recommendations of the Task Force on Aortic Dissection, European Society of Cardiology. Eur Heart J 22:1642-1681

    PubMed  CAS  Google Scholar 

  • Ersoy H, Goldhaber SZ, Cai T et al (2007) Time-resolved MR angiography: a primary screening examination of patients with suspected pulmonary embolism and contraindications to administration of iodinated contrast material. AJR Am J Roentgenol 188(5):1246–1254

    PubMed  Google Scholar 

  • Fatouraee N, Amini AA (2003) Regularization of flow streamlines in multislice phase-contrast MR imaging. IEEE Trans Med Imag 22:699–709

    Google Scholar 

  • Fattori R, Celletti F, Bertaccini P et al (1996) Delayed surgery of traumatic aortic rupture. Role of magnetic resonance imaging. Circulation 94:2865–2870

    PubMed  CAS  Google Scholar 

  • Fattori R, Nienaber CA (1999) MRI of acute and chronic aortic pathology: pre-operative and post-operative evaluation. JMRI 10:741–750

    PubMed  CAS  Google Scholar 

  • Fattori R, Bacchi Reggiani L, Pepe G et al (2000) Magnetic resonance imaging evaluation of aortic elastic properties as early expression of Marfan syndrome. JCMR 2:251–256

    CAS  Google Scholar 

  • Faust RA, Remley KB, Rimell FL (2001) Real-time, cine magnetic resonance imaging for evaluation of the pediatric airway. Laryngoscope 111:2187–2190

    PubMed  CAS  Google Scholar 

  • Fayad ZA (2003) MR imaging for the noninvasive assessment of atherothrombotic plaques. Magn Reson Imaging Clin N Am 11:101–113

    PubMed  Google Scholar 

  • Festa P, Ait-Ali L, Cerillo AG et al (2006) Magnetic resonance imaging is the diagnostic tool of choice in the preoperative evaluation of patients with partial anomalous pulmonary venous return. Int J Cardiovasc Imaging 22:685–693

    PubMed  Google Scholar 

  • Finn JP, Baskaran V, Carr JC et al (2002) Thorax: low-dose contrast-enhanced three-dimensional MR angiography with subsecond temporal resolution–initial results. Radiology 224:896–904

    PubMed  Google Scholar 

  • Fiore AC, Brown JW, Weber TR, Turrentine MW (2005) Surgical treatment of pulmonary artery sling and tracheal stenosis. Ann Thorac Surg Jan 79(1):38–46 Discussion

    Google Scholar 

  • Flacke S, Fischer S, Scott MJ et al (2001) Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104:1280–1285

    PubMed  CAS  Google Scholar 

  • Forbat SM, Mohiaddin RH, Yang GZ et al (1995) Measurement of regional aortic compliance by MR Imaging: a study of reproducibility. J Magn Reson Imaging 5(6):635–639

    PubMed  CAS  Google Scholar 

  • Francois CJ, Shors SM, Bonow RO, Finn JP (2003) Analysis of cardiopulmonary transit times at contrast material-enhanced MR imaging in patients with heart disease. Radiology 227:447–452

    PubMed  Google Scholar 

  • Ganaha F, Miller DC, Sugimoto K et al (2002) Prognosis of aortic intramural hematoma with and without penetrating atherosclerotic ulcer: a clinical and radiological analysis. Circulation 106:342–348

    PubMed  Google Scholar 

  • Gaubert JY, Moulin G, Mesana T et al (1995) Type A dissection of the thoracic aorta: use of MR imaging for long-term follow-up. Radiology 196:363–369

    PubMed  CAS  Google Scholar 

  • Giordano U, Giannico S, Turchetta A et al (2005) The influence of different surgical procedures on hypertension after repair of coarctation. Cardiol Young 15:477–480

    PubMed  Google Scholar 

  • Gomes AS, Lois JF, George B, Alpan G, Williams RG (1987) Congenital abnormalities of the aortic arch: MR imaging. Radiology 165:691–695

