Skip to main content

Structure and Dynamics of Nucleic Acids

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 321))

Abstract

In this chapter we describe the application of CW and pulsed EPR methods for the investigation of structural and dynamical properties of RNA and DNA molecules and their interaction with small molecules and proteins. Special emphasis will be given to recent applications of dipolar spectroscopy on nucleic acids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fürtig B, Richter C, Wöhnert J, Schwalbe H (2003) NMR spectroscopy of RNA. Chembiochem 4(10):936–962. doi:10.1002/cbic.200300700

    Article  CAS  Google Scholar 

  2. Varani G, Aboul-ela F, Allain FHT (1996) NMR investigation of RNA structure. Prog Nucl Magn Reson Spectr 29(1–2):51–127

    Article  CAS  Google Scholar 

  3. Klostermeier D, Millar DP (2001) RNA conformation and folding studied with fluorescence resonance energy transfer. Methods 23(3):240–254

    Article  CAS  Google Scholar 

  4. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5(6):507–516. doi:10.1038/nmeth.1208

    Article  CAS  Google Scholar 

  5. Wachowius F, Höbartner C (2010) Chemical RNA modifications for studies of RNA structure and dynamics. Chembiochem 11(4):469–480. doi:10.1002/cbic.200900697

    Article  CAS  Google Scholar 

  6. Klare JP, Steinhoff HJ (2009) Spin labeling EPR. Photosynth Res 102(2–3):377–390

    Article  CAS  Google Scholar 

  7. Schiemann O, Piton N, Plackmeyer J, Bode BE, Prisner TF, Engels JW (2007) Spin labeling of oligonucleotides with the nitroxide TPA and use of PELDOR, a pulse EPR method, to measure intramolecular distances. Nat Protoc 2(4):904–923. doi:10.1038/nprot.2007.97

    Article  CAS  Google Scholar 

  8. Sowa GZ, Qin PZ (2008) Site-directed spin labeling studies on nucleic acid structure and dynamics. Prog Nucleic Acid Res Mol Biol 82:147–197. doi:10.1016/S0079-6603(08)00005-6

    Article  CAS  Google Scholar 

  9. Berliner LJ (1998) Spin labeling: the next millenium. Biological magnetic resonance. Plenum Press, New York

    Google Scholar 

  10. Caron M, Dugas H (1976) Specific spin-labeling of transfer ribonucleic-acid molecules. Nucleic Acids Res 3(1):19–34

    CAS  Google Scholar 

  11. Sprinzl M, Kramer E, Stehlik D (1974) Structure of phenylalanine transfer-RNA from yeast – spin-label studies. Eur J Biochem 49(3):595–605

    Article  CAS  Google Scholar 

  12. Sprinzl M, Scheit KH, Cramer F (1973) Preparation in-vitro of a 2-thiocytidine-containing yeast transfer-RNA Phe-A73-C74-S2c75-A76 and its interaction with para-hydroxymercuribenzoate. Eur J Biochem 34(2):306–310

    Article  CAS  Google Scholar 

  13. Hara H, Horiuchi T, Saneyosh M, Nishimur S (1970) 4-Thiouridine-specific spin-labeling of E. coli transfer RNA. Biochem Biophys Res Commun 38(2):305

    Article  CAS  Google Scholar 

  14. Mcintosh AR, Caron M, Dugas H (1973) Specific spin labeling of anticodon of Escherichia-coli transfer-RNA Glu. Biochem Biophys Res Commun 55(4):1356–1363

    Article  CAS  Google Scholar 

  15. Qin PZ, Hideg K, Feigon J, Hubbell WL (2003) Monitoring RNA base structure and dynamics using site-directed spin labeling. Biochemistry-US 42(22):6772–6783. doi:10.1021/bi027222p

    Article  CAS  Google Scholar 

  16. Ramos A, Varani G (1998) A new method to detect long-range protein-RNA contacts: NMR detection of electron-proton relaxation induced by nitroxide spin-labeled RNA. J Am Chem Soc 120(42):10992–10993

    Article  CAS  Google Scholar 

  17. Spaltenstein A, Robinson BH, Hopkins PB (1989) Sequence-dependent and structure-dependent DNA-base dynamics – synthesis, structure, and dynamics of site and sequence specifically spin-labeled DNA. Biochemistry-US 28(24):9484–9495

