

J. Dalmau and G. Hasegawa (Eds.): MMNS 2005, LNCS 3754, pp. 228 – 241, 2005.
© IFIP International Federation for Information Processing 2005

Static Weighted Load-Balancing for XML-Based
Network Management Using JPVM

Mohammed H. Sqalli and Shaik Sirajuddin

Computer Engineering Department, King Fahd University of Petroleum & Minerals,
Dhahran, 31261, KSA

{sqalli, siraj}@ccse.kfupm.edu.sa

Abstract. SNMP-based network management is simple but lacks scalability
and efficiency of processing the management data as the number of agents
increases. XML-based network management is a new paradigm developed to
overcome these limitations. One of the main challenges is how to distribute the
management tasks to achieve efficiency and scalability. In this paper, we
propose a framework using JPVM to distribute the management tasks among
multiple gateways. We compare the performance of three approaches, namely
the static weighted load balancing approach, the equal work non-weighted load
balancing approach, and the single gateway approach. The first approach
provides better communication time between the XML-based manager and the
SNMP agents. It takes advantage of the XML, DOM, and Java servlets.

1 Introduction

The main goal of network management systems (NMS) is to ensure the quality of the
services that networked elements provide. To achieve this, network managers must
monitor, control, and secure the computing assets connected to the network. The
Simple Network Management Protocol (SNMP) is currently the most widely used
protocol for network management. SNMP is based on a centralized approach and
confronted with two main limitations that are scalability and efficiency. A number of
approaches have been proposed to overcome these limitations, including XML-based
Network Management (XNM). One of the issues for an XNM system is to be able to
support legacy SNMP agents, since they constitute the largest base of network
management systems.

XML-based network management applies Extensible Markup Language (XML)
technologies to network management. In XNM, the management information is
defined using XML and the management data is exchanged in the form of an XML
document and processed using the standard methods available for XML [1][2][3].

XML-based integrated network management architecture consists of an XML-
based manager (XBM), an SNMP/XML gateway and SNMP agents [2]. In [4], we
proposed a framework for extensions to an existing XML-based network management
system, which can reduce the response time between the XBM and the SNMP agents.
The extensions consist of new types of messages, including the multi-get-request and
multi-set-request. These new types, for instance, allow a manager to send one or more
requests to one or more agents bundled in one message. This framework decreases the
overall traffic between the XBM and the XML/SNMP gateway.

 Static Weighted Load-Balancing for XML-Based Network Management Using JPVM 229

In this paper, we present a new DOM-based approach to the proposed extended
XNM, namely a static weighted load balancing approach that makes use of JPVM in
XNM. We compare results obtained to the single gateway approaches and to the equal
work non-weighted load balancing approach. The comparison of these approaches
shows that the static weighted load balancing approach outperforms all the others and
provides a savings in term of response time as the number of agents in the network
increases.

The rest of the paper is organized as follows; first we will give a general overview
of the XML-based network management. Then, we will discuss the current related
work. We will then introduce the JPVM environment and describe the static weighted
load balancing and the equal work non-weighted load balancing approaches with
JPVM. The section that follows will include the experimental setup and results of
comparing these approaches. The paper ends with a conclusion.

2 XML-Based Network Management

Extensible Markup Language (XML) is a Meta markup language, which was
standardized by the World Wide Web Consortium (W3C) for document exchange in
1998[5]. We can define our own Structure of Management Information in a flexible
form using either Document Type Definition (DTD) or XML Schema [6][7][8]. XML
documents can be transmitted on the Internet using HTTP. XML offers many free
APIs for accessing and manipulating the XML data. XML separates the contents of a
document and the expression methods, i.e., the management data is stored in XML
documents and the presentation or format of the management data is stored in
Extensible Style Sheet Language (XSL) documents using Extensible Style Sheet
Transformations (XSLT) representation. XML supports the exchange of management
data over all the hardware and software that supports HTTP. XML needs low
development cost, since all the APIs and development kits are freely available.