    PubMed  CAS  Google Scholar 

  • Gotzsche CO, Krag-Olson B, Nielsen J et al (1994) Prevalence of cardiovascular malformations and association with karyotypes in Turner’s syndrome. Arch Dis Child 71:433–436

    PubMed  CAS  Google Scholar 

  • Greil GF, Powell AJ, Gildein HP, Geva T (2002) Gadolinium-enhanced three-dimensional magnetic resonance angiography of pulmonary and systemic venous anomalies. J Am Coll Cardiol 39:335–341

    PubMed  Google Scholar 

  • Greil GF, Kramer U, Dammann F et al (2005) Diagnosis of vascular rings and slings using an interleaved 3D double-slab FISP MR angiography technique. Pediatr Radiol 35:396–401

    PubMed  Google Scholar 

  • Grist TM, Sostman HD, MacFall JR et al (1993) Pulmonary angiography with MR imaging: preliminary clinical experience. Radiology 189:523–530

    PubMed  CAS  Google Scholar 

  • Groenink M, de Roos A, Mulder BJ et al (2001) Biophysical properties of the normal-sized aorta in patients with Marfan syndrome: evaluation with MR flow mapping. Radiology 219:535–540

    PubMed  CAS  Google Scholar 

  • Gundry SR, Burney RE, Mackenzie JR, Jafri SZ, Shirazi K, Cho KJ (1984) Traumatic pseudoaneurysms of the thoracic aorta. Anatomic and radiologic correlations. Arch Surg 119:1055–1060

    PubMed  CAS  Google Scholar 

  • Hagan PG, Nienaber CA, Isselbacher EM et al (2000) The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease. JAMA 283:897–903

    PubMed  CAS  Google Scholar 

  • Hagspiel KD, Leung DA, Nandalur KR et al (2005) Contrast-enhanced MR angiography at 1.5 T after implantation of platinum stents: in vitro and in vivo comparison with conventional stent designs. Am J Roentgenol 184:288–294

    Google Scholar 

  • Hamdan MA, Maheshwari S, Fahey JT, Hellenbrand WE (2001) Endovascular stents for coarctation of the aorta: initial results and intermediate-term follow-up. J Am Coll Cardiol 38:1518–1523

    PubMed  CAS  Google Scholar 

  • Hartnell GG, Hughes LA, Finn JP, Longmaid H E 3rd (1995) Magnetic resonance angiography of the central chest veins. A new gold standard? Chest 107:1053–1057

    PubMed  CAS  Google Scholar 

  • Hegde SR, Taylor AM, Muthurangu VM, Miquel ME, Razavi R (2004) The use of MRI in detecting pulmonary vein compression in patients with Fontan circulation. In: ECR conference proceedings 14(suppl 2): B-531

    Google Scholar 

  • Hernandez RJ (2002) Magnetic resonance imaging of mediastinal vessels. Magn Reson Imaging Clin N Am 10:237–251

    PubMed  Google Scholar 

  • Hilfiker PR, Quick HH, Pfammatter T, Schmidt M, Debatin JF (1999) Three-dimensional MR angiography of a nitinol-based abdominal aortic stent graft: assessment of heating and imaging characteristics. Eur Radiol 9:1775–1780

    PubMed  CAS  Google Scholar 

  • Higgins CB, Sakuma H (1996) Heart disease: functional evaluation with MR imaging. Radiology 199:307–315

    PubMed  CAS  Google Scholar 

  • Ho VB, Foo TK (1998) Optimization of gadolinium-enhanced magnetic resonance angiography using an automated bolus-detection algorithm (MR SmartPrep). Original investigation. Invest Radiol 33:515–523

    PubMed  CAS  Google Scholar 

  • Ho VB, Choyke PL, Foo TK et al (1999) Automated bolus chase peripheral MR angiography: initial practical experiences and future directions of this work-in-progress. JMRI 10:376–388