    Article  CAS  Google Scholar 

  18. Strube T, Schiemann O, MacMillan F, Prisner T, Engels JW (2001) A new facile method for spin-labeling of oligonucleotides. Nucleosides Nucleotides Nucleic Acids 20(4–7):1271–1274

    Article  CAS  Google Scholar 

  19. Schiemann O, Piton N, Mu YG, Stock G, Engels JW, Prisner TF (2004) A PELDOR-based nanometer distance ruler for oligonucleotides. J Am Chem Soc 126(18):5722–5729. doi:10.1021/ja0393877

    Article  CAS  Google Scholar 

  20. Piton N, Schiemann O, Mu YG, Stock G, Prisner T, Engels JW (2005) Synthesis of spin-labeled RNAs for long range distance measurements by PELDOR. Nucleosides Nucleotides Nucleic Acids 24(5–7):771–775

    Article  CAS  Google Scholar 

  21. Piton N, Mu YG, Stock G, Prisner TF, Schiemann O, Engels JW (2007) Base-specific spin-labeling of RNA for structure determination. Nucleic Acids Res 35(9):3128–3143. doi:10.1093/nar/gkm169

    Article  CAS  Google Scholar 

  22. Spaltenstein A, Robinson BH, Hopkins PB (1988) A rigid and nonperturbing probe for duplex DNA motion. J Am Chem Soc 110(4):1299–1301

    Article  CAS  Google Scholar 

  23. Gannett PM, Darian E, Powell J, Johnson EM 2nd, Mundoma C, Greenbaum NL, Ramsey CM, Dalal NS, Budil DE (2002) Probing triplex formation by EPR spectroscopy using a newly synthesized spin label for oligonucleotides. Nucleic Acids Res 30(23):5328–5337

    Article  CAS  Google Scholar 

  24. Frolow O, Bode BE, Engels JW (2007) The synthesis of EPR differentiable spinlabels and their coupling to uridine. Nucleosides Nucleotides Nucleic Acids 26(6–7):655–659. doi:10.1080/15257770701490522

    Article  CAS  Google Scholar 

  25. Hustedt EJ, Kirchner JJ, Spaltenstein A, Hopkins PB, Robinson BH (1995) Monitoring DNA dynamics using spin-labels with different independent mobilities. Biochemistry-US 34(13):4369–4375

    Article  CAS  Google Scholar 

  26. Ding P, Wunnicke D, Steinhoff HJ, Seela F (2010) Site-directed spin-labeling of DNA by the azide-alkyne ‘Click’ reaction: nanometer distance measurements on 7-deaza-2′-deoxyadenosine and 2′-deoxyuridine nitroxide conjugates spatially separated or linked to a ‘dA-dT’ base pair. Chem Eur J 16(48):14385–14396

    Article  CAS  Google Scholar 

  27. Bobst AM, Kao SC, Toppin RC, Ireland JC, Thomas IE (1984) Dipsticking the major groove of DNA with enzymatically incorporated spin-labeled deoxyuridines by electron-spin resonance spectroscopy. J Mol Biol 173(1):63–74

    Article  CAS  Google Scholar 

  28. Bobst AM, Pauly GT, Keyes RS, Bobst EV (1988) Enzymatic sequence-specific spin labeling of a DNA fragment containing the recognition sequence of ecori endonuclease. FEBS Lett 228(1):33–36

    Article  CAS  Google Scholar 

  29. Okamoto A, Inasaki T, Saito I (2004) Nitroxide-labeled guanine as an ESR spin probe for structural study of DNA. Bioorg Med Chem Lett 14(13):3415–3418. doi:10.1016/j.bmcl.2004.04.076

    Article  CAS  Google Scholar 

  30. Sicoli G, Wachowius F, Bennati M, Höbartner C (2010) Probing secondary structures of spin-labeled RNA by pulsed EPR spectroscopy. Angew Chem Int Ed Engl 49(36):6443–6447. doi:10.1002/anie.201000713

    Article  CAS  Google Scholar 

  31. Miller TR, Alley SC, Reese AW, Solomon MS, Mccallister WV, Mailer C, Robinson BH, Hopkins PB (1995) A probe for sequence-dependent nucleic-acid dynamics. J Am Chem Soc 117(36):9377–9378

