Skip to main content

Modeling of the Transport Properties of Diamond Radiation Sensors

  • Chapter
  • First Online:
Book cover Carbon

Part of the book series: Topics in Applied Physics ((TAP,volume 100))

Abstract

A fully quantitative model of electronic transport in polycrystalline chemical vapour deposited (pCVD) diamond sensors is presented, predicting the conductivity behavior of diamond devices during and after exposure to ionizing radiation. The model takes into account a widely adopted qualitative picture of the diamond band gap, based on two distributions of defect levels: a mid-gap group of recombination centers and a distribution of traps closer to one of the band edges. Analytical expressions for the radiation-induced currents (RIC) and persistent radiation-induced currents (PIC) are derived from the solutions of a complete set of rate equations, and the experimental data are well fitted by assuming the distribution of the trap centers to be formed from the superposition of several uniform bands, with different cross sections, energies and concentrations. The model is validated against experimental data from a set of diamond detectors whose charge collection distance ranges over an order of magnitude (from 15 μm to 250 μm), i.e., from highly defective to the state-of-the-art material. A rationale is then proposed for the relationship between material quality and trap parameters, also with regard to the changes in the material properties caused by high irradiations of fast neutrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A. Lewandowski, S. S. McKeever: Phys. Rev. B 43, 8163 (1991)

    Article  ADS  Google Scholar 

  • R. Chen, A. Lewandowski, S. Durrani: Phys. Rev. B 24, 4931 (1981)

    Article  ADS  Google Scholar 

  • S. S. McKeever, R. Chen: Radiat. Meas. B 27, 625 (1998)

    Article  Google Scholar 

  • P. Klein, M. Crossfield, J. A. Freitas Jr., A. Collins: Phys. Rev. B 51, 9634 (1995)

    Article  ADS  Google Scholar 

  • J. Ruan, K. Kobashi, W. Choyke: Appl. Phys. Lett. 60, 3138 (1992)

    Article  ADS  Google Scholar 

  • L. Robins, L. Cook, E. Farabaugh, A. Feldman: Phys. Rev. B 39, 13367 (1989)

    Article  ADS  Google Scholar 

  • D. Takeuchi, H. Watanabe, S. Yamanaka, H. Okushi, H. Sawada, H. Ichinose, T. Sekiguchi, K. Kajimura: Phys. Rev. B 63, 245328 (2001)

    Article  ADS  Google Scholar 

  • T. Sharda, A. Sikder, D. Misra, A. Collins, S. Bhargava, H. Bist, P. Veluchamy, H. Minoura, D. Kabiraj, D. Awasthi, P. Selvam: Diamond Relat. Mater. 7, 250 (1998)

    Article  Google Scholar 

  • K. Iakoubovskii, G. Adriaenssens: Phys. Rev. B 61, 10174 (2000)

    Article  ADS  Google Scholar 

  • C. Manfredotti, F. Wang, P. Polesello, E. Vittone, F. Fizzotti, A. Scacco: Appl. Phys. Lett. 67, 3376 (1995)

    Article  ADS  Google Scholar 

  • P. Gonon, A. Deneuville, E. Gheeraert: J. Appl. Phys. 78, 6633 (1995)

    Article  ADS  Google Scholar 

  • P. Gonon, S. Prawer, D. Jamieson: Appl. Phys. Lett. 68, 1238 (1996)

    Article  ADS  Google Scholar 

  • E. Vittone, C. Manfredotti, F. Fizzotti, A. L. Giudice, P. Polesello, V. Ralchenko: Diamond Relat. Mater. 8, 1234 (1999)

    Article  Google Scholar 

  • E. K. Souw, R. Meilunas, C. Szeles, N. Ravindra, F. M. Tong: Diamond Relat. Mater. 6, 1157 (1997)

    Article  Google Scholar 

  • C. Nebel, A. Waltenspiel, M. Stutzmann, M. Paul, L. Schäfer: Diamond Relat. Mater. 9, 404 (2000)

    Article  Google Scholar 

  • C. Nebel: Semicond. Sci. Technol. 18, S1 (2003)

    Article  ADS  Google Scholar 

  • L. Pan, D. Kania, P. Pianetta, O. Landen: Appl. Phys. Lett. 57, 623 (1990)

    Article  ADS  Google Scholar 

  • L. Pan, D. Kania, P. Pianetta, J. W. Ager III, M. Landstrass, S. Han: J. Appl. Phys. Lett. 73, 2888 (2001)

    ADS  Google Scholar 

  • D. Kania: Diamond radiation detectors, in A. Paoletti, A. Tucciarone (Eds.): The Physics of Diamond (IOS, Amsterdam 1997) pp. 555–564

    Google Scholar 

  • H. Kagan: Nucl. Instr. and Meth. A 541, 221 (2005)

    Article  ADS  Google Scholar 

  • M. Bruzzi, F. Hartjes, S. Lagomarsino, D. Menichelli, S. Mersi, S. Miglio, M. Scaringella, S. Sciortino: Phys. Stat. Sol. A 199, 138 (2003)

    Article  ADS  Google Scholar 

  • The RD42 collaboration, IEEE Trns. Nucl. Sci. 49, 1857 (2002)

    Google Scholar 

  • A. Rose: RCA Rev. 12, 362 (1951)

    Google Scholar 

  • E. Borchi, S. Lagomarsino, S. Mersi, S. Sciortino: Phys. Rev. B 71, 104103 (2005)

    Article  ADS  Google Scholar 

  • S. Lagomarsino, S. Sciortino, E. Borchi: Model of persistent radiation induced current in CVD diamond detectors, Phys. Rev. B submitted

    Google Scholar 

  • The RD42 collaboration, Nucl. Instr. and Meth. A 514, 79 (2003)

    Google Scholar 

  • S. Sciortino, S. Lagomarsino, F. Pieralli, E. Borchi, E. Galvanetto: Diamond Relat. Mater. 11, 573 (2002)

    Article  Google Scholar 

  • R. Chen, P. Leung: Radiat. Meas. 37, 519 (2003)

    Article  Google Scholar 

  • M. Bruzzi, D. Menichelli, S. Pini, M. Bucciolini, J. Mόlnar, A. Fenyvesi: Appl. Phys. Lett. 81, 298 (2002)

    Article  ADS  Google Scholar 

  • H. Kagan for the RD42 collaboration: Diamond (Radiation) Detectors Are Forever, IWORID 2004, Glasgow, UK (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Giacomo Messina Saveria Santangelo

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Lagomarsino, S., Sciortino, S. Modeling of the Transport Properties of Diamond Radiation Sensors. In: Messina, G., Santangelo, S. (eds) Carbon. Topics in Applied Physics, vol 100. Springer, Berlin, Heidelberg . https://doi.org/10.1007/11378235_15

Download citation

Publish with us

Policies and ethics