    PubMed  CAS  Google Scholar 

  • Holmqvist C, Stahlberg F, Hanseus K et al (2002) Collateral flow in coarctation of the aorta with magnetic resonance velocity mapping: correlation to morphological imaging of collateral vessels. JMRI 15:39–46

    PubMed  Google Scholar 

  • Hope TA, Markl M, Wigstrom L et al (2007) Comparison of flow patterns in ascending aortic aneurysms and volunteers using four-dimensional magnetic resonance velocity mapping. J Magn Reson Imaging 26:1471–1479

    PubMed  Google Scholar 

  • Hope MD, Meadows AK, Hope TA et al (2010) Clinical evaluation of aortic coarctation with 4D flow MR imaging. J Magn Reson Imaging 31:711–718

    PubMed  Google Scholar 

  • Hoschtitzky JA, Anderson RH, Elliot MJ (2009) Paediatric Cardiology, 3rd edn. Churchill-Livingstone, Edinburgh, pp 945–966 Chap. 46

    Google Scholar 

  • Hu P, Stoeck CT, Smink J et al (2010) Noncontrast SSFP Pulmonary vein magnetic resonance angiography: Impact of off-resonance and flow. J Magn Reson Imaging 32:1255–1261

    PubMed  Google Scholar 

  • Jones A, Steeden JA, Pruessner JC et al (2011) Detailed assessment of the haemodynamic response to psychosocial stress using real-time MRI. J Magn Reson Imaging 33(2):448–454

    PubMed  Google Scholar 

  • Kaemmerer H, Theissen P, Konig U, Sechtem U, de Vivie ER (1993) Follow-up using magnetic resonance imaging in adult patients after surgery for aortic coarctation. Thorac Cardiovasc Surg 41:107–111

    PubMed  CAS  Google Scholar 

  • Kanne JP, Lalani TA (2004) Role of computed tomography and magnetic resonance imaging for deep venous thrombosis and pulmonary embolism. Circulation 109(12 Suppl 1): I15–21

    Google Scholar 

  • Kersting-Sommerhoff BA, Sechtem UP, Schiller NB, Lipton MJ, Higgins CB (1987) MR imaging of the thoracic aorta in Marfan patients. J Comput Assist Tomogr 11:633–639

    PubMed  CAS  Google Scholar 

  • Kim CY, Mirza RA, Bryant JA et al (2008) Central veins of the chest: Evaluation with time resolved MR angiography. Radiology. 247(2):558–566

    PubMed  Google Scholar 

  • Knauth AL, Marshall AC, Geva T, Jonas RA, Marx GR (2004) Respiratory symptoms secondary to aortopulmonary collateral vessels in tetralogy of Fallot absent pulmonary valve syndrome. Am J Cardiol 93:503–505

    PubMed  Google Scholar 

  • Korosec FR, Grist TM, Mistretta CA (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36:345–351

    PubMed  CAS  Google Scholar 

  • Knyshov GV, Sitar LL, Glagola MD et al (1996) Aortic aneurysms at the site of the repair of coarctation of the aorta: a review of 48 patients. Ann Thorac Surg 61:935–939

    PubMed  CAS  Google Scholar 

  • Krishnam MS, Tomasian A, Lohan DG et al (2008) Low-dose, time resolved, contrast-enhanced 3D MR angiography in cardiac and vascular diseases: correlation to high spatial resolution 3D contrast-enhanced MRA. Clin Rad 63:744–755

    CAS  Google Scholar 

  • Lansman SL, Saunders PC, Malekan R et al (2010) Acute aortic syndrome J Thorac Cardiovasc Surg. 2010 140(6 Suppl):S92–97

    Google Scholar 

  • Latson LA, Prieto LR (2007) Congenital and acquired pulmonary vein stenosis. Circulation 115(1):103–108