Fig. 1. shows one of the manager and agent combinations in XML-based network
management [2]. It shows the approach that requires a translation from XML to
SNMP through a gateway [1][2]. Since most network devices have legacy SNMP
agents installed in them, this combination is simpler to implement in the current
network environment, and is more appropriate for the current network management
framework. In this paper, we only address this combination and we consider non-
legacy network elements providing native XML interfaces outside the scope of this
work. This combination, however, requires the development of an SNMP/XML
gateway to exchange the messages between the XML-based network manager and
SNMP agents.

XML-based network management can overcome many limitations of SNMP. For
instance, an SNMP request can not exceed a maximum message length limit, but
XML supports the transfer of large amount of data in a single document. This allows
the transfer of multiple SNMP requests bundled in one message from the manager to
the gateway. This message can also be summarized to decrease the amount of traffic
to be exchanged between the manager and the gateway. This will result in less traffic
at the manager side. The gateway will then expand the message received from the
manager into multiple SNMP requests to be sent to multiple agents. With the use of

230 M.H. Sqalli and S. Sirajuddin

multiple gateways, the processing time of multiple SNMP requests can also be
reduced. All these advantages make XML a good candidate to solve the problems of
scalability and efficiency of existing SNMP based NMS.

XML-Based Manager

Device

SNMP Agent

XML/SNMP
Gateway

XM L/HTTP

SNMP

Fig. 1. An XML-based Network Management Architecture

3 Related Work

J.P. Martin-Flatin [3] proposed using XML for network management in his research
work on web-based integrated network management architecture (WIMA). He
proposed two SNMP-MIB-to-XML translation models. WIMA provides a way to
exchange management information between a manager and an agent through HTTP.
HTTP messages are structured with a Multipurpose Internet Mail Extensions (MIME)
multipart. Each MIME part can be an XML document, a binary file, BER-encoded
SNMP data, etc. By separating the communication and information models, WIMA
allows management applications to transfer SNMP, common information model
(CIM), or other management data. A WIMA-based research prototype, implemented
push-based network management using Java technology.

F. Strauss [9] developed a library called “libsmi”, which can be used to access SMI
MIB information. It can even translate SNMP MIB to other languages, like JAVA, C,
XML, etc. This library has tools to check, analyze, dump, convert, and compare MIB
definitions. The tool used for this is called “smidump”.

Network devices developed by Juniper Networks are equipped with the JUNOS
Operating system, which supports JUNOScript [10]. The JUNOSciprt allows the
client applications to connect to the Juniper network devices and exchange messages
as XML document. The request and response are represented as DTDs and
XML Schemas. The communication between the client and network devices is
through RPC requests. An XML-based RPC consists of a request and the
corresponding response. It is transmitted through a connection-oriented session using
any transport protocols like SSH, TELNET, SSL or a serial console connection.
Juniper Networks has already implemented a tool for mapping SNMP SMI
information modules to the XML Schema. This tool is an extension of a previously
implemented tool for converting SNMP SMI to CORBA-IDL. Currently Juniper

 Static Weighted Load-Balancing for XML-Based Network Management Using JPVM 231

Networks is working on the implementation of an XML document adapter for SNMP
MIB modules using Net-SNMP and XML-RPC libraries.

Jens Muller implemented an SNMP/XML gateway as Java Servlet that allows
fetching of XML documents on the fly through HTTP. MIB portions can be addressed
through XPath expressions encoded in the URLs to be retrieved. The gateway works
as follows: when a MIB module to be dumped is passed to mibdump, an SNMP
session is initiated, and then sequences of SNMP GetNext operations are issued to
retrieve all objects of the MIB from the agent. Mibdump collects the retrieved data
and the contents of this data are dumped in the form of an appropriate XML document
with respect to the predefined XML Schema.