    Article  CAS  Google Scholar 

  32. Okonogi TM, Alley SC, Reese AW, Hopkins PB, Robinson BH (2000) Sequence-dependent dynamics in duplex DNA. Biophys J 78(5):2560–2571

    Article  CAS  Google Scholar 

  33. Barhate N, Cekan P, Massey AP, Sigurdsson ST (2007) A nucleoside that contains a rigid nitroxide spin label: a fluorophore in disguise. Angew Chem Int Ed Engl 46(15):2655–2658. doi:10.1002/anie.200603993

    Article  CAS  Google Scholar 

  34. Lin KY, Jones RJ, Matteucci M (1995) Tricyclic 2′-deoxycytidine analogs – syntheses and incorporation into oligodeoxynucleotides which have enhanced binding to complementary RNA. J Am Chem Soc 117(13):3873–3874

    Article  CAS  Google Scholar 

  35. Cekan P, Smith AL, Barhate N, Robinson BH, Sigurdsson ST (2008) Rigid spin-labeled nucleoside C: a nonperturbing EPR probe of nucleic acid conformation. Nucleic Acids Res 36(18):5946–5954. doi:10.1093/nar/gkn562

    Article  CAS  Google Scholar 

  36. Cekan P, Sigurdsson ST (2008) Single base interrogation by afluorescent nucleotide: each of the four DNA bases identified by fluorescence spectroscopy. Chem Commun (29):3393–3395. doi:10.1039/B801833b

  37. Shelke SA, Sigurdsson ST (2010) Noncovalent and site-directed spin labeling of nucleic acids. Angew Chem Int Ed Engl 49(43):7984–7986. doi:10.1002/anie.201002637

    Article  CAS  Google Scholar 

  38. Nagahara S, Murakami A, Makino K (1992) Spin-labeled oligonucleotides site specifically labeled at the internucleotide linkage – separation of stereoisomeric probes and EPR spectroscopical detection of hybrid formation in solution. Nucleos Nucleot 11(2–4):889–901

    CAS  Google Scholar 

  39. Grant GP, Boyd N, Herschlag D, Qin PZ (2009) Motions of the substrate recognition duplex in a group I intron assessed by site-directed spin labeling. J Am Chem Soc 131(9):3136–3137. doi:10.1021/ja808217s

    Article  CAS  Google Scholar 

  40. Qin PZ, Haworth IS, Cai Q, Kusnetzow AK, Grant GPG, Price EA, Sowa GZ, Popova A, Herreros B, He H (2007) Measuring nanometer distances in nucleic acids using a sequence-independent nitroxide probe. Nat Protoc 2(10):2354–2365. doi:10.1038/nprot.2007.308

    Article  CAS  Google Scholar 

  41. Qin PZ, Butcher SE, Feigon J, Hubbell WL (2001) Quantitative analysis of the isolated GAAA tetraloop/receptor interaction in solution: a site-directed spin labeling study. Biochemistry-US 40(23):6929–6936

    Article  CAS  Google Scholar 

  42. Cai Q, Kusnetzow AK, Hideg K, Price EA, Haworth IS, Qin PZ (2007) Nanometer distance measurements in RNA using site-directed spin labeling. Biophys J 93(6):2110–2117. doi:10.1529/biophysj.107.109439

    Article  CAS  Google Scholar 

  43. Cai Q, Kusnetzow AK, Hubbell WL, Haworth IS, Gacho GPC, Van Eps N, Hideg K, Chambers EJ, Qin PZ (2006) Site-directed spin labeling measurements of nanometer distances in nucleic acids using a sequence-independent nitroxide probe. Nucleic Acids Res 34(17):4722–4730. doi:10.1093/nar/gkl546

    Article  CAS  Google Scholar 

  44. Flaender M, Sicoli G, Fontecave T, Mathis G, Saint-Pierre C, Boulard Y, Gambarelli S, Gasparutto D (2008) Site-specific insertion of nitroxide-spin labels into DNA probes by click chemistry for structural analyses by ELDOR spectroscopy. Nucleic Acids Symp Ser 52:147–148. doi:10.1093/nass/nrn075

    Article  CAS  Google Scholar 

  45. Kim NK, Murali A, DeRose VJ (2004) A distance ruler for RNA using EPR and site-directed spin labeling. Chem Biol 11(7):939–948. doi:10.1016/j.chembiol.2004.04.013