    PubMed  Google Scholar 

  • Lebowitz JA, Rofsky NM, Krinsky GA, Weinreb JC (1997) Gadolinium-enhanced body MR venography with subtraction technique. Am J Roentgenol 169:755–758

    CAS  Google Scholar 

  • Lee VS, Resnick D, Bundy JM et al (2002) Cardiac function: MR evaluation in one breath hold with real-time true fast imaging with steady state precession. Radiology 222:835–842

    PubMed  Google Scholar 

  • Leeson CP, Robinson M, Francis JM et al (2006) Cardiovascular magnetic resonance imaging for non‐invasive assessment of vascular function: validation against ultrasound. J Cardiovasc Magn Reson 8(2):381–387

    PubMed  CAS  Google Scholar 

  • Lenhart M, Volk M, Manke C et al (2000) Stent appearance at contrast-enhanced MR angiography: invitro examination with 14 stents. Radiology 217:173–178

    PubMed  CAS  Google Scholar 

  • Leung DA, Debatin JF (1997) Three-dimensional contrast-enhanced magnetic resonance angiography of the thoracic vasculature. Eur Radiol 7:981–989

    PubMed  CAS  Google Scholar 

  • Loeys BL, Dietz HC, Braverman AC et al (2010) The revised Ghent nosology for the Marfan Syndrome. J Med Genet 47:476–485

    PubMed  CAS  Google Scholar 

  • Lohan DG, Krishnam M, Saleh R et al (2008) MR imaging if the thoracic aorta. Magn Reson Imaging Clin N Am 16(2):213–234

    PubMed  Google Scholar 

  • Lurz P, Coats L, Khambadkone S et al (2008) Percutaneous pulmonary valve implantation: impact of evolving technology and learning curve on clinical outcome. Circulation 117:1964–1972

    PubMed  Google Scholar 

  • Markl M, Alley MT, Pelc NJ (2003a) Balanced phase-contrast steady-state free precession (PC-SSFP): a novel technique for velocity encoding by gradient inversion. Magn Reson Med 49:945–952

    PubMed  CAS  Google Scholar 

  • Markl M, Chan FP, Alley MT et al (2003b) Time-resolved three-dimensional phase-contrast MRI. JMRI 17:499–506

    PubMed  Google Scholar 

  • Martinez JE, Mohiaddin RH, Kilner PJ et al (1992) Obstruction in extracardiac ventriculopulmonary conduits: value of nuclear magnetic resonance imaging with velocity mapping and Doppler echocardiography. J Am Coll Cardiol 20:338–344

    PubMed  CAS  Google Scholar 

  • Masui T, Seelos KC, Kersting-Sommerhoff BA, Higgins CB (1991) Abnormalities of the pulmonary veins: evaluation with MR imaging and comparison with cardiac angiography and echocardiography. Radiology 181:645–649

    PubMed  CAS  Google Scholar 

  • Masui T, Katayama M, Kobayashi S et al (2000) Gadolinium-enhanced MR angiography in the evaluation of congenital cardiovascular disease pre- and postoperative states in infants and children. JMRI 12:1034–1042

    PubMed  CAS  Google Scholar 

  • McElhinney DB, Reddy VM, Moore P, Hanley FL (1996) Revision of previous Fontan connections to extracardiac or intraatrial conduit cavopulmonary anastomosis. Ann Thorac Surg 62:1276–1283

    PubMed  CAS  Google Scholar 

  • Mohiaddin RH, Schoser K, Amanuma M, Burman ED, Longmore DB (1990) MR imaging of age-related dimensional changes of thoracic aorta. J Comput Assist Tomogr 14:748–752

    PubMed  CAS  Google Scholar 

  • Mohiaddin RH, Kilner PJ, Rees S et al (1993) Magnetic resonance volume flow and jet velocity mapping in aortic coarctation. J Am Coll Cardiol 22:1515–1521