Today’s network is equipped with legacy SNMP based agents, and it is difficult to
manage legacy SNMP agents through an XML-based manager. Conversion of the
XML-based request to an SNMP-based request through an XML/SNMP gateway
provides the interaction between the XML-based manager and SNMP-based agents.
For a validation of the algorithm, POSTECH implemented an XML-based SNMP
MIB browser using this SNMP MIB to XML translator. This gateway is developed by
POSTECH at their DPNM laboratory [1][2]. This gateway provides modules to
manage networks equipped with SNMP agents [1]. The implementation of the
gateway requires two types of translations: specification translations and interaction
translations. The specification translation is concerned about the translation of the
SNMP MIB to XML. POSTECH uses an automatic translation algorithm for SNMP
MIB to XML. The interaction translation methods for XML/SNMP gateway are the
process level interaction translation, the message level interaction translation, and the
protocol level interaction translation.

In a previous paper [4], we proposed to extend the work of POSTECH & Juniper
Networks. The framework proposed allows a manager to send requests to multiple
agents using a single message. We defined new types of messages that could be sent
by a manager, namely multi-get-request, multi-set-request, and response. These
messages can be widely used in configuration management. The implementation for
both multi-get-request and multi-set-request can be achieved through an HTTP-based
interaction method and a SOAP-based interaction method. We described how a
manager can send in one message either one request to multiple agents, multiple
requests to one agent, or multiple requests to multiple agents. For the multi-set-
request message, if an abnormal condition or an error occurs, some agents may not set
the values requested. This will be reported to the gateway and the manager. However,
our system does not automatically provide for a rollback mechanism to the previous
state. This can be the subject of future work.

In this paper, we will compare the performance of our system using two different
JPVM DOM-based approaches, namely a static weighted load balancing and equal
work non-weighted load balancing approaches. We will also compare this to a single
JPVM gateway approach.

4 System Architecture

Our framework is based on the XML/SNMP gateway architecture, which is shown in
Fig. 2. Communication is between an XML-based Manager, an XML/SNMP Gateway,

232 M.H. Sqalli and S. Sirajuddin

and SNMP Agents. In this paper, we present a static weighted JPVM-based approach
for the implementation of the XML/SNMP gateway.

In this section we present the JPVM-based approach for XML-based Network
Management. First, we present the single-DOM tree XML-based Network
Management architecture. Then, we give a general background of the JPVM. Finally,
we describe the proposed architecture and its implementation. We also present the
algorithms for load balancing and our contribution to JPVM.

XM L-bas e d Ne tw ork
M anage m e nt Station

Route r Br idge
Work s tation

X ML-Request Serv let

X Path/Xquery

DOM Tree Updation

Muti-Get and Multi-Set
Request

S NMP Communication

S NMP
Request/

Response

S NMP
Request/

Response

S NMP
Request/

Response

X ML-based Response

HTTP

X ML Response

XM L/SNM P Gate w ay

Fig. 2. Single-DOM Tree based Framework

4.1 Single DOM Tree-Based Approach

The proposed architecture for the single-DOM tree has three main components as
shown in Fig. 2.:

• XML-based Network Management Station (XBM).
• XML/SNMP Gateway.
• SNMP agents.

The XML-based request is represented as an XML document. The XBM prepares
and sends the XML-based request to the XML/SNMP gateway. The request is
received by the XML request servlet, which retrieves the number of target agents
present in the request. It extracts the Xpath component of the request and sends it to
the Xpath/Xquery module, which parses the XML-based request document. Parsing
extracts the target MIB object present in the XML-based request received from the
XBM.

Using these target objects and the target hosts, the SNMP communication module
will send the SNMP-based requests to the agents and receives the SNMP responses.