    Article  CAS  Google Scholar 

  46. Edwards TE, Sigurdsson ST (2007) Site-specific incorporation of nitroxide spin-labels into 2′-positions of nucleic acids. Nat Protoc 2(8):1954–1962. doi:10.1038/nprot.2007.273

    Article  CAS  Google Scholar 

  47. Edwards TE, Okonogi TM, Robinson BH, Sigurdsson ST (2001) Site-specific incorporation of nitroxide spin-labels into internal sites of the TAR RNA; structure-dependent dynamics of RNA by EPR spectroscopy. J Am Chem Soc 123(7):1527–1528

    Article  CAS  Google Scholar 

  48. Schweiger A, Jeschke G (2001) Principles of pulse electron paramagnetic resonance. Oxford University Press, USA

    Google Scholar 

  49. Atherton NM (1993) Principles of electron spin resonance. Ellis Horwood, New York

    Google Scholar 

  50. Abragam A (1961) The principles of nuclear magnetism. The international series of monographs on physics. Clarendon, Oxford

    Google Scholar 

  51. Freed JH, Fraenkel GK (1963) Theory of linewidths in electron spin resonance spectra. J Chem Phys 39(2):326

    Article  CAS  Google Scholar 

  52. Kivelson D (1960) Theory of ESR linewidths of free radicals. J Chem Phys 33(4):1094–1106

    Article  CAS  Google Scholar 

  53. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178(1):42–55. doi:10.1016/j.jmr.2005.08.013

    Article  CAS  Google Scholar 

  54. Schneider DJ, Freed JH (1989) Calculating slow motional magnetic resonance spectra: a user’s guide. In: Berliner LJ, Reuben J (eds) Spin labeling: theory and applications. Biological magnetic resonance. Plenum Press, New York

    Google Scholar 

  55. Mims WB, Nassau K, Mcgee JD (1961) Spectral diffusion in electron resonance lines. Phys Rev 1(6):2059–2069

    Article  Google Scholar 

  56. Rowan LG, Hahn EL, Mims WB (1965) Electron-spin-echo envelope modulation. Phys Rev 137(1A):61–71

    Article  CAS  Google Scholar 

  57. Mims WB (1972) Electron spin echoes. In: Geschwind S (ed) Electron paramagnetic resonance. Plenum Press, New York

    Google Scholar 

  58. Hofer P, Grupp A, Nebenfuhr H, Mehring M (1986) Hyperfine sublevel correlation (HYSCORE) spectroscopy – a 2D electron-spin-resonance investigation of the squaric acid radical. Chem Phys Lett 132(3):279–282

    Article  Google Scholar 

  59. Ichikawa T, Kevan L, Bowman MK, Dikanov SA, Tsvetkov YD (1979) Ratio analysis of electron spin echo modulation envelopes in disordered matrixes and application to the structure of solvated electrons in 2-methyltetrahydrofuran glass. J Chem Phys 71(3):1167–1174

    Article  CAS  Google Scholar 

  60. Flanagan HL, Singel DJ (1987) Analysis of 14N ESEEM patterns of randomly oriented solids. J Chem Phys 87(10):5606–5616

    Article  CAS  Google Scholar 

  61. Jeschke G, Rakhmatullin R, Schweiger A (1998) Sensitivity enhancement by matched microwave pulses in one- and two-dimensional electron spin echo envelope modulation spectroscopy. J Magn Reson 131(2):261–271

    Article  CAS  Google Scholar 

  62. Feher G (1956) Observation of nuclear magnetic resonances via the electron spin resonance line. Phys Rev 103(3):834–834

    Article  CAS  Google Scholar 

  63. Davies ER (1974) A new pulse endor technique. Phys Lett A 47(1):1–2

    Article  CAS  Google Scholar 

  64. Mims WB (1965) Pulsed electron nuclear double resonance (E.N.DO.R.) experiments. Proc Roy Soc (London) 283(Ser. A;1395):452–457

    CAS  Google Scholar 

  65. Epel B, Manikandan P, Kroneck PMH, Goldfarb D (2001) High-field ENDOR and the sign of the hyperfine coupling. Appl Magn Reson 21(3–4):287–297