    PubMed  CAS  Google Scholar 

  • Mohiaddin RH, McCrohon J, Francis JM et al (2001) Contrast-enhanced magnetic resonance angiogram of penetrating aortic ulcer. Circulation 103:18–19

    Google Scholar 

  • Muthurangu V, Lurz P, Critchley JD et al (2008) Real-time assessment of right and left ventricular volumes and function in patients with congenital heart disease by using high spatiotemporal resolution radial k-t-SENSE. Radiology 248(3):782–791

    PubMed  Google Scholar 

  • Nayler GL, Firmin DN, Longmore DB (1986) Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr 10:715–722

    PubMed  CAS  Google Scholar 

  • Nienaber CA, Con Kodolitsch Y, Nicolas V et al (1993) The diagnosis of aortic dissection by non-invasive imaging procedures. N Engl J Med 328:1–9

    PubMed  CAS  Google Scholar 

  • Nienaber CA, Richartz BM, Rehders T, Ince H, Petzsch M (2004) Aortic intramural haematoma: natural history and predictive factors for complications. Heart 90:372–374

    PubMed  CAS  Google Scholar 

  • Nielsen JC, Powell AJ, Gauvreau K et al (2005) Magnetic resonance imaging predictors of coarctation severity. Circulation 111:622–628

    PubMed  Google Scholar 

  • Nordmeyer J, Gaudin R, Tann OR et al (2010a) MRI may be sufficient for noninvasive assessment of great vessel stens: an in vitro comparison of MRI, CT, and conventional angiography. Am J Roentgenol 195(4):865–871

    Google Scholar 

  • Nordmeyer S, Riesenkampff E, Crelier G et al (2010b) Flow-sensitive four-dimensional cine magnetic resonance imaging for offline blood flow quantification in multiple vessels: a validation study. Am J Roentgenol 32:677–683

    Google Scholar 

  • O’Donnell CP, Lock JE, Powell AJ, Perry SB (2003) Compression of pulmonary veins between the left atrium and the descending aorta. Am J Cardiol 91:248–251

    PubMed  Google Scholar 

  • Oppelt A, Graumann R, Barfuss H (1986) FISP–a new fast MRI sequence. Electromedica 54:15–18

    Google Scholar 

  • Ou P, Celermajer DS, Jolivet O et al (2008) Increased central aortic stiffness and left ventricular mass in normotensive young subjects after successful. Coartation repair 155(1):187–193

    Google Scholar 

  • Pereles FS, Kapoor V, Carr JC et al (2001) Usefulness of segmented trueFISP cardiac pulse sequence in evaluation of congenital and acquired adult cardiac abnormalities. AJR 177:1155–1160

    PubMed  CAS  Google Scholar 

  • Piazza N, Grube E, Gerckens U et al (2008) Procedural and 30-day outcomes following transcatheter aortic valve implantation using the third generation (18 Fr) corevalve revalving system: results from the multicentre, expanded evaluation registry 1-year following CE mark approval. EuroIntervention 4:242–249

    PubMed  Google Scholar 

  • Pilleul F, Merchant N (2000) MRI of the pulmonary veins: comparison between 3D MR angiography and T1-weighted spin echo. J Comput Assist Tomogr 24:683–687

    PubMed  CAS  Google Scholar 

  • Pitt MP, Bonser RS (1997) The natural history of thoracic aortic aneurysm disease: an overview. J Card Surg 12(2 Suppl):270–278

    PubMed  CAS  Google Scholar 

  • Powell AJ, Chung T, Landzberg MJ, Geva T (2000) Accuracy of MRI evaluation of pulmonary blood supply in patients with complex pulmonary stenosis or atresia. Int J Card Imaging 16:169–174

    PubMed  CAS  Google Scholar 

  • Prasad SK, Soukias N, Hornung T et al (2004) Role of magnetic resonance angiography in the diagnosis of major aortopulmonary collateral arteries and partial anomalous pulmonary venous drainage. Circulation 109:207–214