 Static Weighted Load-Balancing for XML-Based Network Management Using JPVM 233

The DOM tree is updated with the received response values. The updated response
DOM tree can be translated into any form according to the user requirements using
the XSL style sheets. Here in our approach we apply the XML style sheet to convert
the response DOM tree into an HTML format and it is transmitted over the HTTP
protocol to the XBM. Another option would be to transmit the XML document to the
XBM which will in turn convert it to an HTML document. This will provide more
flexibility to the XBM to manipulate the response, at the expense of adding more
processing overhead. Since our goal is to minimize the overhead of the manager, we
have chosen the first option.

4.2 JPVM Background

Adam J. Ferrari introduced the Java Parallel Virtual Machine (JPVM) [11] library.
The JPVM library is a software system for explicit message passing based on
distributed memory MIMD parallel programming in Java. JPVM supports an interface
similar to C and FORTRAN interfaces provided by the Parallel Virtual Machine
(PVM) system. The JPVM system is easily accessible to the PVM programmers and
has low investment target for migrating parallel applications to a Java platform.
JPVM offers new features such as thread safety, and multiple communication end-
points per task. JPVM has been implemented in Java and is highly portable among
the platforms supporting any version of the Java Virtual Machine.

The JPVM system is quite similar to that of a PVM system. JPVM has an added
advantage of the Java as a language for network parallel processing. In the case of
PVM, we divide a task into a set of cooperative sequential tasks that are executed on a
collection of hosts. Similarly, in the case of JPVM, one has to code the
implementation part into Java. The task creation and message passing is provided by
means of JPVM.

4.3 JPVM Interface

In this section we explore the JPVM interface that provides the task creation,
and execution. The most important interface of the JPVM package is the
jpvmEnvironment class. The instance of this class is used to connect and interact with
the JPVM systems and other tasks executing within the system. An Object of this
class represents the communication end-points within the system, and each
communication point is identified by means of a unique jpvmTaskId. In PVM, each
task has single a communication end-point (and a single task identifier), but JPVM
allows programmer to maintain logically unlimited number of communication
connections by allocating multiple instances of jpvmEnvironment.

First, we need to set the JPVM environment on all the hosts that we are interested
to use for parallel communication. For this, we need to run the jpvmDaemon java
program on all the hosts. By running jpvmDaemon threads, we just initiate the JPVM
environment. These threads are not used until all the hosts know about their JPVM
environment. Next, we need to start the Console on one of the jpvmDaemon running
hosts. The console program can be started running the jpvmConsole java program.
Then, we have to register or add the other jpvmDaemon hosts to the host running the
console program. We add the hosts by giving the name and the port at which the

234 M.H. Sqalli and S. Sirajuddin

jpvmDaemon started. This port is used during message passing between the JPVM
hosts, and is the port through which the JPVM communication takes place.

4.4 JPVM Architecture

The proposed JPVM architecture is shown in Fig. 3. It has mainly 3 components,
namely an XML-based Manager, JPVM gateways, and SNMP agents. All the JPVM
gateways are configured to run daemon processes. There will be one JPVM gateway
that will run the jpvmConsole in order to notify all the hosts one another’s existence
and this is called as the master JPVM gateway. The master JPVM gateway will
communicate directly with the XML-based manager. The other JPVM gateways are
known as slave JPVM gateways. These slave gateways communicate only with the
master JPVM gateway. Hence, the JPVM-based network management is based on a
master slave paradigm.

X M L - B a s e d M a n a g e r

J PV M X M L / S N M P G a t e w a y

J PV M X M L / S N M P G a te w a y

J PV M X M L / S N M P G a t e w a y

J PV M X M L / S N M P G a t e w a y

X M L - B a s e d R e q u e s t
O v e r H T T P

R o u t e r
P r i n t e r

F l a t s c r e e n
R o u t e r

P r i n t e r
F l a t s c r e e n

R o u t e r
P r i n t e r

F l a t s c r e e n

R o u t e r
P r i n t e r

F l a t s c r e e n

X M L -B a s e d R e s p o n s e
O v e r H T T P

Fig. 3. JPVM Framework for Parallel XML-based Netwrok Management

4.5 Implementation of the Proposed Framework

The JPVM-based framework is implemented as a master-slave architecture, where a
master JPVM is running at the web server. The master JPVM gateway receives the
request from the XML-based manager. A jpvmDaemon program will be running on
all the JPVM gateways. The master JPVM gateway is connected to a number of slave
JPVM gateways, and will run the jpvmconsole program. The JPVM slave gateways
have only the slave programs running on them for communication with the master
JPVM and SNMP agents. The slave JPVM carries out the actual XML to SNMP