    Article  CAS  Google Scholar 

  66. Cook RJ, Whiffen DH (1964) Relative signs of hyperfine coupling constants by a double ENDOR experiment. Proc Phys Soc Lond 84(6):845–845

    Article  CAS  Google Scholar 

  67. Bode BE, Margraf D, Plackmeyer J, Durner G, Prisner TF, Schiemann O (2007) Counting the monomers in nanometer-sized oligomers by pulsed electron-electron double resonance. J Am Chem Soc 129(21):6736–6745. doi:10.1021/ja065787t

    Article  CAS  Google Scholar 

  68. Marko A, Margraf D, Yu H, Mu Y, Stock G, Prisner T (2009) Molecular orientation studies by pulsed electron-electron double resonance experiments. J Chem Phys 130(6):064102. doi:10.1063/1.3073040

    Article  CAS  Google Scholar 

  69. Margraf D, Cekan P, Prisner TF, Sigurdsson ST, Schiemann O (2009) Ferro- and antiferromagnetic exchange coupling constants in PELDOR spectra. Phys Chem Chem Phys 11(31):6708–6714. doi:10.1039/b905524j

    Article  CAS  Google Scholar 

  70. Marko A, Margraf D, Cekan P, Sigurdsson ST, Schiemann O, Prisner TF (2010) Analytical method to determine the orientation of rigid spin labels in DNA. Phys Rev E 81(2)

    Google Scholar 

  71. Margraf D, Bode BE, Marko A, Schiemann O, Prisner TF (2007) Conformational flexibility of nitroxide biradicals determined by X-band PELDOR experiments. Mol Phys 105(15–16):2153–2160

    Article  CAS  Google Scholar 

  72. Zhang XJ, Cekan P, Sigurdsson ST, Qin PZ (2009) Studying RNA using site-directed spin-labeling and continuous-wave electron paramagnetic resonance spectroscopy. Method Enzymol 469:303–328. doi:10.1016/S0076-6879(09)69015-7

    Article  CAS  Google Scholar 

  73. Krstić I, Frolow O, Sezer D, Endeward B, Weigand JE, Suess B, Engels JW, Prisner TF (2010) PELDOR spectroscopy reveals preorganization of the neomycin-responsive riboswitch tertiary structure. J Am Chem Soc 132(5):1454–1455. doi:10.1021/ja9077914

    Article  CAS  Google Scholar 

  74. Moore PB (1999) Structural motifs in RNA. Annu Rev Biochem 68:287–300. doi:10.1146/annurev.biochem.68.1.287

    Article  CAS  Google Scholar 

  75. Duchardt-Ferner E, Weigand JE, Ohlenschlager O, Schtnidtke SR, Suess B, Wohnert J (2010) Highly modular structure and ligand binding by conformational capture in a minimalistic riboswitch. Angew Chem Int Ed Engl 49(35):6216–6219

    Article  CAS  Google Scholar 

  76. Edwards TE, Robinson BH, Sigurdsson ST (2005) Identification of amino acids that promote specific and rigid TAR RNA-Tat protein complex formation. Chem Biol 12(3):329–337. doi:10.1016/j.chembiol.2005.01.012

    Article  CAS  Google Scholar 

  77. Edwards TE, Sigurdsson ST (2003) EPR spectroscopic analysis of TAR RNA-metal ion interactions. Biochem Biophys Res Commun 303(2):721–725

    Article  CAS  Google Scholar 

  78. Edwards TE, Sigurdsson ST (2002) Electron paramagnetic resonance dynamic signatures of TAR RNA-small molecule complexes provide insight into RNA structure and recognition. Biochemistry-US 41(50):14843–14847

    Article  CAS  Google Scholar 

  79. Edwards TE, Okonogi TM, Sigurdsson ST (2002) Investigation of RNA-protein and RNA-metal ion interactions by electron paramagnetic resonance spectroscopy. The HIV TAR-Tat motif. Chem Biol 9(6):699–706

    Article  CAS  Google Scholar 

  80. Ippolito JA, Steitz TA (1998) A 1.3-A resolution crystal structure of the HIV-1 trans-activation response region RNA stem reveals a metal ion-dependent bulge conformation. Proc Natl Acad Sci USA 95(17):9819–9824