    PubMed  Google Scholar 

  • Prince MR (1994) Gadolinium-enhanced MR aortography. Radiology 191:155–164

    PubMed  CAS  Google Scholar 

  • Prince MR, Narasimham DL, Jacoby WT et al (1996) Three-dimensional gadolinium-enhanced MR angiography of the thoracic aorta. AJR 166:1387–1397

    PubMed  CAS  Google Scholar 

  • Razavi R, Baker E (1999) Magnetic resonance imaging comes of age. Cardiol Young 9:529–538

    PubMed  CAS  Google Scholar 

  • Razavi RS, Hill DL, Muthurangu V et al (2003) Three-dimensional magnetic resonance imaging of congenital cardiac anomalies. Cardiol Young 13:461–465

    PubMed  Google Scholar 

  • Riederer SJ, Bernstein MA, Breen JF et al (2000) Three-dimensional contrast-enhanced MR angiography with real-time fluoroscopic triggering: design specifications and technical reliability in 330 patient studies. Radiology 215:584–593

    PubMed  CAS  Google Scholar 

  • Roche KJ, Krinsky G, Lee VS, Rofsky N, Genieser NB (1999) Interrupted aortic arch: diagnosis with gadolinium-enhanced 3D MRA. J Comput Assist Tomogr 23:197–202

    PubMed  CAS  Google Scholar 

  • Roman KS, Kellenberger CJ, Macgowan CK et al (2005) How is pulmonary arterial blood flow affected by pulmonary venous obstruction in children? A phase-contrast magnetic resonance study. Pediatr Radio. 35:580–586

    Google Scholar 

  • Roman MJ, Devereux RB, Niles NW et al (1987) Aortic root dilatation as a cause of isolated, severe aortic regurgitation. Prevalence, clinical and echocardiographic patterns, and relation to left ventricular hypertrophy and function. Ann Intern Med 106:800–807

    PubMed  CAS  Google Scholar 

  • Roos-Hesselink JW, Scholzel BE, Heijdra RJ et al (2003) Aortic valve and aortic arch pathology after coarctation repair. Heart 89:1074–1077

    PubMed  CAS  Google Scholar 

  • Samanak M, Slavik Z, Zborilova B et al (1989) Prevalence, treatment and outcome of heart disease in live-born children: A prospective analysis of 91823 live-born children. Pediatr Cardiol 10:205–211

    Google Scholar 

  • Scheffler K, Lehnhardt S (2003) Principles and applications of balanced SSFP techniques. Eur Radiol 13:2409–2418

    PubMed  Google Scholar 

  • Schlesinger AE, Krishnamurthy R, Sena LM et al (2005) Incomplete double aortic arch with atresia of the distal left arch: distinctive imaging appearance. AJR Am J Roentgenol 184(5):1634–1639

    Google Scholar 

  • Schmidta M, Theissen P, Klempt G et al (2000) Long-term follow-up of 82 patients with chronic disease of the thoracic aorta using spin-echo and cine gradient magnetic resonance imaging. Magn Reson Imaging 18:795–806

    PubMed  CAS  Google Scholar 

  • Senzaki H, Iwamoto Y, Ishido H et al (2008) Arterial haemodynamics in patients after repair of tetralogy of Fallot: influence on left ventricular after load and aortic dilation. Heart 94:70–74

    PubMed  CAS  Google Scholar 

  • Sevitt S (1977) The mechanisms of traumatic rupture of the thoracic aorta. Br J Surg 64:166–173

    Google Scholar 

  • Simonetti OP, Finn JP, White RD et al (1996) “Black-blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology 199:49–57

    PubMed  CAS  Google Scholar 

  • Smith DE, Matthews MB (1955) Aortic valvular stenosis with coarctation of the aorta, with special reference to the development of aortic stenosis upon congenital bicuspid valves. Br Heart J 17:198–206

    PubMed  CAS  Google Scholar 

  • Sonnabend SB, Colletti PM, Pentecost MJ (1990) Demonstration of aortic lesions via cine magnetic resonance imaging. Magn Reson Imaging 8(5):613–618

    PubMed  CAS  Google Scholar 

  • Sorensen TS, Korperich H, Greil GF et al (2004) Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease: a validation study. Circulation 110(2):163–169

    PubMed  Google Scholar 

  • Spuentrup E, Buecker A, Stuber M, Gunther RW (2001) MR-venography using high resolution True-FISP.