 Static Weighted Load-Balancing for XML-Based Network Management Using JPVM 235

translation and SNMP communication with the SNMP agents. The master JPVM
status can be either working or not working. If the master has a working status, it can
communicate with the SNMP agents after dividing the tasks.

4.6 JPVM Master Algorithm

The JPVM master gateway algorithm is presented in Fig. 4. The Master JPVM
algorithm has three stages: initialization, waiting for the work, and termination. In the
initialization stage, the master will start the JPVM environment, and create a pool of
slave JPVM gateways. In the wait for request stage, the master will wait for the
request from the XBM, and upon receiving the request it divides the work among the
available pool of slave JPVM gateways, and dispatches the work to the slave JPVM
gateways. It will wait for the response from all the slave JPVM gateways, and after
receiving the response, it joins the responses into one response document. Then, it
will apply XSL to the XML document before transmitting the response over HTTP
protocol to XML-based manager. In the termination stage, the master JPVM will send
the stop command to the slave JPVMs, and then exit from the JPVM environment.

Algorithm JPVM Master Gateway Algorithm JPVM Slave Gateway

Begin
 Initialization:

Start the JPVM Environment
Create Pool of JPVM Slave Gateways
Initialize the JPVM _Spawn for each Slave

 Wait For Request:
Divide the work
Send the work to each Slave JPVM

gateways
Get the result from all the Slave JPVM

gateways
Join the work

 Termination:
Send to each Slave the Stop command
Exit from the JPVM Environment

End Master JPVM

Begin
 Start the JPVM Environment
 Parse the RFC-1213
 While (true)
 Wait to receive the work from the
Master

 If (Stop)
 Exit from the JPVM Environment
 If (Work)
 Get the XML-Document
 Do the Work.

 End While
 Exit from the JPVM Environment
End Slave

Fig. 4. Master and Slave JPVM Gateway Algorithms

4.7 Slave JPVM Algorithm

The slave JPVM algorithm is presented in Fig. 4. The slave JPVM gateway starts the
JPVM environment and parses the RFC-1213 MIB objects during the master JPVM
initialization stage. The slave JPVM will wait for the work from the master JPVM
gateway. Once the work is received from the master, each slave JPVM performs
Single DOM tree-based approach (converting the XML-request into SNMP requests,
sending SNMP requests, receiving the SNMP responses, and updating the SNMP

236 M.H. Sqalli and S. Sirajuddin

responses in the DOM tree). All the slave JPVM gateways will pass the XML
response document to the master JPVM gateway. Then, all the slaves wait again for
work from the master. This repeats until the master sends the terminate command to
all the slave JPVM gateways.

4.8 Contributions to JPVM

JPVM supports basic data types like integer, long, string, character etc. The
communication (message passing) between the different JPVMs is through these data
types. XML-based network management requires communication by means of XML
documents. JPVM does not support message passing of XML documents among the
different JPVM. In order to support message passing of XML documents, we added
new data types such as: XML document, NodeList, Node, and SnmpPdu to the
current JPVM source code.

4.9 Static Weighted Load Balancing

In the equal work non-weighted load balancing approach, we assign equal work to all
slave JPVM gateways (i.e., we divide the work based on the number of slave JPVM
gateways present in the pool). This approach provides good performance only for a
homogeneous network of workstations.

A second approach is the static weighted load-balancing algorithm in which we
divide the work based on the processing speed of the workstations. In this approach,
we assign a weight to the workstations depending on their processing speed. During
the work assignment, a gateway will be assigned work according to its weight. The
higher the weight the larger the amount assigned to the slave JPVM gateway.

The weights are assigned based on the base processor’s processing speed as
follows: First, each workstation is assigned the same number of agents that it will
communicate with. The workstation that takes the longest time to finish the work is
taken as the base processor. The weight of this workstation is set to 1, and the weight
of any other workstation is obtained by dividing the base processor time by the
amount of time taken by this workstation.

The second approach provides better results when we have a heterogeneous
network of workstations. Results are shown later that support this statement.

5 Experiments and Results

5.1 Experimental Setup

In the experimental setup for the XML-based network management using JPVM, the
master JVPM gateway is connected to a number of slave JVPM gateways. All the
JPVM gateways are windows workstation and running on windows 2000 operating
system. The master JPVM gateway has a TOMCAT 5.0 web server running on it. The
same experimental setup has been used with homogenous and heterogeneous systems.
In the case of homogeneous systems the slave JPVM gateways are of equal
processing speed and in the other case they are of different processing speed. The
experiments were conducted from our University campus, and all the SNMP agents

 Static Weighted Load-Balancing for XML-Based Network Management Using JPVM 237

are connected over 100Mbps access network connection and a Gigabit Ethernet
backbone. Each experiment was conducted for 25 runs. The maximum number of
agents used in our experiments is 200. The request/response messages are for the
system group MIB objects from RFC-1213.

The time elapsed between issuing the XML-based request from the XBM to the
XML/SNMP gateway and the time the response is received from the XML/SNMP
gateway back to the XBM is termed as the response time. We have shown in [12] that
most of the response time is consumed during the communication between the
XML/SNMP gateway and the SNMP agents, that is the SNMP-STACK
communication. For example, more than 90% of the time is consumed by the SNMP-
STACK communication when the number of agents exceeds 50. Our goal is then to
reduce the SNMP-STACK communication time. This was achieved through the
distribution of the work among multiple gateways. In our experiments, we will
however compare the overall response time to show the improvements achieved.

5.2 Results and Discussion

Table 1 shows the response time values for single gateways (i.e., 350-No-JPVM, 350-
JPVM, 711-No-JPVM, and 711-JPVM), homogeneous systems, heterogeneous
systems, and static weighted allocation as the number of agent increases.

Table 1. Response Time values for Homogenous, Heterogeneous, and Static Weighted

 350-
No-JPVM

350-
JPVM

711-
No-JPVM

711-
JPVM

HOMO
EqualWork

HETERO
EqualWork

STATIC STATIC
(Agents assigned)

Agents Response Time 350 711

1 523.2 1221.8 609.4 737.0 1070.8 821.2 786.4 0 1

10 1528.6 2445.5 1131.5 1636.4 2160.7 1939.8 1551.1 3 7

20 3319.6 4534.6 2369.4 2834.2 2971.6 2692.9 2021.7 7 13

30 5717.9 7141.2 3575.5 4728.8 4256.0 3734.4 3304.4 10 20

50 11678.8 14061.2 6780.9 8233.8 6322.1 5370.6 5692.7 17 33

60 15779.5 18769.1 8949.7 10420.6 7849.9 6566.5 6936.2 20 40

90 31032.2 37661.0 18237.7 20030.8 13364.0 12238.7 11032.1 30 60

100 37481.5 45195.8 21733.8 24419.2 16435.4 14764.3 12724.9 33 67

110 44291.2 54004.7 25692.5 27860.2 18861.3 17302.0 13195.9 37 73

140 69174.2 80195.3 39770.3 41776.2 24561.4 21974.6 23042.4 47 93

150 78327.4 90753.5 42279.3 46507.0 26741.3 25396.4 25655.3 50 100

180 108866.2 129406.3 59818.3 66253.4 41106.2 37756.4 34308.4 60 120

190 123441.5 147638.4 65247.4 71603.0 44417.2 40355.1 37045.5 63 127

200 134577.5 153398.6 70516.2 76602.2 48740.3 44477.9 38905.3 67 133

Fig. 5. shows the response time for the homogeneous vs. heterogeneous systems

for the system group MIB objects in the case of equal work assignment. The

238 M.H. Sqalli and S. Sirajuddin

experiment is conducted with two homogeneous systems and then with two
heterogeneous systems. The homogeneous systems are of 350 MHz processing speed
Intel Pentium II processors and the heterogeneous systems are a 350 MHz processing
speed Intel Pentium II processor and a 711MHz processing speed Intel Pentium III
processor. In both cases, the response time is mainly dependent on the slower
processor that takes longer to finish the work; since equal work is assigned to the two
processors, whether these are of the same speed or not. Since the slowest processor is
the same in both cases, i.e., 350MHz, the equal work assignment provides similar
response times as shown in Fig. 5. Hence, homogeneous systems are better to use
because, in the case of heterogeneous systems, the higher speed processor will be
underutilized.

Homo vs. Hetero (JPVM)

0

10000

20000

30000

40000

50000

60000

1 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Number of Agents

R
es

p
o

n
se

 T
im

e
(m

s)

Homo-JPVM

Hetero-JPVM

Fig. 5. Response Time for Homogeneous vs. Heterogeneous Systems

Fig. 6. shows the response time for heterogeneous systems vs. static weighted load
balancing for the values in Table 1. Let us illustrate the difference between the results
of the two approaches through the example of an XML-based request with 30 agents.
In the case of heterogeneous systems, the response time is 3,734.4 ms, which is equal
to requesting 15 agents by the slowest processor, i.e., 350 MHz processor. In the case
of static weighted load balancing approach, the allocation of the work to each JPVM
gateway is 10 and 20 respectively for the 350 MHz and the 711 MHz processors. In
this case, the response time is 3,304.4 ms, which is equal to requesting 20 agents by
the 711 MHz processor, i.e., 2,834.2 ms; in addition to the communication time for
data packing and unpacking due to the use of two slave JPVM gateways. We can also
observe in this case that the slower processor, i.e., 350 MHz processor, takes less time
to request 10 agents, i.e., 2,445.5 ms; compared to the response time of the faster
processor requesting 20 agents, i.e., 2,834.2 ms. Hence, the slower processor is
underutilized in this case.

 Static Weighted Load-Balancing for XML-Based Network Management Using JPVM 239

Static vs. Hetero (JPVM)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Number of Agents

R
es

p
o

n
se

 T
im

e
(m

s)

Static-JPVM

Hetero-JPVM

Fig. 6. Response Time for Heterogeneous Systems vs. Static Weighted Load Balancing

XML-based Network Management (JPVM)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 20 40 60 80
100

12
0

14
0

16
0

18
0

200

Number of Agents

R
ep

o
n

se
 T

im
e

(m
s)

350-No-JPVM

350-JPVM

711-No-JPVM

711-JPVM

Homo-JPVM

Hetero-JPVM

Static-JPVM

Fig. 7. Response Time for all experiments

The response time in the case of heterogeneous systems with equal work allocation
will be almost the same as that of the slower processor. In this case, as the number of
agents increases, the faster processor needs lesser time to finish the work and thus is

240 M.H. Sqalli and S. Sirajuddin

underutilized. There will be better response time with the static weighted load
balancing compared to the equal work approach as the number of agents increases.

The choice of weights in this work is solely based on the processing speed of the
systems used. We may be able to improve the results obtained by finding a better way
to assign weights to avoid as much as possible underutilized gateways. This is the
subject of future work.

Fig. 7. shows the comparison between all the experiments that were performed. We
can see that the static weighted load balancing outperforms all the others.