    Article  CAS  Google Scholar 

  81. Qin PZ, Feigon J, Hubbell WL (2005) Site-directed spin labeling studies reveal solution conformational changes in a GAAA tetraloop receptor upon Mg2+-dependent docking of a GAAA tetraloop. J Mol Biol 351(1):1–8. doi:10.1016/j.jmb.2005.06.007

    Article  CAS  Google Scholar 

  82. Feig AL (2000) The use of manganese as a probe for elucidating the role of magnesium ions in ribozymes. Met Ions Biol Syst 37:157–182

    CAS  Google Scholar 

  83. Pley HW, Flaherty KM, Mckay DB (1994) 3-Dimensional structure of a hammerhead ribozyme. Nature 372(6501):68–74

    Article  CAS  Google Scholar 

  84. Scott WG, Murray JB, Arnold JRP, Stoddard BL, Klug A (1996) Capturing the structure of a catalytic RNA intermediate: the hammerhead ribozyme. Science 274(5295):2065–2069

    Article  CAS  Google Scholar 

  85. Horton TE, Clardy DR, DeRose VJ (1998) Electron paramagnetic resonance spectroscopic measurement of Mn2+ binding affinities to the hammerhead ribozyme and correlation with cleavage activity. Biochemistry-US 37(51):18094–18101

    Article  CAS  Google Scholar 

  86. Schiemann O, Fritscher J, Kisseleva N, Sigurdsson ST, Prisner TF (2003) Structural investigation of a high-affinity MnII binding site in the hammerhead ribozyme by EPR spectroscopy and DFT calculations. Effects of neomycin B on metal-ion binding. Chembiochem 4(10):1057–1065. doi:10.1002/cbic.200300653

    Article  CAS  Google Scholar 

  87. Kisseleva N, Khvorova A, Westhof E, Schiemann O (2005) Binding of manganese(II) to a tertiary stabilized hammerhead ribozyme as studied by electron paramagnetic resionance spectroscopy. RNA 11(1):1–6

    Article  CAS  Google Scholar 

  88. Kim NK, Murali A, DeRose VJ (2005) Separate metal requirements for loop interactions and catalysis in the extended hammerhead ribozyme. J Am Chem Soc 127(41):14134–14135. doi:10.1021/ja0541027

    Article  CAS  Google Scholar 

  89. Kisseleva N, Kraut S, Jaschke A, Schiemann O (2007) Characterizing multiple metal ion binding sites within a ribozyme by cadmium-induced EPR silencing. HFSP J 1(2):127–136

    Article  CAS  Google Scholar 

  90. Zhang X, Lee SW, Zhao L, Xia T, Qin PZ (2010) Conformational distributions at the N-peptide/boxB RNA interface studied using site-directed spin labeling. RNA 16(12):2474–2483. doi:10.1261/rna.2360610

    Article  CAS  Google Scholar 

  91. Xi X, Sun Y, Karim CB, Grigoryants VM, Scholes CP (2008) HIV-1 nucleocapsid protein NCp7 and its RNA stem loop 3 partner: rotational dynamics of spin-labeled RNA stem loop 3. Biochemistry-US 47(38):10099–10110. doi:10.1021/bi800602e

    Article  CAS  Google Scholar 

  92. Spaltenstein A, Robinson BH, Hopkins PB (1989) DNA structural data from a dynamics probe – the dynamic signatures of single-stranded, hairpin-looped, and duplex forms of DNA are distinguishable. J Am Chem Soc 111(6):2303–2305

    Article  CAS  Google Scholar 

  93. Cekan P, Sigurdsson ST (2009) Identification of single-base mismatches in duplex DNA by EPR spectroscopy. J Am Chem Soc 131(50):18054–18056. doi:10.1021/ja905623k

    Article  CAS  Google Scholar 

  94. Jakobsen U, Shelke SA, Vogel S, Sigurdsson ST (2010) Site-directed spin-labeling of nucleic acids by click chemistry: detection of abasic sites in duplex DNA by EPR spectroscopy. J Am Chem Soc 132(30):10424–10428. doi:10.1021/ja102797k

    Article  CAS  Google Scholar 

  95. Okonogi TM, Reese AW, Alley SC, Hopkins PB, Robinson BH (1999) Flexibility of duplex DNA on the submicrosecond timescale. Biophys J 77(6):3256–3276. doi:10.1016/S0006-3495(99)77157-2

    Article  CAS  Google Scholar 

  96. Popova AM, Kalai T, Hideg K, Qin PZ (2009) Site-specific DNA structural and dynamic features revealed by nucleotide-independent nitroxide probes. Biochemistry-US 48(36):8540–8550. doi:10.1021/bi900860w

    Article  CAS  Google Scholar 

  97. Keyes RS, Bobst AM (1995) Detection of internal and overall dynamics of a 2-atom-tethered spin-labeled DNA. Biochemistry-US 34(28):9265–9276

    Article  CAS  Google Scholar 

  98. Smith AL, Cekan P, Brewood GP, Okonogi TM, Alemayehu S, Hustedt EJ, Benight AS, Sigurdsson ST, Robinson BH (2009) Conformational equilibria of bulged sites in duplex DNA studied by EPR spectroscopy. J Phys Chem B 113(9):2664–2675

    Article  CAS  Google Scholar 

  99. Okonogi TM, Alley SC, Harwood EA, Hopkins PB, Robinson BH (2002) Phosphate backbone neutralization increases duplex DNA flexibility: a model for protein binding. Proc Natl Acad Sci USA 99(7):4156–4160

    Article  CAS  Google Scholar 

  100. Columbus L, Hubbell WL (2004) Mapping backbone dynamics in solution with site-directed spin labeling: GCN4-58 bZip free and bound to DNA. Biochemistry-US 43(23):7273–7287

    Article  CAS  Google Scholar 

  101. Steinhoff HJ, Suess B (2003) Molecular mechanisms of gene regulation studied by site-directed spin labeling. Methods 29(2):188–195

    Article  CAS  Google Scholar 

  102. Morrissey SR, Horton TE, Grant CV, Hoogstraten CG, Britt RD, DeRose VJ (1999) Mn2+-nitrogen interactions in RNA probed by electron spin-echo envelope modulation spectroscopy: application to the hammerhead ribozyme. J Am Chem Soc 121(39):9215–9218

    Article  CAS  Google Scholar 

  103. Vogt M, Lahiri S, Hoogstraten CG, Britt RD, DeRose VJ (2006) Coordination environment of a site-bound metal ion in the hammerhead ribozyme determined by N-15 and H-2 ESEEM spectroscopy. J Am Chem Soc 128(51):16764–16770. doi:10.1021/Ja057035p

    Article  CAS  Google Scholar 

  104. Morrissey SR, Horton TE, DeRose VJ (2000) Mn2+ sites in the hammerhead ribozyme investigated by EPR and continuous-wave Q-band ENDOR spectroscopies. J Am Chem Soc 122(14):3473–3481

    Article  CAS  Google Scholar 

  105. Schiemann O, Carmieli R, Goldfarb D (2007) W-band P-31-ENDOR on the high-affinity Mn2+ binding site in the minimal and tertiary stabilized hammerhead ribozymes. Appl Magn Reson 31(3–4):543–552

    Article  CAS  Google Scholar 

  106. DeRose VJ (2009) Characterization of nucleic acid-metal Ion binding by spectroscopic techniques. In: Hud NV (ed) Nucleic acid-metal ion interactions. The Royal Society of Chemistry, London

    Google Scholar 

  107. Santangelo MG, Antoni PM, Spingler B, Jeschke G (2010) Can copper(II) mediate Hoogsteen base-pairing in a left-handed DNA duplex? A pulse EPR study. Chemphyschem 11(3):599–606. doi:10.1002/cphc.200900672

    Article  CAS  Google Scholar 

  108. Milov AD, Ponomarev AB, Tsvetkov YD (1984) Electron electron double-resonance in electron-spin echo - model biradical systems and the sensitized photolysis of decalin. Chem Phys Lett 110(1):67–72

    Article  CAS  Google Scholar 

  109. Schiemann O, Prisner TF (2007) Long-range distance determinations in biomacromolecules by EPR spectroscopy. Q Rev Biophys 40(1):1–53. doi:10.1017/S003358350700460X

    Article  CAS  Google Scholar 

  110. Jeschke G, Polyhach Y (2007) Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance. Phys Chem Chem Phys 9(16):1895–1910. doi:10.1039/b614920k

    Article  CAS  Google Scholar 

  111. Schiemann O, Weber A, Edwards TE, Prisner TF, Sigurdsson ST (2003) Nanometer distance measurements on RNA using PELDOR. J Am Chem Soc 125(12):3434–3435. doi:10.1021/ja0274610

    Article  CAS  Google Scholar 

  112. Ward R, Keeble DJ, El-Mkami H, Norman DG (2007) Distance determination in heterogeneous DNA model systems by pulsed EPR. Chembiochem 8(16):1957–1964. doi:10.1002/cbic.200700245

    Article  CAS  Google Scholar 

  113. Schiemann O, Cekan P, Margraf D, Prisner TF, Sigurdsson ST (2009) Relative orientation of rigid nitroxides by PELDOR: beyond distance measurements in nucleic acids. Angew Chem Int Ed Engl 48(18):3292–3295. doi:10.1002/anie.200805152

    Article  CAS  Google Scholar 

  114. Marko A, Denysenkov VP, Margraf D, Cekan P, Schiemann O, Sigurdsson ST, Prisner TF (2011) Conformational flexibility of DNA. J Am Chem Soc. doi:10.1021/ja201244u

  115. Sicoli G, Mathis G, Delalande O, Boulard Y, Gasparutto D, Gambarelli S (2008) Double electron-electron resonance (DEER): a convenient method to probe DNA conformational changes. Angew Chem Int Ed Engl 47(4):735–737. doi:10.1002/anie.200704133

    Article  CAS  Google Scholar 

  116. Sicoli G, Mathis G, Aci-Sèche S, Saint-Pierre C, Boulard Y, Gasparutto D, Gambarelli S (2009) Lesion-induced DNA weak structural changes detected by pulsed EPR spectroscopy combined with site-directed spin labelling. Nucleic Acids Res 37(10):3165–3176. doi:10.1093/nar/gkp165

    Article  CAS  Google Scholar 

  117. Weigand JE, Sanchez M, Gunnesch EB, Zeiher S, Schroeder R, Suess B (2008) Screening for engineered neomycin riboswitches that control translation initiation. RNA 14(1):89–97. doi:10.1261/rna.772408

    Article  CAS  Google Scholar 

  118. Singh V, Azarkh M, Exner TE, Hartig JS, Drescher M (2009) Human telomeric quadruplex conformations studied by pulsed EPR. Angew Chem Int Ed Engl 48(51):9728–9730. doi:10.1002/anie.200902146

    Article  CAS  Google Scholar 

  119. Kim NK, Bowman MK, DeRose VJ (2010) Precise mapping of RNA tertiary structure via nanometer distance measurements with double electron-electron resonance spectroscopy. J Am Chem Soc 132(26):8882–8884. doi:10.1021/Ja101317g

    Article  CAS  Google Scholar 

  120. Wunnicke D, Strohbach D, Weigand JE, Appel B, Feresin E, Suess B, Müller S, Steinhoff HJ (2010) Ligand-induced conformational capture of a synthetic tetracycline riboswitch revealed by pulse EPR. RNA. doi:10.1261/rna.2222811

  121. Krstić I, Hänsel R, Romainczyk O, Engels JW, Dötsch V, Prisner TF (2011) Long-range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy. Angew Chem Int Ed Engl 50(22):5070–5074. doi:10.1002/anie.201100886

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our own EPR work relied on the synthesis of spin-labeled RNA and DNA molecules performed by Nelly Piton and Olga Romainczyk from the group of Joachim W. Engels (Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt) and the work by Pavol Cekan from the group of Snorri Th. Sigurdsson (University of Iceland) on the rigid spin labels for DNA. Vasyl Denysenkov is thanked for high-field G-band PELDOR experiments on DNA samples. Olav Schiemann (University of St. Andrews) is thanked for his major impact in the initial phase of this work as Habilitand in Frankfurt. Funding from the German Research Society (DFG) within the Collaborative Research Center 579 RNA-Ligand Interaction is gratefully acknowledged as well as support from the Center of Biomolecular Magnetic Resonance (BMRZ) and the Center of Excellence Frankfurt Macromolecular Complexes (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Prisner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krstić, I., Endeward, B., Margraf, D., Marko, A., Prisner, T.F. (2011). Structure and Dynamics of Nucleic Acids. In: Drescher, M., Jeschke, G. (eds) EPR Spectroscopy. Topics in Current Chemistry, vol 321. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_300

Download citation

Publish with us

Policies and ethics