Skip to main content

Development and Clinical Applications of Nucleic Acid Therapeutics

  • Chapter
  • First Online:
Nucleic Acid Drugs

Part of the book series: Advances in Polymer Science ((POLYMER,volume 249))

  • 1328 Accesses

Abstract

In the past decade, our new understanding of post-transcriptional gene silencing (PTGS) has opened up new vistas that can help us to decipher the function of genes and thus to unravel the basic mechanistic principles and genetic networks in biology. This enormous potential of PTGS to selectively turn off genes either by antisense or RNA interference pathways has made a huge impact on research in basic science. Further, we can apply this knowledge and new set of rules in biomedical research for the development of more potent therapeutics. With a plethora of advantages of PTGS, there are still certain obstacles that need to be addressed to enable translation of this technology to the clinic. This article will focus on a brief history of the discovery and evolution of PTGS and its potential as a technology. We will also discuss the importance of target availability and some strategies for identification of the target sequence. Further, we will give an overview of some past experiences in the development of this technology in the clinic for cancer therapy, with a recent update on clinical development and trials on nucleic acid therapeutics.

Dedicated to the memory of our mentor and a visionary – Dr. Alan M. Gewirtz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    CAS  Google Scholar 

  2. Rana TM (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8:23–36

    CAS  Google Scholar 

  3. Dias N, Stein CA (2002) Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther 1:347–355

    CAS  Google Scholar 

  4. Kalota A, Shetzline SE, Gewirtz AM (2004) Progress in the development of nucleic acid therapeutics for cancer. Cancer Biol Ther 3:4–12

    CAS  Google Scholar 

  5. Gewirtz AM, Calabretta B (1988) A c-myb antisense oligodeoxynucleotide inhibits normal human hematopoiesis in vitro. Science 242:1303–1306

    CAS  Google Scholar 

  6. Opalinska JB, Gewirtz AM (2002) Nucleic-acid therapeutics: basic principles and recent applications. Nat Rev Drug Discov 1:503–514

    CAS  Google Scholar 

  7. Jinek M, Doudna JA (2009) A three-dimensional view of the molecular machinery of RNA interference. Nature 457:405–412

    CAS  Google Scholar 

  8. Joshua-Tor L (2006) The Argonautes. Cold Spring Harb Symp Quant Biol 71:67–72

    CAS  Google Scholar 

  9. Macrae IJ, Li F, Zhou K, Cande WZ, Doudna JA (2006) Structure of Dicer and mechanistic implications for RNAi. Cold Spring Harb Symp Quant Biol 71:73–80

    CAS  Google Scholar 

  10. Parker JS, Roe SM, Barford D (2005) Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature 434:663–666

    CAS  Google Scholar 

  11. Song JJ, Liu J, Tolia NH, Schneiderman J, Smith SK, Martienssen RA, Hannon GJ, Joshua-Tor L (2003) The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol 10:1026–1032

    CAS  Google Scholar 

  12. Wang HW, Noland C, Siridechadilok B, Taylor DW, Ma E, Felderer K, Doudna JA, Nogales E (2009) Structural insights into RNA processing by the human RISC-loading complex. Nat Struct Mol Biol 16:1148–1153

    CAS  Google Scholar 

  13. Ameres SL, Martinez J, Schroeder R (2007) Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130:101–112

    CAS  Google Scholar 

  14. Brown KM, Chu CY, Rana TM (2005) Target accessibility dictates the potency of human RISC. Nat Struct Mol Biol 12:469–470

    CAS  Google Scholar 

  15. Rudnick SI, Swaminathan J, Sumaroka M, Liebhaber S, Gewirtz AM (2008) Effects of local mRNA structure on posttranscriptional gene silencing. Proc Natl Acad Sci USA 105:13787–13792

    CAS  Google Scholar 

  16. Schubert S, Grunweller A, Erdmann VA, Kurreck J (2005) Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J Mol Biol 348:883–893

    CAS  Google Scholar 

  17. Tafer H, Ameres SL, Obernosterer G, Gebeshuber CA, Schroeder R, Martinez J, Hofacker IL (2008) The impact of target site accessibility on the design of effective siRNAs. Nat Biotechnol 26:578–583

    CAS  Google Scholar 

  18. Chiu YL, Rana TM (2003) siRNA function in RNAi: a chemical modification analysis. RNA 9:1034–1048

    CAS  Google Scholar 

  19. Watts JK, Deleavey GF, Damha MJ (2008) Chemically modified siRNA: tools and applications. Drug Discov Today 13:842–855

    CAS  Google Scholar 

  20. Baigude H, McCarroll J, Yang CS, Swain PM, Rana TM (2007) Design and creation of new nanomaterials for therapeutic RNAi. ACS Chem Biol 2:237–241

    CAS  Google Scholar 

  21. Juliano RL (2006) Intracellular delivery of oligonucleotide conjugates and dendrimer complexes. Ann N Y Acad Sci 1082:18–26

    CAS  Google Scholar 

  22. Li SD, Huang L (2008) Targeted delivery of siRNA by nonviral vectors: lessons learned from recent advances. Curr Opin Investig Drugs 9:1317–1323

    CAS  Google Scholar 

  23. Tseng YC, Mozumdar S, Huang L (2009) Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev 61:721–731

    CAS  Google Scholar 

  24. Belikova AM, Zarytova VF, Grineva NI (1967) Synthesis of ribonucleosides and diribonucleoside phosphates containing 2-chloroethylamine and nitrogen mustard residues. Tetrahedron Lett 37:3557–3562

    CAS  Google Scholar 

  25. Paterson BM, Roberts BE, Kuff EL (1977) Structural gene identification and mapping by DNA-mRNA hybrid-arrested cell-free translation. Proc Natl Acad Sci USA 74:4370–4374

    CAS  Google Scholar 

  26. Dean NM, McKay R, Condon TP, Bennett CF (1994) Inhibition of protein kinase C-alpha expression in human A549 cells by antisense oligonucleotides inhibits induction of intercellular adhesion molecule 1 (ICAM-1) mRNA by phorbol esters. J Biol Chem 269:16416–16424

    CAS  Google Scholar 

  27. Larrouy B, Blonski C, Boiziau C, Stuer M, Moreau S, Shire D, Toulme JJ (1992) RNase H-mediated inhibition of translation by antisense oligodeoxyribonucleotides: use of backbone modification to improve specificity. Gene 121:189–194

    CAS  Google Scholar 

  28. Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 75:280–284

    CAS  Google Scholar 

  29. Anfossi G, Gewirtz AM, Calabretta B (1989) An oligomer complementary to c-myb-encoded mRNA inhibits proliferation of human myeloid leukemia cell lines. Proc Natl Acad Sci USA 86:3379–3383

    CAS  Google Scholar 

  30. Agrawal S, Kandimalla ER (2001) Antisense and/or immunostimulatory oligonucleotide therapeutics. Curr Cancer Drug Targets 1:197–209

    CAS  Google Scholar 

  31. Akhtar S, Kole R, Juliano RL (1991) Stability of antisense DNA oligodeoxynucleotide analogs in cellular extracts and sera. Life Sci 49:1793–1801

    CAS  Google Scholar 

  32. Eder PS, DeVine RJ, Dagle JM, Walder JA (1991) Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3' exonuclease in plasma. Antisense Res Dev 1:141–151

    CAS  Google Scholar 

  33. Wickstrom E (1986) Oligodeoxynucleotide stability in subcellular extracts and culture media. J Biochem Biophys Methods 13:97–102

    CAS  Google Scholar 

  34. Crooke ST (1999) Molecular mechanisms of action of antisense drugs. Biochim Biophys Acta 1489:31–44

    CAS  Google Scholar 

  35. Maher LJ III, Wold B, Dervan PB (1989) Inhibition of DNA binding proteins by oligonucleotide-directed triple helix formation. Science 245:725–730

    CAS  Google Scholar 

  36. Brown DA, Kang SH, Gryaznov SM, DeDionisio L, Heidenreich O, Sullivan S, Xu X, Nerenberg MI (1994) Effect of phosphorothioate modification of oligodeoxynucleotides on specific protein binding. J Biol Chem 269:26801–26805

    CAS  Google Scholar 

  37. Guvakova MA, Yakubov LA, Vlodavsky I, Tonkinson JL, Stein CA (1995) Phosphorothioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. J Biol Chem 270:2620–2627

    CAS  Google Scholar 

  38. Rockwell P, O'Connor WJ, King K, Goldstein NI, Zhang LM, Stein CA (1997) Cell-surface perturbations of the epidermal growth factor and vascular endothelial growth factor receptors by phosphorothioate oligodeoxynucleotides. Proc Natl Acad Sci USA 94:6523–6528

    CAS  Google Scholar 

  39. Giles RV, Tidd DM (1992) Increased specificity for antisense oligodeoxynucleotide targeting of RNA cleavage by RNase H using chimeric methylphosphonodiester/phosphodiester structures. Nucleic Acids Res 20:763–770

    CAS  Google Scholar 

  40. Monia BP, Lesnik EA, Gonzalez C, Lima WF, McGee D, Guinosso CJ, Kawasaki AM, Cook PD, Freier SM (1993) Evaluation of 2'-modified oligonucleotides containing 2'-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem 268:14514–14522

    CAS  Google Scholar 

  41. Kalota A, Dondeti VR, Gewirtz AM (2006) Progress in the development of nucleic acid therapeutics. Handb Exp Pharmacol 173:173–196

    CAS  Google Scholar 

  42. Kalota A, Karabon L, Swider CR, Viazovkina E, Elzagheid M, Damha MJ, Gewirtz AM (2006) 2'-deoxy-2'-fluoro-beta-D-arabinonucleic acid (2'F-ANA) modified oligonucleotides (ON) effect highly efficient, and persistent, gene silencing. Nucleic Acids Res 34:451–461

    CAS  Google Scholar 

  43. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    CAS  Google Scholar 

  44. Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23–34

    CAS  Google Scholar 

  45. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838

    CAS  Google Scholar 

  46. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659

    CAS  Google Scholar 

  47. Knight SW, Bass BL (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293:2269–2271

    CAS  Google Scholar 

  48. Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81

    CAS  Google Scholar 

  49. Hannon GJ, Rossi JJ (2004) Unlocking the potential of the human genome with RNA interference. Nature 431:371–378

    CAS  Google Scholar 

  50. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    CAS  Google Scholar 

  51. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    CAS  Google Scholar 

  52. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    CAS  Google Scholar 

  53. Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, Kerkhoven RM, Madiredjo M, Nijkamp W, Weigelt B et al (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428:431–437

    CAS  Google Scholar 

  54. Boutros M, Kiger AA, Armknecht S, Kerr K, Hild M, Koch B, Haas SA, Paro R, Perrimon N (2004) Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303:832–835

    CAS  Google Scholar 

  55. Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408:325–330

    CAS  Google Scholar 

  56. Paddison PJ, Silva JM, Conklin DS, Schlabach M, Li M, Aruleba S, Balija V, O'Shaughnessy A, Gnoj L, Scobie K et al (2004) A resource for large-scale RNA-interference-based screens in mammals. Nature 428:427–431

    CAS  Google Scholar 

  57. Dykxhoorn DM, Lieberman J (2005) The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med 56:401–423

    CAS  Google Scholar 

  58. Gewirtz AM (1999) Myb targeted therapeutics for the treatment of human malignancies. Oncogene 18:3056–3062

    CAS  Google Scholar 

  59. Gewirtz AM (2000) Oligonucleotide therapeutics: a step forward. J Clin Oncol 18:1809–1811

    CAS  Google Scholar 

  60. Gewirtz AM (2007) On future's doorstep: RNA interference and the pharmacopeia of tomorrow. J Clin Invest 117:3612–3614

    CAS  Google Scholar 

  61. Gewirtz AM, Sokol DL, Ratajczak MZ (1998) Nucleic acid therapeutics: state of the art and future prospects. Blood 92:712–736

    CAS  Google Scholar 

  62. He S, Zhang D, Cheng F, Gong F, Guo Y (2009) Applications of RNA interference in cancer therapeutics as a powerful tool for suppressing gene expression. Mol Biol Rep 36:2153–2163

    CAS  Google Scholar 

  63. Kurreck J (2009) RNA interference: from basic research to therapeutic applications. Angew Chem Int Ed Engl 48:1378–1398

    CAS  Google Scholar 

  64. Martin SE, Caplen NJ (2007) Applications of RNA interference in mammalian systems. Annu Rev Genomics Hum Genet 8:81–108

    CAS  Google Scholar 

  65. Opalinska JB, Gewirtz AM (2002) Nucleic acid therapeutics: a work in progress. Curr Opin Investig Drugs 3:928–933

    CAS  Google Scholar 

  66. Opalinska JB, Gewirtz AM (2003) Therapeutic potential of antisense nucleic acid molecules. Sci STKE 2003:pe47

    Google Scholar 

  67. Pellish RS, Nasir A, Ramratnam B, Moss SF (2008) Review article: RNA interference–potential therapeutic applications for the gastroenterologist. Aliment Pharmacol Ther 27:715–723

    CAS  Google Scholar 

  68. Zhou D, He QS, Wang C, Zhang J, Wong-Staal F (2006) RNA interference and potential applications. Curr Top Med Chem 6:901–911

    CAS  Google Scholar 

  69. Bacon TA, Wickstrom E (1991) Walking along human c-myc mRNA with antisense oligodeoxynucleotides: maximum efficacy at the 5' cap region. Oncogene Res 6:13–19

    CAS  Google Scholar 

  70. Ho SP, Bao Y, Lesher T, Malhotra R, Ma LY, Fluharty SJ, Sakai RR (1998) Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries. Nat Biotechnol 16:59–63

    CAS  Google Scholar 

  71. Ho SP, Britton DH, Bao Y, Scully MS (2000) RNA mapping: selection of potent oligonucleotide sequences for antisense experiments. Methods Enzymol 314:168–183

    CAS  Google Scholar 

  72. Allawi HT, Dong F, Ip HS, Neri BP, Lyamichev VI (2001) Mapping of RNA accessible sites by extension of random oligonucleotide libraries with reverse transcriptase. RNA 7:314–327

    CAS  Google Scholar 

  73. Milner N, Mir KU, Southern EM (1997) Selecting effective antisense reagents on combinatorial oligonucleotide arrays. Nat Biotechnol 15:537–541

    CAS  Google Scholar 

  74. Mir KU, Southern EM (1999) Determining the influence of structure on hybridization using oligonucleotide arrays. Nat Biotechnol 17:788–792

    CAS  Google Scholar 

  75. Gamper HB Jr, Arar K, Gewirtz A, Hou YM (2006) Unrestricted hybridization of oligonucleotides to structure-free DNA. Biochemistry 45:6978–6986

    CAS  Google Scholar 

  76. Gamper HB Jr, Gewirtz A, Edwards J, Hou YM (2004) Modified bases in RNA reduce secondary structure and enhance hybridization. Biochemistry 43:10224–10236

    CAS  Google Scholar 

  77. Gifford LK, Jordan D, Pattanayak V, Vernovsky K, Do BT, Gewirtz AM, Lu P (2005) Stemless self-quenching reporter molecules identify target sequences in mRNA. Anal Biochem 347:77–88

    CAS  Google Scholar 

  78. Gifford LK, Opalinska JB, Jordan D, Pattanayak V, Greenham P, Kalota A, Robbins M, Vernovsky K, Rodriguez LC, Do BT et al (2005) Identification of antisense nucleic acid hybridization sites in mRNA molecules with self-quenching fluorescent reporter molecules. Nucleic Acids Res 33:e28

    Google Scholar 

  79. Pattanayak V, Gifford LK, Lu P, Gewirtz AM (2008) Observed versus predicted structure of fluorescent self-quenching reporter molecules (SQRM): caveats with respect to the use of "stem-loop" oligonucleotides as probes for mRNA folding. RNA 14:657–665

    CAS  Google Scholar 

  80. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    CAS  Google Scholar 

  81. Gredell JA, Berger AK, Walton SP (2008) Impact of target mRNA structure on siRNA silencing efficiency: a large-scale study. Biotechnol Bioeng 100:744–755

    CAS  Google Scholar 

  82. Westerhout EM, Berkhout B (2007) A systematic analysis of the effect of target RNA structure on RNA interference. Nucleic Acids Res 35:4322–4330

    CAS  Google Scholar 

  83. Yoshinari K, Miyagishi M, Taira K (2004) Effects on RNAi of the tight structure, sequence and position of the targeted region. Nucleic Acids Res 32:691–699

    CAS  Google Scholar 

  84. Reed JC, Stein C, Subasinghe C, Haldar S, Croce CM, Yum S, Cohen J (1990) Antisense-mediated inhibition of BCL2 protooncogene expression and leukemic cell growth and survival: comparisons of phosphodiester and phosphorothioate oligodeoxynucleotides. Cancer Res 50:6565–6570

    CAS  Google Scholar 

  85. Webb A, Cunningham D, Cotter F, Clarke PA, di Stefano F, Ross P, Corbo M, Dziewanowska Z (1997) BCL-2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet 349:1137–1141

    CAS  Google Scholar 

  86. Jansen B, Wacheck V, Heere-Ress E, Schlagbauer-Wadl H, Hoeller C, Lucas T, Hoermann M, Hollenstein U, Wolff K, Pehamberger H (2000) Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 356:1728–1733

    CAS  Google Scholar 

  87. Waters JS, Webb A, Cunningham D, Clarke PA, Raynaud F, di Stefano F, Cotter FE (2000) Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin's lymphoma. J Clin Oncol 18:1812–1823

    CAS  Google Scholar 

  88. Tolcher AW (2001) Preliminary phase I results of G3139 (bcl-2 antisense oligonucleotide) therapy in combination with docetaxel in hormone-refractory prostate cancer. Semin Oncol 28:67–70

    CAS  Google Scholar 

  89. Rudin CM, Otterson GA, Mauer AM, Villalona-Calero MA, Tomek R, Prange B, George CM, Szeto L, Vokes EE (2002) A pilot trial of G3139, a bcl-2 antisense oligonucleotide, and paclitaxel in patients with chemorefractory small-cell lung cancer. Ann Oncol 13:539–545

    CAS  Google Scholar 

  90. Marcucci G, Byrd JC, Dai G, Klisovic MI, Kourlas PJ, Young DC, Cataland SR, Fisher DB, Lucas D, Chan KK, Porcu P, Lin ZP, Farag SF, Frankel SR, Zwiebel JA, Kraut EH, Balcerzak SP, Bloomfield CD, Grever MR, Caligiuri MA (2003) Phase 1 and pharmacodynamic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia. Blood 101:425–432

    CAS  Google Scholar 

  91. Ratajczak MZ, Hijiya N, Catani L, DeRiel K, Luger SM, McGlave P, Gewirtz AM (1992) Acute- and chronic-phase chronic myelogenous leukemia colony-forming units are highly sensitive to the growth inhibitory effects of c-myb antisense oligodeoxynucleotides. Blood 79:1956–1961

    CAS  Google Scholar 

  92. Luger SM, O'Brien SG, Ratajczak J, Ratajczak MZ, Mick R, Stadtmauer EA, Nowell PC, Goldman JM, Gewirtz AM (2002) Oligodeoxynucleotide-mediated inhibition of c-myb gene expression in autografted bone marrow: a pilot study. Blood 99:1150–1158

    CAS  Google Scholar 

  93. Nemunaitis J, Holmlund JT, Kraynak M, Richards D, Bruce J, Ognoskie N, Kwoh TJ, Geary R, Dorr A, Von Hoff D, Eckhardt SG (1999) Phase I evaluation of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C-alpha, in patients with advanced cancer. J Clin Oncol 17:3586–3595

    CAS  Google Scholar 

  94. Dean NM, McKay R (1994) Inhibition of protein kinase C-alpha expression in mice after systemic administration of phosphorothioate antisense oligodeoxynucleotides. Proc Natl Acad Sci USA 91:11762–11766

    CAS  Google Scholar 

  95. Yuen AR, Halsey J, Fisher GA, Holmlund JT, Geary RS, Kwoh TJ, Dorr A, Sikic BI (1999) Phase I study of an antisense oligonucleotide to protein kinase C-alpha (ISIS 3521/CGP 64128A) in patients with cancer. Clin Cancer Res 5:3357–3363

    CAS  Google Scholar 

  96. Cripps MC, Figueredo AT, Oza AM, Taylor MJ, Fields AL, Holmlund JT, McIntosh LW, Geary RS, Eisenhauer EA (2002) Phase II randomized study of ISIS 3521 and ISIS 5132 in patients with locally advanced or metastatic colorectal cancer: a National Cancer Institute of Canada clinical trials group study. Clin Cancer Res 8:2188–2192

    CAS  Google Scholar 

  97. Tolcher AW, Reyno L, Venner PM, Ernst SD, Moore M, Geary RS, Chi K, Hall S, Walsh W, Dorr A, Eisenhauer E (2002) A randomized phase II and pharmacokinetic study of the antisense oligonucleotides ISIS 3521 and ISIS 5132 in patients with hormone-refractory prostate cancer. Clin Cancer Res 8:2530–2535

    CAS  Google Scholar 

  98. Mani S, Rudin CM, Kunkel K, Holmlund JT, Geary RS, Kindler HL, Dorr FA, Ratain MJ (2002) Phase I clinical and pharmacokinetic study of protein kinase C-alpha antisense oligonucleotide ISIS 3521 administered in combination with 5-fluorouracil and leucovorin in patients with advanced cancer. Clin Cancer Res 8:1042–1048

    CAS  Google Scholar 

  99. Cunningham CC, Holmlund JT, Geary RS, Kwoh TJ, Dorr A, Johnston JF, Monia B, Nemunaitis J (2001) A Phase I trial of H-ras antisense oligonucleotide ISIS 2503 administered as a continuous intravenous infusion in patients with advanced carcinoma. Cancer 92:1265–1271

    CAS  Google Scholar 

  100. Adjei AA, Dy GK, Erlichman C, Reid JM, Sloan JA, Pitot HC, Alberts SR, Goldberg RM, Hanson LJ, Atherton PJ, Watanabe T, Geary RS, Holmlund J, Dorr FA (2003) A phase I trial of ISIS 2503, an antisense inhibitor of H-ras, in combination with gemcitabine in patients with advanced cancer. Clin Cancer Res 9:115–123

    CAS  Google Scholar 

  101. Alberts SR, Schroeder M, Erlichman C, Steen PD, Foster NR, Moore DF Jr, Rowland KM Jr, Nair S, Tschetter LK, Fitch TR (2004) Gemcitabine and ISIS-2503 for patients with locally advanced or metastatic pancreatic adenocarcinoma: a North Central Cancer Treatment Group phase II trial. J Clin Oncol 22:4944–4950

    CAS  Google Scholar 

  102. Brennscheidt U, Riedel D, Kolch W, Bonifer R, Brach MA, Ahlers A, Mertelsmann RH, Herrmann F (1994) Raf-1 is a necessary component of the mitogenic response of the human megakaryoblastic leukemia cell line MO7 to human stem cell factor, granulocyte-macrophage colony-stimulating factor, interleukin 3, and interleukin 9. Cell Growth Differ 5:367–372

    CAS  Google Scholar 

  103. Monia BP, Johnston JF, Geiger T, Muller M, Fabbro D (1996) Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat Med 2:668–675

    CAS  Google Scholar 

  104. Coudert B, Anthoney A, Fiedler W, Droz JP, Dieras V, Borner M, Smyth JF, Morant R, de Vries MJ, Roelvink M, Fumoleau P (2001) Phase II trial with ISIS 5132 in patients with small-cell (SCLC) and non-small cell (NSCLC) lung cancer. A European Organization for Research and Treatment of Cancer (EORTC) Early Clinical Studies Group report. Eur J Cancer 37:2194–2198

    CAS  Google Scholar 

  105. Rudin CM, Holmlund J, Fleming GF, Mani S, Stadler WM, Schumm P, Monia BP, Johnston JF, Geary R, Yu RZ, Kwoh TJ, Dorr FA, Ratain MJ (2001) Phase I Trial of ISIS 5132, an antisense oligonucleotide inhibitor of c-raf-1, administered by 24-hour weekly infusion to patients with advanced cancer. Clin Cancer Res 7:1214–1220

    CAS  Google Scholar 

  106. Oza AM, Elit L, Swenerton K, Faught W, Ghatage P, Carey M, McIntosh L, Dorr A, Holmlund JT, Eisenhauer E (2003) Phase II study of CGP 69846A (ISIS 5132) in recurrent epithelial ovarian cancer: an NCIC clinical trials group study (NCIC IND.116). Gynecol Oncol 89:129–133

    CAS  Google Scholar 

  107. Kang H, Alam MR, Dixit V, Fisher M, Juliano RL (2008) Cellular delivery and biological activity of antisense oligonucleotides conjugated to a targeted protein carrier. Bioconjug Chem 19:2182–2188

    CAS  Google Scholar 

  108. Eguchi A, Meade BR, Chang YC, Fredrickson CT, Willert K, Puri N, Dowdy SF (2009) Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat Biotechnol 27:567–571

    CAS  Google Scholar 

  109. Zhou J, Rossi JJ (2011) Aptamer-targeted RNAi for HIV-1 therapy. Methods Mol Biol 721:355–357

    CAS  Google Scholar 

  110. Kay MA (2011) State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 12:316–328

    CAS  Google Scholar 

  111. Wheeler LA, Trifonova R, Vrbanac V, Basar E, McKernan S, Xu Z, Seung E, Deruaz M, Dudek T, Einarsson JI, Yang L, Allen TM, Luster AD, Tager AM, Dykxhoorn DM, Lieberman J (2011) Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras. J Clin Invest 121:2401–2412

    CAS  Google Scholar 

  112. Whitehead KA, Sahay G, Li GZ, Love KT, Alabi CA, Ma M, Zurenko C, Querbes W, Langer RS, Anderson DG (2011) Synergistic silencing: combinations of lipid-like materials for efficacious siRNA delivery. Mol Ther. doi:10.1038/mt.2011.141 [Epub ahead of print]

  113. Kling J (2010) Safety signal dampens reception for mipomersen antisense. Nat Biotechnol 28:295–297

    CAS  Google Scholar 

  114. Raal FJ, Santos RD, Blom DJ, Marais AD, Charng MJ, Cromwell WC, Lachmann RH, Gaudet D, Tan JL, Chasan-Taber S, Tribble DL, Flaim JD, Crooke ST (2010) Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375(9719):998–1006

    CAS  Google Scholar 

  115. Chi KN, Hotte SJ, Yu EY et al (2010) Randomized phase II study of docetaxel and prednisone with or without OGX-011 in patients with metastatic castration-resistant prostate cancer. J Clin Oncol 28:4247–4254

    CAS  Google Scholar 

  116. Teva Pharmaceutical Industries and OncoGenex Technologies (2010) Comparison of docetaxel/prednisone to docetaxel/prednisone in combination with OGX-011 in men with prostate cancer (SYNERGY). Available at http://clinicaltrials.gov/ct2/show/NCT01188187. Last accessed 25 July 2011. US National Library of Medicine, Bethesda

  117. British Columbia Cancer Agency (2010) OGX-427 in castration resistant prostate cancer patients. Available at http://clinicaltrials.gov/ct2/show/NCT01120470. Last accessed 25 July 2011. US National Library of Medicine, Bethesda

  118. Eli Lilly and Company (2010) A study of LY2181308 sodium in patients with relapsed or refractory acute myeloid leukemia. Available at http://clinicaltrials.gov/ct2/show/NCT00620321. Last accessed 25 July 2011. US National Library of Medicine, Bethesda

  119. Isis Pharmaceuticals (2009) Placebo controlled, dose escalation study in subjects with type 2 diabetes mellitus being treated with sulfonylurea. Available at http://clinicaltrials.gov/ct2/show/NCT00455598. Last accessed 25 July 2011. US National Library of Medicine, Bethesda

  120. Antisense Pharma (2011) Efficacy and Safety of AP 12009 in Patients With Recurrent or Refractory Anaplastic Astrocytoma or Secondary Glioblastoma (SAPPHIRE). Available at http://clinicaltrials.gov/ct2/show/NCT00761280. Last updated 8 July 2011. US National Library of Medicine, Bethesda

  121. Genta Incorporated (2010) Trial of Dacarbazine With or Without Genasense in Advanced Melanoma (AGENDA) Available at http://clinicaltrials.gov/ct2/show/NCT00518895. Last updated March 23 2010. US National Library of Medicine, Bethesda

  122. Lanford RE, Hildebrandt-Eriksen ES, Petri A et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201

    CAS  Google Scholar 

  123. Santaris Pharma A/S (2010) Multiple ascending dose study of miravirsen in treatment-naïve chronic hepatitis C subjects. Available at http://clinicaltrials.gov/ct2/show/NCT01200420. Last accessed 25 July 2011. US National Library of Medicine, Bethesda

  124. DeVincenzo J, Lambkin-Williams R, Wilkinson T et al (2010) A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci USA 107:8800–8805

    CAS  Google Scholar 

  125. Alnylam Pharmaceuticals (2010a) Phase 2b study of ALN-RSV01 in lung transplant patients infected with respiratory syncytial virus (RSV). Available at http://clinicaltrials.gov/ct2/show/NCT01065935. Last accessed 25 July 2011. US National Library of Medicine, Bethesda

  126. Alnylam Pharmaceuticals (2010b) Dose escalation trial to evaluate the safety, tolerability, pharmacokinetics and pharmacodynamics of intravenous ALN-VSP02 in patients with advanced solid tumors with liver involvement. Available at http://www.clinicaltrial.gov/ct2/show/NCT00882180. Last accessed 25 July 2011. US National Library of Medicine, Bethesda

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veenu Aishwarya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aishwarya, V., Kalota, A., Gewirtz, A.M. (2011). Development and Clinical Applications of Nucleic Acid Therapeutics. In: Murakami, A. (eds) Nucleic Acid Drugs. Advances in Polymer Science, vol 249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2011_146

Download citation

Publish with us

Policies and ethics