6 Conclusion

In this paper, we presented load balancing approaches to XML-based network
management, to distribute the load across multiple parallel JPVM gateways. We have
shown that in the case of heterogeneous systems with equal work, the faster processor
completes earlier and is underutilized. In addition, the static weighted load balancing
approach with heterogeneous slave JPVM gateways provides a better response time
than the equal work non-weighted approach, and a much better one than all single
gateway approaches. We found as well that in the case of static weighted load
balancing approach, the response time is closer to that of the faster processor which
takes more time to complete the work. This also led to the fact that the slower
processor became underutilized. The weight setting can be further tuned to improve
the results obtained, but this will be the subject of future work.

Acknowledgement

The authors acknowledge the support of King Fahd University of Petroleum Minerals
(KFUPM) in the development of this work. This material is based in part on work
supported by a KFUPM research project under Fast Track Grant No. FT/2004-20. We
would like to thank the anonymous reviewers as well for their valuable comments.

References

[1] Jeong-Hyuk yoon, Hong-Taek Ju and James W.Hong, “Development of SNMP-XML
translator and Gateway for XML-based integrated network management”, International
journal of Network Management, 2003, 259-276.

[2] Mi-Jung Choi, James W. Hong, and Hong-Taek Ju, “XML-Based Network Management
for IP Networks”, ETRI Journal, Volume 25, November 6, 2003.

[3] J.P.Martin-Flatin, “Web-Based Management of IP Networks and Systems”, Wiley series
in communications Networking and Distributed Systems, 2003.

[4] Sqalli H.M., and Sirajuddin S., “Extensions to XML based Network Management”,
International Conference on Information and Computer Sciences (ICICS-2004), Dhahran,
KSA, November 2004.

[5] W3C, “Extensible Markup Language (XML) 1.0”, W3C Recommendation, October 2000.
[6] W3C, “XML Schema Part0: Primer”, W3C Recommendation, May 2001.
[7] W3C, “XML Schema Part1: Structures”, W3C Recommendation, May 2001.

 Static Weighted Load-Balancing for XML-Based Network Management Using JPVM 241

[8] W3C, “XML Schema Part2: Data Types”, W3C Recommendation, May 2001.
[9] Straus, F. “A library to access SMI MIB information”, http://www.ibr.cs.tubs.de/

projects/libsmi/
[10] Phil Shafer “XML-Based Network Management” – White Paper, Juniper Networks, Inc.,

2001, http://www.Juniper.net/solutions/literature/white_papers/200017.pdf
[11] Adam J.Ferrari, “JPVM: The Java Parallel Virtual Machine”, http://www.cs.virginia.edu/

jpvm/
[12] Sirajuddin S., and Sqalli H.M., “Comparison of CSV and DOM Tree Approaches in

XML-based Network Management”, 12th International Conference on Telecommuni-
cations (ICT-2005), Cape Town, South Africa, May 3-6, 2005.

[13] Hyoun-Mi Choi, Mi-Jung Choi, James W.Hong, “XML-based Configuration
Management for Distributed System”, Proc. of 2003 Asia-Pacific Network Operations
and Management Symposium (APNOMS 2003), Fukuoka, Japan, October 1-3, 2003, pp.
599-600.

[14] Mani Subramanian, “Network Management: Principles and Practice”, Addison-Wesley,
Hardcover, Published December 1999, 644 pages, ISBN 0201357429.

[15] W3C, “Document Object Model (DOM) Level 2 Core Specification”, W3C
Recommendation, November 2000.

[16] W3C, “Document Object Model (DOM) Level 2 Traversal and Range Specification”,
W3C Recommenda-tion, November 2000.

	Introduction
	XML-Based Network Management
	Related Work
	System Architecture
	Single DOM Tree-Based Approach
	JPVM Background
	JPVM Interface
	JPVM Architecture
	Implementation of the Proposed Framework
	JPVM Master Algorithm
	Slave JPVM Algorithm
	Contributions to JPVM
	Static Weighted Load Balancing

	Experiments and Results
	Experimental Setup
	Results and Discussion

	Conclusion
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