    Google Scholar 

  • Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 173: 686–690

    Google Scholar 

  • Steeden JA, Atkinson D, Taylor AM et al (2010) Assessing vascular response to exercise using a combination of real-time spiral phase contrast MR and noninvasive blood pressure measurements. J Magn Reson Imaging 31(4):997–1003

    Google Scholar 

  • Stehling MK, Holzknecht NG, Laub G et al (1996) Single-shot T1 and T2 weighted magnetic resonance imaging of the heart with black blood: preliminary experience. MAGMA 4:231–240

    PubMed  CAS  Google Scholar 

  • Stemerman DH, Krinsky GA, Lee VS, Johnson G, Yang BM, Rofsky NM (1999) Thoracic aorta: rapid black-blood MR imaging with half-Fourier rapid acquisition with relaxation enhancement with or without electrocardiographic triggering. Radiology 213:185–191

    PubMed  CAS  Google Scholar 

  • Summers RM, Sostman HD, Spritzer CE, Fidler JL (1996) Fast spoiled gradient-recalled MR imaging of thoracic aortic dissection: preliminary clinical experience at 1.5 T. Magn Reson Imaging 14:1–9

    PubMed  CAS  Google Scholar 

  • Svensson LG, Labib SB, Eisenhauer AC, Butterly JR (1999) Intimal tear without hematoma. An important variant of aortic dissection that can elude current imaging techniques. Circulation 99:1331–1336

    Google Scholar 

  • Szolar DH, Sakuma H, Higgins CB (1996) Cardiovascular applications of magnetic resonance flow and velocity measurements. JMRI 6:78–89

    PubMed  CAS  Google Scholar 

  • Tangcharoen T, Bell A, Hegde S et al (2011) Detection of coronary artery anomalies in infants and young children with congenital heart disease by using MR imaging. Radiology 259(1):240–247

    PubMed  Google Scholar 

  • Tanigawa K, Eguchi K, Kitamura Y et al (1992) Magnetic resonance imaging detection of aortic and pulmonary artery wall thickening in the acute stage of Takayasu arteritis. Improvement of clinical and radiologic findings after steroid therapy. Arthritis Rheum 35:476–480

    PubMed  CAS  Google Scholar 

  • Tann OR, Tulloh RMR, Hamilton MCK (2008) Takayasu’s disease: a review. Cardiol Young 18(3):250–259

    Google Scholar 

  • Toussaint JF (2202) MRI characterization of atherosclerotic arteries: diagnosis of plaque rupture. J Neuroradiol 29:223–230

    Google Scholar 

  • van Beek EJ, Wild JM, Fink C, Moody AR, Kauczor HU, Oudkerk M (2003) MRI for the diagnosis of pulmonary embolism. JMRI 18:627–640

    PubMed  Google Scholar 

  • Van Grimberge F, Dymarkowski S, Budts W, Bogaert J (2000) Role of magnetic resonance in the diagnosis of subclavian steal syndrome. J Magn Reson Imaging 12:339–342

    PubMed  Google Scholar 

  • Van Mierop LH, Kutsche LM (1986) Cardiovascular anomalies in DiGeorge syndrome and importance of neural crest as a possible pathogenetic factor. Am J Cardiol 58:133–137

    PubMed  Google Scholar 

  • Van Praagh R, Bernhard WF, Rosenthal A, Parisi LF, Fyler DC (1971) Interrupted aortic arch: surgical treatment. Am J Cardiol 27(2):200–211

    PubMed  Google Scholar 

  • Van Son JA, Julsrud PR, Hagler DJ et al (1993) Surgical treatment of vascular rings: the Mayo Clinic experience. Mayo Clin Proc 68(11):1056–1063

    PubMed  Google Scholar 

  • Videlefsky N, Parks WJ, Oshinski J et al (2001) Magnetic resonance phase-shift velocity mapping in pediatric patients with pulmonary venous obstruction. J Am Coll Cardiol 38:262–267

    PubMed  CAS  Google Scholar 

  • Vilacosta I, Aragoncillo P, Canadas V et al (2009) Acute aortic syndrome: a new look at an old conundrum. Heart 95:1130–1139

    PubMed  CAS  Google Scholar 

  • Voges I, Jerosch-Herold M, Hedderich J, et al (2010) maladaptive aortic properties in children after palliation of hypoplastic left heart syndrome assessed by cardiovascular magnetic resonance imaging. Circulation 122:1068–1076

    Google Scholar 

  • Vogt FM, Goyen M, Debatin JF (2003) MR angiography of the chest. Radiol Clin North Am 41:29–41

    PubMed  Google Scholar 

  • Von Kodolitsch Y, Csosz SK, Koschyk DH et al (2003) Intramural hematoma of the aorta: predictors of progression to dissection and rupture. Circulation 107:1158–1163

    Google Scholar 

  • von Schulthess GK, Higashino SM, Higgins SS, Didier D, Fisher MR, Higgins CB (1986) Coarctation of the aorta: MR imaging. Radiology 158:469–474

    Google Scholar 

  • Wang Y, Rossman PJ, Grimm RC, Wilman AH, Riederer SJ, Ehman RL (1996) 3D MR angiography of pulmonary arteries using real-time navigator gating and magnetization preparation. Magn Reson Med 36:579–587

    PubMed  CAS  Google Scholar 

  • Warnes CA, Williams RG, Bashore TM et al (2008) ACC/AHA 2008 Guidelines for the Management of Adults With Congenital Heart Disease: Executive Summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing committee to develop guidelines for the management of adults with congenital heart disease): Developed in Collaboration with the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons Circ 118:2395–2451

    Google Scholar 

  • Weinberg PM, Whitehead KK (2010) Aortic arch anomalies. In: Fogel MA (ed). Principles and practice of cardiac magnetic resonance in congenital heart disease form function and flow, Wiley-Blackwell (Chapter 11)

    Google Scholar 

  • Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    PubMed  CAS  Google Scholar 

  • White CS, Baffa JM, Haney PJ, Campbell AB, NessAiver M (1998) Anomalies of pulmonary veins: usefulness of spin-echo and gradient-echo MR images. Am J Roentgenol 170:1365–1368

    CAS  Google Scholar 

  • White CS (2000) MR imaging of thoracic veins. Magn Reson Imaging Clin N Am 8:17–32

    PubMed  CAS  Google Scholar 

  • Wildenhain PM, Bourekas EC (1991) Pulmonary varix: magnetic resonance findings. Cathet Cardiovasc Diagn 24:268–270

    PubMed  CAS  Google Scholar 

  • Winter PM, Morawski AM, Caruthers SD et al (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108:2270–2274

    PubMed  CAS  Google Scholar 

  • Zanotti G, Vricella L, Cameron D (2008) Thoracic aortic aneurysm syndrome in children. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 11(1):11–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Muthurangu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tann, O.R., Bogaert, J., Taylor, A.M., Muthurangu, V. (2011). Imaging of Great Vessels. In: Bogaert, J., Dymarkowski, S., Taylor, A., Muthurangu, V. (eds) Clinical Cardiac MRI. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_422

Download citation

  • DOI: https://doi.org/10.1007/174_2011_422

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23034-9

  • Online ISBN: 978-3-642-23035-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics