Skip to main content

Regulation of Renin Release by Local and Systemic Factors

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology 161

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 161))

Abstract

The renin-angiotensin system (RAS) is critically involved in the regulation of the salt and volume status of the body and blood pressure. The activity of the RAS is controlled by the protease renin, which is released from the renal juxtaglomerular epithelioid cells into the circulation. Renin release is regulated in negative feedbackloops by blood pressure, salt intake, and angiotensin II. Moreover, sympathetic nerves and renal autacoids such as prostaglandins and nitric oxide stimulate renin secretion. Despite numerous studies there remained substantial gaps in the understanding of the control of renin release at the organ or cellular level. Some of these gaps have been closed in the last years by means of gene-targeted mice and advanced imaging and electrophysiological methods. In our review, we discuss these recent advances together with the relevant previous literature on the regulation of renin release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel KJ, Gross KW (1990) Physical characterization of genetic rearrangements at the mouse renin loci. Genetics 124:937-47

    Google Scholar 

  • Albinus M, Finkbeiner E, Sosath B, Osswald H (1998) Isolated superfused juxtaglomerular cells from rat kidney: a model for study of renin secretion. Am J Physio l275:F991-7

    Google Scholar 

  • Anderson JV, Donckier J, Payne NN, Beacham J, Slater JD, Bloom SR (1987) Atrial natriuretic peptide: evidence of action as a natriuretic hormone at physiological plasma concentrations in man. Clin Sci (Lond) 72:305-12

    Google Scholar 

  • Arcuino G, Lin JH, Takano T, Liu C, Jiang L, Gao Q, Kang J, Nedergaard M (2002) Intercellular calcium signaling mediated by point-source burst release of ATP. Proc Natl Acad Sci USA 99:9840-5

    Google Scholar 

  • Arensbak B, Mikkelsen HB, Gustafsson F, Christensen T, Holstein-Rathlou NH (2001) Expression of connexin 37, 40, and 43 mRNA and protein in renal preglomerular arterioles. Histochem Cell Biol 115:479-87

    Google Scholar 

  • Bachmann S, Bosse HM, Mundel P (1995) Topography of nitric oxide synthesis by localizing constitutive NO synthases in mammalian kidney. Am J Physiol 268:F885-98

    Google Scholar 

  • Bader M, Peters J, Baltatu O, Muller DN, Luft FC, Ganten D (2001) Tissue renin-angiotensin systems: new insights from experimental animal models in hypertension research. J Mol Med 79:76-102

    Google Scholar 

  • Baltatu O, Bader M (2003) Brain renin-angiotensin system. Lessons from functional genomics. Neuroendocrinology 78:253-9

    Google Scholar 

  • Barajas L, Sokolski KN, Lechago J (1983) Vasoactive intestinal polypeptide-immunoreactive nerves in the kidney. Neurosci Lett 43:263-9

    Google Scholar 

  • Barrett GL, Morgan TO, Alcorn D (1990) Stimulation of renin synthesis in the hydronephrotic kidney during sodium depletion. Pflugers Arch 415:774-6

    Google Scholar 

  • Baumbach L, Skott O (1986) Renin release from different parts of rat afferent arterioles in vitro. Am J Physiol 251:F12-6

    Google Scholar 

  • Beavo JA (1995) Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev 75:725-48

    Google Scholar 

  • Beierwaltes WH (1995) Selective neuronal nitric oxide synthase inhibition blocks furosemide-stimulated renin secretion in vivo. Am J Physiol 269:F134-9

    Google Scholar 

  • Beierwaltes WH (1997) Macula densa stimulation of renin is reversed by selective inhibition of neuronal nitric oxide synthase. Am J Physiol 272:R1359-64

    Google Scholar 

  • Beierwaltes WH (2006) cGMP stimulates renin secretion in vivo by inhibiting phosphodiesterase-3. Am J Physiol Renal Physiol 290:F1376-81

    Google Scholar 

  • Beierwaltes WH, Potter DL, Shesely EG (2002) Renal baroreceptor-stimulated renin in the eNOS knockout mouse. Am J Physiol Renal Physiol 282:F59-64

    Google Scholar 

  • Bell PD, Lapointe JY, Sabirov R, Hayashi S, Peti-Peterdi J, Manabe K, Kovacs G, Okada Y (2003) Macula densa cell signaling involves ATP release through a maxi anion channel. Proc Natl Acad Sci USA 100:4322-7

    Google Scholar 

  • Bie P, Wang BC, Leadley RJ, Jr., Goetz KL (1988) Hemodynamic and renal effects of low-dose infusions of atrial peptide in awakedogs. Am J Physiol 254:R161-9

    Google Scholar 

  • Bischoff A, Avramidis P, Erdbrugger W, Munter K, Michel MC (1997) Receptor subtypes Y1 and Y5 are involved in the renal effects of neuropeptide Y. Br J Pharmacol 120:1335-43

    Google Scholar 

  • Blaine EH, Davis JO, Witty RT (1970) Renin release after hemorrhage and after suprarenal aortic constriction in dogs without sodium delivery to the macula densa. Circ Res 27:1081-9

    Google Scholar 

  • Blaine EH, Davis JO, Prewitt RL (1971) Evidence for a renal vascular receptor in control of renin secretion. Am J Physiol 220:1593-7

    Google Scholar 

  • Blundell T, Sibanda BL, Pearl L (1983) Three-dimensional structure, specificity and catalytic mechanism of renin. Nature 304:273-5

    Google Scholar 

  • Bock HA, Hermle M, Brunner FP, Thiel G (1992) Pressure dependent modulation of renin release in isolated perfused glomeruli. Kidney Int 41:275-80

    Google Scholar 

  • Bolger PM, Eisner GM, Ramwell PW, Slotkoff LM (1976) Effect of prostaglandin synthesis on renal function and renin in the dog. Nature 259:244-5

    Google Scholar 

  • Bosse HM, Bohm R, Resch S, Bachmann S (1995) Parallel regulation of constitutive NO synthase and renin at JGA of rat kidney under various stimuli. Am J Physiol 269:F793-805

    Google Scholar 

  • Brands MW, Freeman RH (1988) Aldosterone and renin inhibition by physiological levels of atrial natriuretic factor. Am J Physiol 254:R1011-6

    Google Scholar 

  • Brands MW, Freeman RH (1989) Aldosterone and renin inhibition by atrial natriuretic factor in potassium-loaded rats. Am J Physiol 257:R1423-8

    Google Scholar 

  • Brenner BM, Ballermann BJ, Gunning ME, Zeidel ML (1990) Diverse biological actions of atrial natriuretic peptide. Physiol Rev 70:665-99

    Google Scholar 

  • Breyer MD, Breyer RM (2000) Prostaglandin E receptors and the kidney. Am J Physiol Renal Physiol 279:F12-23

    Google Scholar 

  • Brown J, O’Flynn MA (1989) Acute effects of physiological increments of alpha-atrial natriuretic peptide in man.Kidney Int 36:645-52

    Google Scholar 

  • Brown R, Ollerstam A, Johansson B, Skott O, Gebre-Medhin S, Fredholm B, Persson AE (2001) Abolished tubuloglomerular feedback and increased plasma renin in adenosine A1 receptor-deficient mice. Am J Physiol Regul Integr Comp Physiol 281:R1362-7

    Google Scholar 

  • Brown RD, Thoren P, Steege A, Mrowka R, Sallstrom J, Skott O, Fredholm BB, Persson AE (2006) Influence of the adenosine A1 receptor on blood pressure regulation and renin release. Am J Physiol Regul Integr Comp Physiol 290:R1324-9

    Google Scholar 

  • Brubacher ES, Vander AJ (1968) Sodium deprivation and renin secretionin unanesthetized dogs. Am J Physiol 214:15-21

    Google Scholar 

  • Bührle CP, Nobiling R, Taugner R (1985) Intracellular recordings from renin-positive cells of the afferent glomerular arteriole. Am J Physiol 249:F272-81

    Google Scholar 

  • Bührle CP, Scholz H, Hackenthal E, Nobiling R, Taugner R (1986) Epithelioid cells: membrane potential changes induced by substances influencing renin secretion. Mol Cell Endocrinol 45:37-47

    Google Scholar 

  • Bunag RD, Page IH, McCubbin JW (1967) Inhibition of renin release by vasopressin and angiotensin. Cardiovasc Res 1:67-73

    Google Scholar 

  • Burnett JC, Jr., Granger JP, Opgenorth TJ (1984) Effects of synthetic atrial natriuretic factor on renal function and renin release. Am J Physiol 247:F863-6

    Google Scholar 

  • Butt E, Nolte C, Schulz S, Beltman J, Beavo JA, Jastorff B, Walter U (1992) Analysis of the functional role of cGMP-dependent protein kinase in intact human platelets using a specific activator 8-para-chlorophenylthio-cGMP. Biochem Pharmacol 43:2591-600

    Google Scholar 

  • Carey RM, McGrath HE, Pentz ES, Gomez RA, Barrett PQ (1997) Biomechanical coupling in renin-releasing cells. J Clin Invest 100:1566-74

    Google Scholar 

  • Carson P, Carlyle P, Rector TS, Cohn JN (1990) Cardiovascular and neurohormonal effects of atrial natriuretic peptide in conscious dogs with and without chronic left ventricular dysfunction. J Cardiovasc Pharmacol 16:305-11

    Google Scholar 

  • Castrop H (2007) Mediators of tubuloglomerular feedback regulation of glomerular filtration: ATP and adenosine. Acta Physiol (Oxf)189:3-14

    Google Scholar 

  • Castrop H, Huang Y, Hashimoto S, Mizel D, Hansen P, Theilig F, Bachmann S, Deng C, Briggs J, Schnermann J (2004a) Impairment of tubuloglomerular feedback regulation of GFR in ecto-5’-nucleotidase/CD73-deficient mice. J Clin Invest 114:634-42

    Google Scholar 

  • Castrop H, Schweda F, Mizel D, Huang Y, Briggs J, Kurtz A, Schnermann J (2004b) Permissive role of nitric oxide in macula densa control of renin secretion. Am J Physiol Renal Physiol 286:F848-57

    Google Scholar 

  • Castrop H, Lorenz JN, Hansen PB, Friis U, Mizel D, Oppermann M, Jensen BL, Briggs J, Skott O, Schnermann J (2005) Contribution of the basolateral isoform of the Na-K-2Cl- cotransporter (NKCC1/BSC2) to renin secretion. Am J Physiol Renal Physiol 289:F1185-92

    Google Scholar 

  • Chen M, Harris MP, Rose D, Smart A, He XR, Kretzler M, Briggs JP, Schnermann J (1994) Renin and renin mRNA in proximal tubules of therat kidney. J Clin Invest 94:237-43

    Google Scholar 

  • Chen L, Kim SM, Oppermann M, Faulhaber-Walter R, Huang Y, Mizel D, Chen M, Lopez ML,Weinstein LS, Gomez RA, Briggs JP, Schnermann J (2007) Regulation of renin in mice with Cre recombinase-mediated deletion of G protein Gsalpha injuxtaglomerular cells. Am J Physiol Renal Physiol 292:F27-37

    Google Scholar 

  • Cheng HF, Wang JL, Zhang MZ, Miyazaki Y, Ichikawa I, McKanna JA, Harris RC (1999) Angiotensin II attenuates renal cortical cyclooxygenase-2 expression. J Clin Invest 103:953-61

    Google Scholar 

  • Chiu N, Park I, Reid IA (1996) Stimulation of renin secretion by the phosphodiesterase IV inhibitor rolipram. J Pharmacol Exp Ther 276:1073-7

    Google Scholar 

  • Chiu T, Reid IA (1996) Role of cyclic GMP-inhibitable phosphodiesterase and nitric oxide in the beta adrenoceptor control of renin secretion. J Pharmacol Exp Ther 278:793-9

    Google Scholar 

  • Chiu YJ, Hu SH, Reid IA (1999) Inhibition of phosphodiesterase III with milrinone increases renin secretion in human subjects. J Pharmacol Exp Ther 290:16-9

    Google Scholar 

  • Churchill PC (1980) Effect of D-600 on inhibition of in vitro renin release in the rat by high extracellular potassium and angiotensin II. J Physiol 304:449-58

    Google Scholar 

  • Churchill PC (1985) Second messengers in renin secretion. Am J Physiol 249:F175-84

    Google Scholar 

  • Churchill PC, Churchill MC (1985) A1 and A2 adenosine receptor activation inhibits and stimulates renin secretion of rat renal cortical slices. J Pharmacol Exp Ther 232:589-94

    Google Scholar 

  • Clark AF, Sharp MG, Morley SD, Fleming S, Peters J, Mullins JJ (1997) Renin-1 is essential for normal renal juxtaglomerular cell granulation and macula densa morphology. J Biol Chem 272:18185-90

    Google Scholar 

  • Cohen Y, Rahamimov R, Naveh-Many T, Silver J, Rahamimoff R (1997) Where is the “inverting factor” in hormone secretion from parathyroid cells? Am J Physiol 273:E631-7

    Google Scholar 

  • Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC, Nedergaard M (1998) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci USA 95:15735-40

    Google Scholar 

  • Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, Oliveira-dos-Santos AJ, da Costa J, Zhang L, Pei Y, Scholey J, Ferrario CM, Manoukian AS, Chappell MC, Backx PH, Yagil Y, Penninger JM (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417:822-8

    Google Scholar 

  • Crowley SD, Gurley SB, Oliverio MI, Pazmino AK, Griffiths R, Flannery PJ, Spurney RF, Kim HS, Smithies O, Le TH, Coffman TM (2005) Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system. J Clin Invest 115:1092-9

    Google Scholar 

  • Cuneo RC, Espiner EA, Nicholls MG, Yandle TG, Livesey JH (1987) Effect of physiological levels of atrial natriuretic peptide on hormone secretion: inhibition of angiotensin-induced aldosterone secretion and renin release in normal man. J Clin Endocrinol Metab 65:765-72

    Google Scholar 

  • Danser AH (2003) Local renin-angiotensin systems: the unanswered questions. Int J Biochem Cell Biol 35:759-68

    Google Scholar 

  • Danser AH, Batenburg WW, van Esch JH (2007) Prorenin and the (pro)renin receptor—an update. Nephrol Dial Transplant 22:1288-92

    Google Scholar 

  • de Wit C, Roos F, Bolz SS, Pohl U (2003) Lack of vascular connexin 40 is associated with hypertension and irregular arteriolar vasomotion. Physiol Genomics 13:169-77

    Google Scholar 

  • Deray G, Branch RA, Herzer WA, Ohnishi A, Jackson EK (1987) Effects of atrial natriuretic factor on hormone-induced renin release. Hypertension 9:513-7

    Google Scholar 

  • DiBona GF, Kopp UC (1997) Neural control of renal function. Physiol Rev 77:75-197

    Google Scholar 

  • DiBona GF, Sawin LL (1985) Renal nerve activity in conscious rats during volume expansion and depletion. Am J Physiol 248:F15-23

    Google Scholar 

  • Dickinson DP, Gross KW, Piccini N, Wilson CM (1984) Evolution and variation of renin genes in mice. Genetics108:651-67

    Google Scholar 

  • Dzau VJ (1993) Local expression and pathophysiological role of renin-angiotensin in the blood vessels and heart. Basic Res Cardiol 88 Suppl 1:1-14

    Google Scholar 

  • DzauVJ, Ellison KE, Brody T, Ingelfinger J, Pratt RE (1987) A comparative study of the distributions of renin and angiotensinogen messenger ribonucleic acids in rat and mouse tissues. Endocrinology 120:2334-8

    Google Scholar 

  • Ehmke H, Persson PB, Just A, Nafz B, Seyfarth M, Hackenthal E, Kirchheim HR (1992) Physiological concentrations of ANP exert a dual regulatory influence on renin release in conscious dogs. Am J Physiol 263:R529-36

    Google Scholar 

  • Ekker M, Tronik D, Rougeon F(1989) Extra-renal transcription of the renin genes in multiple tissues of mice and rats. Proc Natl Acad Sci USA 86:5155-8

    Google Scholar 

  • Evans WH, De Vuyst E, Leybaert L (2006) The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J3 97:1-14

    Google Scholar 

  • Fan L, Archambault D, Chavez S, Aljabari AW, Quillen EW, Jr. (1994a) Influences of renal nerves and pregnancy on renin secretion in sheep. Am J Physiol 266:R668-73

    Google Scholar 

  • Fan L, Mukaddam-Daher S, Gutkowska J, Nuwayhid BS, Quillen EW, Jr. (1994b) Renal perfusion pressure and renin secretion in bilaterally renal denervated sheep. Can J Physiol Pharmacol 72:782-7

    Google Scholar 

  • Fernandez-Repollet E, Silva-Netto CR, Colindres RE, Gottschalk CW (1985) Role of renal nerves in maintaining sodium balance in unrestrained conscious rats. Am J Physiol 249:F819-26

    Google Scholar 

  • Ferrier CP, Kurtz A, Lehner P, Shaw SG, Pusterla C, Saxenhofer H, Weidmann P (1989) Stimulation of renin secretion by potassium-channel activation with cromakalim. Eur J Clin Pharmacol 36:443-7

    Google Scholar 

  • Franco-Saenz R, Suzuki S, Tan SY,Mulrow PJ (1980) Prostaglandin stimulation of renin release: independence of beta-adrenergic receptor activity and possible mechanism of action.Endocrinology 106:1400-4

    Google Scholar 

  • Freestone S, MacDonald TM, Jeffrey RF, Brown J, Lee MR (1989) The renal effects of atrial natriuretic peptide in man are not attenuated by (+)-sulpiride. Br J Clin Pharmacol 27:13-8

    Google Scholar 

  • Friberg P, Meredith I, Jennings G, Lambert G, Fazio V, Esler M (1990) Evidence for increased renal norepinephrine overflow during sodium restriction in humans. Hypertension 16:121-30

    Google Scholar 

  • Friis UG, Jensen BL, Aas JK, Skott O (1999) Direct demonstration of exocytosis and endocytosis in single mouse juxtaglomerular cells. Circ Res 84:929-36

    Google Scholar 

  • Friis UG, Jensen BL, Sethi S, Andreasen D, Hansen PB, Skott O (2002) Control of renin secretion from rat juxtaglomerular cells by cAMP-specific phosphodiesterases. Circ Res 90:996-1003

    Google Scholar 

  • Friis UG, Jorgensen F, Andreasen D, Jensen BL, Skott O (2003) Molecular and functional identification of cyclic AMP-sensitive BKC a potassium channels (ZERO variant) and L-type voltage-dependent calcium channels in single rat juxtaglomerular cells. Circ Res 93:213-20

    Google Scholar 

  • Friis UG, Jorgensen F, Andreasen D, Jensen BL, Skott O (2004) Membrane potential and cation channels in rat juxtaglomerular cells. Acta Physiol Scand 181:391-6

    Google Scholar 

  • Friis UG, Stubbe J, Uhrenholt TR, Svenningsen P, Nusing RM, Skott O, Jensen BL (2005) Prostaglandin E2 EP2 and EP4 receptor activation mediates cAMP-dependent hyperpolarization and exocytosis of renin in juxtaglomerular cells. Am J Physiol Renal Physiol 289:F989-97

    Google Scholar 

  • Fujino T, Nakagawa N, Yuhki K, Hara A, Yamada T, Takayama K, Kuriyama S, Hosoki Y, Takahata O, Taniguchi T, Fukuzawa J, Hasebe N, Kikuchi K, Narumiya S, Ushikubi F (2004) Decreased susceptibility to renovascular hypertension in mice lacking the prostaglandin I2 receptor IP. J Clin Invest 114:805-12

    Google Scholar 

  • Gambaryan S, Hausler C, Markert T, Pohler D, Jarchau T, Walter U, Haase W, Kurtz A, Lohmann SM (1996) Expression of type II cGMP-dependent protein kinase in rat kidney is regulated by dehydration and correlated with renin gene expression. J Clin Invest 98:662-70

    Google Scholar 

  • Gambaryan S, Wagner C, Smolenski A,Walter U, Poller W, Haase W, Kurtz A, Lohmann SM (1998) Endogenous or overexpressed cGMP-dependent protein kinases inhibit cAMP-dependent renin release from rat isolated perfused kidney, microdissected glomeruli, and isolated juxtaglomerular cells. Proc Natl Acad Sci USA 95:9003-8

    Google Scholar 

  • Ganten D, Minnich JL, Granger P, Hayduk K, Brecht HM, Barbeau A, Boucher R, Genest J (1971) Angiotensin-forming enzyme in brain tissue. Science 173:64-5

    Google Scholar 

  • Garcia R, Thibault G, Gutkowska J, Hamet P, Cantin M, Genest J (1985) Effect of chronic infusion of synthetic atrial natriuretic factor (ANF 8-33) in conscious two-kidney, one-clip hypertensive rats. Proc Soc Exp Biol Med 178:155-9

    Google Scholar 

  • Gerber JG, Branch RA, Nies AS, Hollifield JW, Gerkens JF (1979a) Influence of hypertonic saline on canine renal blood flow and renin release. Am J Physiol 237:F441-6

    Google Scholar 

  • Gerber JG, Keller RT, Nies AS (1979b) Prostaglandins and renin release: the effect of PGI2, PGE2, and 13,14-dihydro PGE2 on the baroreceptor mechanism of renin release in the dog. Circ Res 44:796-9

    Google Scholar 

  • Ginesi LM, Munday KA, Noble AR (1983) Secretion control for active and inactive renin: effects of calcium and potassium on rabbit kidney cortex slices. J Physiol 344:453-63

    Google Scholar 

  • Gnaedinger MP, Uehlinger DE, Weidmann P, Sha SG, Muff R,Born W, Rascher W, Fischer JA (1989) Distinct hemodynamic and renal effects of calcitonin gene-related peptide and calcitonin in men. Am J Physiol 257:E848-54

    Google Scholar 

  • Grandis DJ, Uretsky BF, Verbalis JG, Chong TK, Puschett JB (1992) Relationship of the renin-angiotensin system and systemic arterial pressure to sodium excretion during atrial natriuretic peptide infusion in men. Am J Hypertens 5:793-9

    Google Scholar 

  • Greenberg SG, He XR, Schnermann JB, Briggs JP (1995) Effect of nitric oxide on renin secretion. I. Studies in isolated juxtaglomerular granular cells. Am J Physiol 268:F948-52

    Google Scholar 

  • Grünberger C, Obermayer B, Klar J, Kurtz A, Schweda F (2006) The calcium paradoxon of renin release: calcium suppresses renin exocytosis by inhibition of calcium-dependent adenylate cyclases AC5 and AC6.Circ Res 99:1197-206

    Google Scholar 

  • Hackenthal E, Schwertschlag U, Seyberth HW (1980) Prostaglandins and renin release studies in the isolated perfused rat kidney. Prog Biochem Pharmacol 17:98-107

    Google Scholar 

  • Hackenthal E, Aktories K, Jakobs KH, Lang RE (1987) Neuropeptide Y inhibits renin release by a pertussis toxin-sensitive mechanism. Am J Physiol 252:F543-50

    Google Scholar 

  • Hackenthal E, Paul M, Ganten D, Taugner R (1990) Morphology, physiology, and molecular biology of renin secretion. Physiol Rev 70:1067-116

    Google Scholar 

  • Haefliger JA, Demotz S, Braissant O, Suter E, Waeber B, Nicod P, Meda P (2001) Connexins 40 and 43 are differentially regulated within the kidneys of rats with renovascular hypertension. Kidney Int 60:190-201

    Google Scholar 

  • Haefliger JA, Krattinger N, Martin D, Pedrazzini T, Capponi A, Doring B, Plum A, Charollais A, Willecke K, Meda P (2006) Connexin43-dependent mechanism modulates renin secretion and hypertension. J Clin Invest 116:405-13

    Google Scholar 

  • Hannaert P, Alvarez-Guerra M, Pirot D, Nazaret C, Garay RP (2002) Rat NKCC2/NKCC1 cotransporter selectivity for loop diuretic drugs. Naunyn Schmiedebergs Arch Pharmacol 365:193-9

    Google Scholar 

  • Hanner F, Chambrey R, Bourgeois S, Meer E, Mucsi I, Rosivall L, Shull GE, Lorenz JN, Eladari D, Peti-Peterdi J (2008) Increased renal renin content in mice lacking the Na+/H+ exchanger NHE2. Am J Physiol Renal Physiol 294:F937-44

    Google Scholar 

  • Hao CM, Breyer MD (2007) Physiologic and pathophysiologic roles of lipid mediators in the kidney. Kidney Int 71:1105-15

    Google Scholar 

  • Harding P, Sigmon DH, Alfie ME, Huang PL, Fishman MC, Beierwaltes WH, Carretero OA (1997) Cyclooxygenase-2 mediates increased renal renin content induced by low-sodium diet. Hypertension 29:297-302

    Google Scholar 

  • Hardman JA, Hort YJ, Catanzaro DF, Tellam JT, Baxter JD, Morris BJ, Shine J (1984) Primary structure of the human renin gene. DNA 3:457-68

    Google Scholar 

  • Harris RC, McKanna JA, Akai Y, Jacobson HR, Dubois RN, Breyer MD (1994) Cyclooxygenase-2 is associated with the macula densa of rat kidney and increases with salt restriction. J Clin Invest 94:2504-10

    Google Scholar 

  • Hartner A, Goppelt-Struebe M, Hilgers KF (1998) Coordinate expression of cyclooxygenase-2 and renin in the rat kidney in renovascular hypertension. Hypertension 31:201-5

    Google Scholar 

  • Hartner A, Cordasic N, Goppelt-Struebe M, Veelken R, Hilgers KF (2003) Role of macula densacyclooxygenase-2 in renovascular hypertension. Am J Physiol Renal Physiol 284:F498-502

    Google Scholar 

  • Hautmann M, Friis UG, Desch M, Todorov V, Castrop H, Segerer F, Otto C, Schutz G, Schweda F (2007) Pituitary adenylate cyclase-activating polypeptide stimulates renin secretion via activation of PAC1 receptors. J Am Soc Nephrol 18:1150-6

    Google Scholar 

  • He XR, Greenberg SG, Briggs JP, Schnermann J (1995) Effects of furosemide and verapamil on the NaCl dependency of maculadensa-mediated renin secretion. Hypertension 26:137-42

    Google Scholar 

  • Henrich WL, Campbell WB (1984) Relationship between PG and beta-adrenergic pathways to renin release in rat renal cortical slices. AmJ Physiol 247:E343-8

    Google Scholar 

  • Henrich WL, Needleman P, Campbell WB (1986) Effect of atriopeptin III on renin release in vitro. Life Sci 39:993-1001

    Google Scholar 

  • Henrich WL, McAlister EA, Smith PB, Lipton J, Campbell WB (1987) Direct inhibitory effect of atriopeptin III on renin release in primate kidney. Life Sci 41:259-64

    Google Scholar 

  • Henrich WL, McAllister EA, Smith PB, Campbell WB (1988) Guanosine 3’,5’-cyclic monophosphate as a mediator of inhibition of renin release. Am J Physiol 255:F474-8

    Google Scholar 

  • Hirata Y, Ishii M, Sugimoto T, Matsuoka H, Ishimitsu T, Atarashi K, Miyata A, Kangawa K, Matsuo H (1987) Relationship between the renin-aldosterone system and atrial natriuretic polypeptide in rats. Clin Sci (Lond) 72:165-70

    Google Scholar 

  • Hirota N, Ichihara A, Koura Y, Hayashi M, Saruta T (2002) Phospholipase D contributes to transmural pressure control of proren in processing in juxtaglomerular cell. Hypertension 39:363-7

    Google Scholar 

  • Hiruma M, Ikemoto F, Yamamoto K (1986) Rat atrial natriuretic factor stimulates renin release from renal cortical slices. Eur J Pharmacol 125:151-3

    Google Scholar 

  • Höcherl K, Kammerl M, Kees F, Kramer BK, Grobecker HF, Kurtz A (2002a) Role of renal nerves in stimulation of renin, COX-2, and nNOS in rat renal cortex during salt deficiency. Am J Physiol Renal Physiol 282:F478-84

    Google Scholar 

  • Höcherl K, Kammerl MC, Schumacher K, Endemann D, Grobecker HF, Kurtz A (2002b) Role of prostanoids in regulation of therenin-angiotensin-aldosterone system by salt intake. Am J Physiol Renal Physiol 283:F294-301

    Google Scholar 

  • Holdaas H, DiBona GF, Kiil F(1981) Effect of low-level renal nerve stimulation on renin release from nonfiltering kidneys. Am J Physiol 241:F156-61

    Google Scholar 

  • Holmer S, Eckardt KU, LeHir M, Schricker K, Riegger G, Kurtz A (1993) Influence of dietary NaCl intake on renin gene expression in the kidneys and adrenal glands of rats. Pflugers Arch 425:62-7

    Google Scholar 

  • Holtwick R, Baba HA, Ehler E, Risse D, Vobeta M, Gehrmann J, Pierkes M, Kuhn M (2002) Left but not right cardiac hypertrophy in atrial natriuretic peptide receptor-deficient mice is prevented by angiotensin type 1receptor antagonist losartan. J Cardiovasc Pharmacol 40:725-34

    Google Scholar 

  • Hwan Seul K, Beyer EC (2000) Heterogeneous localization of connexin40 in the renal vasculature. Microvasc Res 59:140-8

    Google Scholar 

  • Ichihara A, Suzuki H, Murakami M, Naitoh M, Matsumoto A, Saruta T (1995) Interactions between angiotensin II and norepinephrine on renin release by juxtaglomerular cells. Eur J Endocrinol 133:569-77

    Google Scholar 

  • Ichihara A, Suzuki H, Miyashita Y, Naitoh M, Hayashi M, Saruta T (1999) Transmural pressure inhibits prorenin processing injuxtaglomerular cell. Am J Physiol 277:R220-8

    Google Scholar 

  • Ichihara A, Kobori H, Nishiyama A, Navar LG (2004) Renal renin-angiotensin system. Contrib Nephrol 143:117-30

    Google Scholar 

  • Imanishi M, Tsuji T, Nakamura S, Takamiya M (2001) Prostaglandin I2/E2 ratios in unilateral renovascular hypertension of different severities. Hypertension 38:23-9

    Google Scholar 

  • Imbs JL, Schmidt M, Schwartz J (1975) Effect of dopamineon renin secretion in the anesthetized dog. Eur J Pharmacol 33:151-7

    Google Scholar 

  • Ishimitsu T, Hirata Y, Matsuoka H, Ishii M, Sugimoto T, Kangawa K, Matsuo H (1992) In vivo and in vitro effects ofatrial natriuretic peptide on renin release. Clin Exp Pharmacol Physiol 19:711-6

    Google Scholar 

  • Itskovitz J, Bruneval P, Soubrier F, Thaler I, Corvol P, Sealey JE (1992) Localization of renin gene expression to monkey ovarian theca cells by in situ hybridization. J Clin Endocrinol Metab 75:1374-80

    Google Scholar 

  • Ito S, Carretero OA, Abe K, Beierwaltes WH, Yoshinaga K (1989) Effect of prostanoids on renin release from rabbit afferent arterioles with and without macula densa. Kidney Int 35:1138-44

    Google Scholar 

  • Itoh S, Carretero OA (1985) Role of the macula densa in renin release. Hypertension 7:I49-54

    Google Scholar 

  • Itoh S, Abe K, Nushiro N, Omata K, Yasujima M, Yoshinaga K (1987) Effect of atrial natriuretic factor on renin release in isolated afferent arterioles. Kidney Int 32:493-7

    Google Scholar 

  • Jackson EK, Gerkens JF, Brash AR, Branch RA (1982) Acute renal artery constriction increases renal prostaglandin I2 biosynthesis and renin release in the conscious dog. J Pharmacol Exp Ther 222:410-3

    Google Scholar 

  • Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112:519-33

    Google Scholar 

  • Jensen BL,Skott O (1996) Blockade of chloride channels by DIDS stimulates renin release and inhibits contraction of afferent arterioles. Am J Physiol 270:F718-27

    Google Scholar 

  • Jensen BL, Schmid C, Kurtz A(1996) Prostaglandins stimulate renin secretion and renin mRNA in mouse renal juxtaglomerular cells. Am J Physiol 271:F659-69

    Google Scholar 

  • Jensen BL, Kramer BK, Kurtz A (1997) Adrenomedullin stimulates renin release and renin mRNA in mouse juxtaglomerular granular cells. Hypertension 29:1148-55

    Google Scholar 

  • Jensen BL, Gambaryan S, Scholz H, Kurtz A (1998) KATP channels are not essential for pressure-dependent control of renin secretion. Pflugers Arch 435:670-7

    Google Scholar 

  • Jutras I, Reudelhuber TL (1999) Prorenin processing by cathepsin B in vitro and in transfected cells. FEBS Lett 443:48-52

    Google Scholar 

  • Kageyama S, Brown J (1990) Effect of atrial natriuretic peptide on renin release in rat isolated glomeruli. Biochem Biophys Res Commun 168:37-42

    Google Scholar 

  • Kammerl MC, Nusing RM, Richthammer W, Kramer BK, Kurtz A (2001a) Inhibition of COX-2 counteracts the effects of diuretics in rats. Kidney Int 60:1684-91

    Google Scholar 

  • Kammerl MC, Nusing RM, Schweda F, Endemann D, Stubanus M,Kees F, Lackner KJ, Fischereder M, Kramer BK (2001b) Low sodium andfurosemide-induced stimulation of the renin system in man is mediated bycyclooxygenase 2. Clin Pharmacol Ther 70:468-74

    Google Scholar 

  • Kaplan MR, Plotkin MD, Brown D, Hebert SC, Delpire E (1996) Expression of the mouse Na-K-2Cl cotransporter, mBSC2, in the terminal inner medullary collecting duct, the glomerular and extraglomerular mesangium, and the glomerular afferent arteriole. J Clin Invest 98:723-30

    Google Scholar 

  • Keeton TK, Campbell WB (1980) The pharmacologicalteration of renin release. Pharmacol Rev 32:81-227

    Google Scholar 

  • Kikkawa Y, Yamanaka N, Tada J, Kanamori N, Tsumura K,Hosoi K (1998) Prorenin processing and restricted endoproteolysis by mousetissue kallikrein family enzymes (mK1, mK9, mK13, and mK22). Biochim BiophysActa 1382:55-64

    Google Scholar 

  • Kim SM, Mizel D, Huang YG, Briggs JP, Schnermann J (2006) Adenosine as a mediator of macula densa-dependent inhibition of renin secretion. Am J Physiol Renal Physiol 290:F1016-23

    Google Scholar 

  • Kim SM, Chen L, Faulhaber-Walter R, Oppermann M, Huang Y, Mizel D, Briggs JP, Schnermann J (2007a) Regulation of renin secretion and expression in mice deficient in beta1- and beta2-adrenergicreceptors. Hypertension 50:103-9

    Google Scholar 

  • Kim SM, Chen L, Mizel D, Huang YG, Briggs JP, Schnermann J (2007b) Low plasma renin and reduced renin secretory responses to acute stimuli in conscious COX-2-deficient mice. Am J Physiol Renal Physiol 292:F415-22

    Google Scholar 

  • King JA, Lush DJ, Fray JC (1993) Regulation of renin processing and secretion: chemiosmotic control and novel secretory pathway. Am J Physiol 265:C305-20

    Google Scholar 

  • Kirchheim HR, Ehmke H, Hackenthal E, Lowe W, Persson P (1987) Autoregulation of renal blood flow, glomerular filtration rate and renin release in conscious dogs. Pflugers Arch 410:441-9

    Google Scholar 

  • Kirchner KA, Kotchen TA, Galla JH, Luke RG (1978) Importance of chloride for acute inhibition of renin by sodium chloride. Am J Physiol 235:F444-50

    Google Scholar 

  • Klar J, Sandner P, Muller MW, Kurtz A (2002) Cyclic AMP stimulates renin gene transcription in juxtaglomerular cells. Pflugers Arch 444:335-44

    Google Scholar 

  • Knoblich PR, Freeman RH, Villarreal D (1996) Pressure-dependent renin release during chronic blockade of nitric oxidesynthase. Hypertension 28:738-42

    Google Scholar 

  • Kobori H, Nangaku M, Navar LG, Nishiyama A (2007) The intrarenal renin-angiotensinsystem: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59:251-87

    Google Scholar 

  • Komlosi P, Peti-Peterdi J, Fuson AL, Fintha A, Rosivall L, Bell PD (2004) Macula densabasolateral ATP release is regulated by luminal [NaCl] and dietary salt intake. Am J Physiol Renal Physiol 286:F1054-8

    Google Scholar 

  • Kompanowska-Jezierska E, Wolff H, Kuczeriszka M, Gramsbergen JB,Walkowska A, Johns EJ, Bie P (2008) Renal nerves and nNOS: roles in natriuresisof acute isovolumetric sodium loading in conscious rats. Am J Physiol RegulIntegr Comp Physiol 294:R1130-9

    Google Scholar 

  • Krattinger N, Capponi A, Mazzolai L, Aubert JF, Caille D, Nicod P, Waeber G, Meda P, Haefliger JA (2007) Connexin 40 regulates renin production and blood pressure. Kidney Int 72:814-22

    Google Scholar 

  • Kuhn M (2005) Cardiac and intestinal natriuretic peptides: insights from genetically modified mice. Peptides 26:1078-85

    Google Scholar 

  • Kurtz A (1986) Transmembrane signalling of atrial natriuretic peptide in rat renal juxtaglomerular cells. Klin Wochenschr 64 Suppl 6:37-41

    Google Scholar 

  • Kurtz A (1989) Cellular control of renin secretion. Rev Physiol Biochem Pharmacol 113:1-40

    Google Scholar 

  • Kurtz A, Penner R (1989) Angiotensin II induces oscillations of intracellular calcium and blocks anomalous inward rectifying potassium current in mouse renal juxtaglomerular cells. Proc Natl Acad Sci USA 86:3423-7

    Google Scholar 

  • Kurtz A, Schweda F (2006) Osmolarity-induced renin secretion from kidneys: evidence for readily releasable renin pools. Am J Physiol Renal Physiol 290:F797-805

    Google Scholar 

  • Kurtz A, Wagner C (1998) Role of nitric oxide in the control of renin secretion. Am J Physiol 275:F849-62

    Google Scholar 

  • Kurtz A, Wagner C (1999) Cellular control of renin secretion. J Exp Biol 202:219-25

    Google Scholar 

  • Kurtz A, Pfeilschifter J, Bauer C (1984) Is renin secretion governed by the calcium permeability of the juxtaglomerular cell membrane? Biochem Biophys Res Commun 124:359-66

    Google Scholar 

  • Kurtz A, Della Bruna R, Pfeilschifter J, Bauer C (1986a) Effect of synthetic atrial natriuretic peptide on rat renal juxtaglomerular cells. J Hypertens Suppl 4:S57-60

    Google Scholar 

  • Kurtz A, Della Bruna R, Pfeilschifter J, Taugner R, Bauer C (1986b) Atrial natriuretic peptide inhibits renin release from juxtaglomerular cells by a cGMP-mediated process. Proc Natl Acad Sci USA 83:4769-73

    Google Scholar 

  • Kurtz A, Pfeilschifter J, Hutter A, Buhrle C, Nobiling R, Taugner R, Hackenthal E, Bauer C (1986c) Role of protein kinase C in inhibition of renin release caused by vasoconstrictors. Am J Physiol 250:C563-71

    Google Scholar 

  • Kurtz A, Della Bruna R, Pfeilschifter J, Bauer C (1988a) Role of cGMP as second messenger of adenosine in the inhibition of renin release. Kidney Int 33:798-803

    Google Scholar 

  • Kurtz A, Della Bruna R, Pratz J, Cavero I (1988b) Rat juxtaglomerular cells are endowed with DA-1 dopamine receptors mediating renin release. J Cardiovasc Pharmacol 12:658-63

    Google Scholar 

  • Kurtz A, Muff R, Born W, Lundberg JM, Millberg BI, Gnadinger MP, Uehlinger DE, Weidmann P, Hokfelt T, Fischer JA (1988c) Calcitonin gene-related peptide is a stimulator of renin secretion. J Clin Invest 82:538-43

    Google Scholar 

  • Kurtz A, Skott O, Chegini S, Penner R (1990) Lack of direct evidence for a functional role of voltage-operated calcium channels in juxtaglomerular cells. Pflugers Arch 416:281-7

    Google Scholar 

  • Kurtz A, Kaissling B, Busse R, Baier W (1991) Endothelial cells modulate renin secretion from isolated mouse juxtaglomerular cells. J Clin Invest 88:1147-54

    Google Scholar 

  • Kurtz A, Gotz KH, Hamann M, Kieninger M, Wagner C (1998a) Stimulation of renin secretion by NO donors is related to the cAMP pathway. Am J Physiol 274:F709-17

    Google Scholar 

  • Kurtz A, Gotz KH, Hamann M, Wagner C (1998b) Stimulation of renin secretion by nitric oxide is mediated by phosphodiesterase 3. Proc Natl Acad Sci U S A 95:4743-7

    Google Scholar 

  • Kurtz A, Hamann M, Götz K (2000) Role of potassium channels in the control of renin secretion from isolated perfused rat kidneys. Pflugers Arch 440:889-95

    Google Scholar 

  • Kurtz L, Schweda F, de Wit C, Kriz W, Witzgall R, Warth R, Sauter A, Kurtz A, Wagner C (2007) Lack of connexin 40 causes displacement of renin-producing cells from afferent arterioles to the extraglomerular mesangium. J Am Soc Nephrol18:1103-11

    Google Scholar 

  • Laframboise M, Reudelhuber TL, Jutras I, Brechler V, Seidah NG, Day R, Gross KW, Deschepper CF (1997) Prorenin activation and prohormone convertases in the mouse As4.1 cell line. Kidney Int51:104-9

    Google Scholar 

  • Leichtle A, Rauch U, Albinus M, Benohr P, Kalbacher H, Mack AF, Veh RW, Quast U, Russ U (2004) Electrophysiological and molecular characterization of the inward rectifier injuxtaglomerular cells from rat kidney. J Physiol 560:365-76

    Google Scholar 

  • Leung PS (2007) The physiology of a local renin-angiotensin system in the pancreas. J Physiol 580:31-7

    Google Scholar 

  • Leung PS, Sernia C (2003) The renin-angiotensin system and male reproduction: new functions for old hormones. J Mol Endocrino l30:263-70

    Google Scholar 

  • Lorenz JN, Kotchen TA, Ott CE (1990) Effect of Na and Cl infusion on loop function and plasma renin activity in rats. Am J Physiol 258:F1328-35

    Google Scholar 

  • Lorenz JN, Weihprecht H, Schnermann J, Skott O, Briggs JP (1991) Renin release from isolated juxtaglomerular apparatus depends on macula densa chloride transport. Am J Physiol 260:F486-93

    Google Scholar 

  • Loutzenhiser R, Chilton L, Trottier G (1997) Membrane potential measurements in renal afferent and efferent arterioles: actions of angiotensin II. Am J Physiol 273:F307-14

    Google Scholar 

  • Maack T, Marion DN, Camargo MJ, Kleinert HD, Laragh JH, Vaughan ED, Jr., Atlas SA (1984) Effects of auriculin (atrial natriuretic factor) on blood pressure, renal function, and therenin-aldosterone system in dogs. Am J Med 77:1069-75

    Google Scholar 

  • Mackins CJ, Kano S, Seyedi N, Schafer U, Reid AC, Machida T, Silver RB, Levi R (2006) Cardiac mast cell-derived renin promotes local angiotensin formation, norepinephrine release, and arrhythmias inischemia/reperfusion. J Clin Invest 116:1063-70

    Google Scholar 

  • Mann B, Hartner A, Jensen BL, Hilgers KF, Hocherl K, Kramer BK, Kurtz A (2001a) Acute upregulation of COX-2 by renal arterystenosis. Am J Physiol Renal Physiol 280:F119-25

    Google Scholar 

  • Mann B, Hartner A, Jensen BL, Kammerl M, Kramer BK, Kurtz A (2001b) Furosemide stimulates macula densa cyclooxygenase-2 expression in rats. Kidney Int 59:62-8

    Google Scholar 

  • Matsuba H, Watanabe T, Watanabe M, Ishii Y, Waguri S, Kominami E, Uchiyama Y (1989)Immunocytochemical localization of prorenin, renin, and cathepsins B, H, and Lin juxtaglomerular cells of rat kidney. J Histochem Cytochem 37:1689-97

    Google Scholar 

  • Matsusaka T, Nishimura H, Utsunomiya H, Kakuchi J, Niimura F, Inagami T, Fogo A, Ichikawa I (1996) Chimeric mice carrying ‘regional’ targeted deletion of the angiotensin type 1Areceptor gene. Evidence against the role for local angiotensin in the in vivo feedback regulation of renin synthesis in juxtaglomerular cells. J Clin Invest 98:1867-77

    Google Scholar 

  • Matzdorf C, Kurtz A, Hocherl K (2007) COX-2 activity determines the level of renin expression but is dispensable for acute upregulation of renin expression in rat kidneys. Am J Physiol Renal Physiol 292:F1782-90

    Google Scholar 

  • Melo LG,Veress AT, Chong CK, Pang SC, Flynn TG, Sonnenberg H (1998) Salt-sensitivehypertension in ANP knockout mice: potential role of abnormal plasma renin activity. Am J Physiol 274:R255-61

    Google Scholar 

  • Melo LG, Steinhelper ME, Pang SC, Tse Y, Ackermann U (2000) ANP in regulation of arterial pressure and fluid-electrolyte balance: lessons from genetic mouse models. Physiol Genomics 3:45-58

    Google Scholar 

  • Mercure C, Jutras I, Day R, Seidah NG, Reudelhuber TL (1996) Prohormone convertase PC5 is a candidate processing enzyme for prorenin in the human adrenal cortex. Hypertension 28:840-6

    Google Scholar 

  • Michelakis AM (1971)The effect of angiotensin on renin production and release in vitro. Proc Soc Exp Biol Med 138:1106-8

    Google Scholar 

  • Moe O, Tejedor A, Campbell WB, Alpern RJ, Henrich WL (1991) Effects of endothelin on in vitro renin secretion. Am J Physiol 260:E521-5

    Google Scholar 

  • Moe OW, Ujiie K, Star RA, Miller RT, Widell J, Alpern RJ, Henrich WL (1993) Renin expression in renal proximal tubule. J Clin Invest 91:774-9

    Google Scholar 

  • Moore PK, Bland-Ward PA (1996) 7-Nitroindazole: an inhibitor of nitric oxide synthase. Methods Enzymol 268:393-8

    Google Scholar 

  • Mundel P, Bachmann S, Bader M, Fischer A, Kummer W, Mayer B, Kriz W (1992) Expression of nitric oxide synthase in kidney macula densa cells. Kidney Int 42:1017-9

    Google Scholar 

  • Nabel C, Schweda F, Riegger GA, Kramer BK, Kurtz A (1999) Chloride channel blockers attenuate the inhibition of renin secretion by angiotensin II. Pflugers Arch 438:694-9

    Google Scholar 

  • Narumi S, Yasui T, Yoshizawa M, Kawamura M, Suzuki H, Nakane H, Saruta T (1987) Effects of atrial natriuretic peptide on renal function and renin release in the isolated perfused rat kidney. Jpn Heart J 28:221-7

    Google Scholar 

  • Nausch LW, Ledoux J, Bonev AD, Nelson MT, Dostmann WR (2008) Differential patterning of cGMP in vascular smooth muscle cells revealed by single GFP-linked biosensors. Proc Natl Acad Sci USA 105:365-70

    Google Scholar 

  • Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA 79:6712-6

    Google Scholar 

  • Neves FA, Duncan KG, Baxter JD (1996) Cathepsin B is a prorenin processing enzyme. Hypertension 27:514-7

    Google Scholar 

  • Nguyen G (2006) Renin/prorenin receptors. Kidney Int 69:1503-6

    Google Scholar 

  • Noble AR, Abu-Kishk RA, D’Aloia MA, Williams BC, Lush DJ (1994) Cyclic GMP-linked pathway for renin secretion. Kidney Int 46:1588-90

    Google Scholar 

  • O’Tierney PF, Komolova M, Tse MY, Adams MA, Pang SC (2008) Altered regulation of renal interstitial hydrostatic pressure and the renal renin-angiotensin system in the absence of atrial natriuretic peptide. J Hypertens 26:303-11

    Google Scholar 

  • Obana K, Naruse M, Naruse K, Sakurai H, Demura H, Inagami T, Shizume K (1985) Synthetic rat atrial natriuretic factor inhibits in vitro and in vivo renin secretion in rats. Endocrinology 117:1282-4

    Google Scholar 

  • Ogawa K, Yamasato M, Taniguchi K (1995) Exocytosis of secretory granules in the juxtaglomerular granular cells of kidneys. Anat Rec 243:336-46

    Google Scholar 

  • Oliver JA, Pinto J, Sciacca RR, Cannon PJ (1980) Increased renal secretion of norepinephrine and prostaglandin E2 during sodium depletion in the dog. J Clin Invest 66:748-56

    Google Scholar 

  • Onda T, Hashimoto Y, Nagai M, Kuramochi H, Saito S, Yamazaki H, Toya Y, Sakai I, Homcy CJ, Nishikawa K, Ishikawa Y (2001) Type-specific regulation of adenylyl cyclase. Selective pharmacological stimulation and inhibition of adenylyl cyclase isoforms. J Biol Chem 276:47785-93

    Google Scholar 

  • Opgenorth TJ, Burnett JC, Jr., Granger JP, Scriven TA (1986) Effects of atrial natriuretic peptide on renin secretion in nonfiltering kidney. Am J Physiol 250:F798-801

    Google Scholar 

  • Oppermann M, Mizel D, Huang G, Li C, Deng C, Theilig F, Bachmann S, Briggs J, Schnermann J, Castrop H (2006) Macula densa control of renin secretion and preglomerular resistance in mice with selective deletion of the B isoform of the Na,K,2Cl co-transporter. J Am Soc Nephrol 17:2143-52

    Google Scholar 

  • Oppermann M, Mizel D, Kim SM, Chen L, Faulhaber-Walter R, Huang Y, Li C, Deng C, Briggs J, Schnermann J, Castrop H (2007) Renal function in mice with targeted disruption of the A isoform of the Na-K-2Cl co-transporter. J Am Soc Nephrol 18:440-8

    Google Scholar 

  • Oppermann M, Friedman DJ, Faulhaber-Walter R, Mizel D, Castrop H, Enjyoji K, Robson SC, Schnermann J (2008) Tubuloglomerular feedback and renin secretion in NTPDase1/CD39-deficient mice. Am J Physiol Renal Physiol 294:F965-70

    Google Scholar 

  • Ortiz-Capisano MC, Ortiz PA, Garvin JL, Harding P, Beierwaltes WH (2007a) Expression and function of the calcium-sensing receptor in juxtaglomerular cells. Hypertension 50:737-43

    Google Scholar 

  • Ortiz-Capisano MC, Ortiz PA, Harding P, Garvin JL, Beierwaltes WH (2007b) Adenylyl cyclase isoform v mediates renin release from juxtaglomerular cells. Hypertension 49:618-24

    Google Scholar 

  • Ortiz-Capisano MC, Ortiz PA, Harding P, Garvin JL, Beierwaltes WH (2007c) Decreased intracellular calcium stimulates renin release via calcium-inhibitable adenylyl cyclase. Hypertension 49:162-9

    Google Scholar 

  • Osswald H, Nabakowski G, Hermes H (1980) Adenosine as a possible mediator of metabolic control of glomerular filtration rate. Int J Biochem 12:263-7

    Google Scholar 

  • Pandey KN, Maki M, Inagami T (1984) Detection of renin mRNA in mouse testis by hybridization with renin cDNA probe. Biochem Biophys Res Commun 125:662-7

    Google Scholar 

  • Paul M, Wagner D, Metzger R, Ganten D, Lang RE, Suzuki F, Murakami K, Burbach JH, Ludwig G (1988) Quantification of renin mRNA in various mouse tissues by a novel solution hybridization assay. J Hypertens 6:247-52

    Google Scholar 

  • Paul M, Wagner J, Dzau VJ (1993) Gene expression of the renin-angiotensin system in human tissues. Quantitative analysis by the polymerase chain reaction. J Clin Invest 91:2058-64

    Google Scholar 

  • Paul M, Poyan Mehr A, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev 86:747-803

    Google Scholar 

  • Peter S (1976) Ultrastructural studies on the secretory process in the epithelioid cells of the juxtaglomerular apparatus. Cell Tissue Res 168:45-53

    Google Scholar 

  • Peti-Peterdi J (2006) Calcium wave of tubuloglomerular feedback. Am J Physiol Renal Physiol 291:F473-80

    Google Scholar 

  • Peti-Peterdi J, Chambrey R, Bebok Z, Biemesderfer D, St John PL, Abrahamson DR, Warnock DG, Bell PD (2000) Macula densa Na+/H+ exchange activities mediated by apical NHE2 and basolateral NHE4 isoforms. Am J Physiol Renal Physiol 278:F452-63

    Google Scholar 

  • Peti-Peterdi J, Komlosi P, Fuson AL, Guan Y, Schneider A, Qi Z, Redha R, Rosivall L, Breyer MD, Bell PD (2003) Luminal NaCl delivery regulates basolateral PGE2 release from macula densa cells. J Clin Invest 112:76-82

    Google Scholar 

  • Peti-Peterdi J, Fintha A, Fuson AL, Tousson A, Chow RH (2004) Real-time imaging of renin release in vitro. Am J Physiol Renal Physiol 287:F329-35

    Google Scholar 

  • Pham I, Sediame S, Maistre G, Roudot-Thoraval F, Chabrier PE, Carayon A, Adnot S (1997) Renal and vascular effects of C-type and atrial natriuretic peptides in humans. Am J Physiol 273:R1457-64

    Google Scholar 

  • Pieruzzi F, Munforti C, Di Blasio A, Busca G, Dadone V, Zanchetti A, Golin R (2002) Neuronal nitric oxide synthase and renin stimulation by sodium deprivation are dependent on the renal nerves. J Hypertens 20:2039-45

    Google Scholar 

  • Piggott LA, Hassell KA, Berkova Z, Morris AP, Silberbach M, Rich TC (2006) Natriuretic peptides and nitric oxide stimulate cGMP synthesis in different cellular compartments. J Gen Physiol 128:3-14

    Google Scholar 

  • Porter JP, Reid IA, Said SI, Ganong WF (1982) Stimulation of renin secretion by vasoactive intestinal peptide. Am J Physiol 243:F306-10

    Google Scholar 

  • Porter JP, Said SI, Ganong WF (1983) Vasoactive intestinal peptide stimulates renin secretion in vitro: evidence for a direct action of the peptide on the renal juxtaglomerular cells. Neuroendocrinology 36:404-8

    Google Scholar 

  • Prieto-Carrasquero MC, Harrison-Bernard LM, Kobori H, Ozawa Y, Hering-Smith KS, Hamm LL, Navar LG (2004) Enhancement of collecting duct renin in angiotensin II-dependent hypertensive rats. Hypertension 44:223-9

    Google Scholar 

  • Prieto-Carrasquero MC, Kobori H,Ozawa Y, Gutierrez A, Seth D, Navar LG (2005) AT1 receptor-mediated enhancement of collecting duct renin in angiotensin II-dependent hypertensive rats. Am J Physiol Renal Physiol 289:F632-7

    Google Scholar 

  • Rakugi H, Nakamaru M, Saito H, Higaki J, Ogihara T (1988) Endothelin inhibits renin release from isolated rat glomeruli. Biochem Biophys Res Commun 155:1244-7

    Google Scholar 

  • Rasch R, Jensen BL, Nyengaard JR, Skott O (1998) Quantitative changes in rat renin secretory granules after acute and chronic stimulation of the renin system. Cell Tissue Res 292:563-71

    Google Scholar 

  • Re RN (2004) Tissue renin angiotensin systems. Med Clin North Am 88:19-38

    Google Scholar 

  • Reid IA, Chou L (1995) Effect of blockade of nitric oxide synthesis on the renin secretory response to frusemide in conscious rabbits. Clin Sci (Lond) 88:657-63

    Google Scholar 

  • Reinecke M, Forssmann WG (1988) Neuropeptide (neuropeptide Y, neurotensin, vasoactive intestinal polypeptide, substance P, calcitonin gene-related peptide, somatostatin) immunohistochemistry and ultrastructure of renal nerves. Histochemistry 89:1-9

    Google Scholar 

  • Ren Y, Arima S, Carretero OA, Ito S (2002) Possible role of adenosine in macula densa control of glomerular hemodynamics. Kidney Int 61:169-76

    Google Scholar 

  • Reudelhuber TL (2005) The renin-angiotensin system: peptides and enzymes beyond angiotensin II. Curr Opin Nephrol Hypertens 14:155-9

    Google Scholar 

  • Richards AM, Tonolo G, Montorsi P, Finlayson J, Fraser R, Inglis G, Towrie A, Morton JJ (1988) Low dose infusions of 26- and 28-amino acid human atrial natriuretic peptides in normal man. J Clin Endocrinol Metab 66:465-72

    Google Scholar 

  • Richter CM, Godes M, Wagner C, Maser-Gluth C, Herzfeld S, Dorn M, Priem F, Slowinski T, Bauer C, Schneider W, Neumayer HH, Kurtz A, Hocher B (2004) Chronic cyclooxygenase-2 inhibition does not alter blood pressure and kidney function in renovascular hypertensive rats. J Hypertens 22:191-8

    Google Scholar 

  • Rodriguez-Puyol D, Arriba G, Blanchart A, Santos JC, Caramelo C, Fernandez-Cruz A, Hernando L, Lopez-Novoa JM (1986) Lack of a direct regulatory effect of atrial natriuretic factor on prostaglandins and renin release by isolated rat glomeruli. Biochem Biophys Res Commun 138:496-501

    Google Scholar 

  • Rodriguez F, Llinas MT, Gonzalez JD, Rivera J, Salazar FJ (2000) Renal changes induced by a cyclooxygenase-2 inhibitor during normal and low sodium intake. Hypertension 36:276-81

    Google Scholar 

  • Rohrwasser A, Morgan T, Dillon HF, Zhao L, Callaway CW, Hillas E, Zhang S, Cheng T, Inagami T, Ward K, Terreros DA, Lalouel JM (1999) Elements of a paracrine tubular renin-angiotensin system along the entire nephron. Hypertension 34:1265-74

    Google Scholar 

  • Rohrwasser A, Ishigami T, Gociman B, Lantelme P, Morgan T, Cheng T, Hillas E, Zhang S, Ward K, Bloch-Faure M, Meneton P, Lalouel JM (2003) Renin and kallikrein in connecting tubule of mouse. Kidney Int 64:2155-62

    Google Scholar 

  • Russ U, Rauch U, Quast U (1999) Pharmacological evidence for a KATP channel in renin-secreting cells from rat kidney. J Physiol 517 (Pt 3):781-90

    Google Scholar 

  • Ryan GB, Alcorn D, Coghlan JP, Hill PA, Jacobs R (1982) Ultrastructural morphology of granule release from juxtaglomerular myoepithelioid and peripolar cells. Kidney Int Suppl 12:S3-8

    Google Scholar 

  • Ryan MJ, Gross KW, Hajduczok G (2000) Calcium-dependent activation of phospholipase C by mechanical distension in renin-expressing As4.1 cells. Am J Physiol Endocrinol Metab 279:E823-9

    Google Scholar 

  • Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC (2003) Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 83:1359-400

    Google Scholar 

  • Salazar FJ, Fiksen-Olsen MJ, Opgenorth TJ, Granger JP, Burnett JC, Jr., Romero JC (1986) Renal effects of ANP without changes in glomerular filtration rate and blood pressure. Am J Physiol 251:F532-6

    Google Scholar 

  • Sällström J, Carlström M, Jensen BL, Skott O, Brown RD, Persson AE (2008) Neuronal nitric oxide synthase-deficient mice have impaired renin release but normal blood pressure. Am J Hypertens 21:111-6

    Google Scholar 

  • Saussine C, Judes C, Massfelder T, Musso MJ, Simeoni U, Hannedouche T, Helwig JJ (1993) Stimulatory action of parathyroid hormone on renin secretion in vitro: a study using isolated rat kidney, isolated rabbit glomeruli and superfused dispersed rat juxtaglomerular cells. Clin Sci (Lond) 84:11-9

    Google Scholar 

  • Schnermann J, Levine DZ (2003) Paracrine factors in tubuloglomerular feedback: adenosine, ATP, and nitric oxide. Annu Rev Physiol 65:501-29

    Google Scholar 

  • Schnermann J, Weihprecht H, Briggs JP (1990) Inhibition of tubuloglomerular feedback during adenosine1 receptor blockade. Am J Physiol 258:F553-61

    Google Scholar 

  • Scholz H, Kurtz A (1993) Involvement of endothelium-derived relaxing factor in the pressure control of renin secretion from isolated perfused kidney. J Clin Invest 91:1088-94

    Google Scholar 

  • Scholz H, Kurtz A (1995) Differential regulation of cytosolic calcium between afferent arteriolar smooth muscle cells from mouse kidney. Pflugers Arch 431:46-51

    Google Scholar 

  • Scholz H, Vogel U, Kurtz A (1993) In terrelation between baroreceptor and macula densa mechanisms in the control of renin secretion. J Physiol 469:511-24

    Google Scholar 

  • Scholz H, Hamann M, Gotz KH, Kurtz A (1994) Role of calcium ions in the pressure control of renin secretion from the kidneys. Pflugers Arch 428:173-8

    Google Scholar 

  • Schricker K, Kurtz A (1993) Liberators of NO exert a dual effect on renin secretion from isolated mouse renal juxtaglomerular cells. Am J Physiol 265:F180-6

    Google Scholar 

  • Schricker K, Kurtz A (1996) Blockade of nitric oxide formation inhibits the stimulation of the renin system by a low salt intake. Pflugers Arch 432:187-91

    Google Scholar 

  • Schricker K, Della Bruna R, Hamann M, Kurtz A (1994a) Endothelium derived relaxing factor is involved in the pressure control of renin gene expression in the kidney. Pflugers Arch 428:261-8

    Google Scholar 

  • Schricker K, Hamann M, Kaissling B, Kurtz A (1994b) Renal autacoids are involved in the stimulation of renin gene expression by low perfusion pressure. Kidney Int 46:1330-6

    Google Scholar 

  • Schricker K, Hamann M, Kaissling B, Kurtz A (1994c) Role of the macula densa in the control of renal renin gene expression in two-kidney/one-clip rats. Pflugers Arch 427:42-6

    Google Scholar 

  • Schricker K, Potzl B, Hamann M, Kurtz A (1996) Coordinate changes of renin and brain-type nitric-oxide-synthase (b-NOS) mRNA levels in rat kidneys. Pflugers Arch 432:394-400

    Google Scholar 

  • Schweda F, Kurtz A (2004) Cellular mechanism of renin release. Acta Physiol Scand 181:383-90

    Google Scholar 

  • Schweda F, Riegger GA, Kurtz A, Kramer BK (2000) Store-operated calcium influx inhibits renin secretion. Am J Physiol Renal Physiol 279:F170-6

    Google Scholar 

  • Schweda F, Wagner C, Kramer BK, Schnermann J, Kurtz A (2003) Preserved macula densa-dependent renin secretion in A1 adenosine receptor knockout mice. Am J Physiol Renal Physiol 284:F770-7

    Google Scholar 

  • Schweda F, Kammerl M, Wagner C, Kramer BK, Kurtz A (2004a) Upregulation of macula densa cyclooxygenase-2 expression is not dependent on glomerular filtration. Am J Physiol Renal Physiol 287:F95-101

    Google Scholar 

  • Schweda F, Klar J, Narumiya S, Nusing RM, Kurtz A (2004b) Stimulation of renin release by prostaglandin E2 is mediated by EP2 and EP4 receptors in mouse kidneys. Am J Physiol Renal Physiol 287:F427-33

    Google Scholar 

  • Schweda F, Segerer F, Castrop H, Schnermann J, Kurtz A (2005) Blood pressure-dependent inhibition of renin secretion requires A1 adenosine receptors. Hypertension 46:780-6

    Google Scholar 

  • Schweda F, Friis U, Wagner C, Skott O, Kurtz A (2007) Renin release. Physiology (Bethesda) 22:310-9

    Google Scholar 

  • Sharp MG, Fettes D, Brooker G, Clark AF, Peters J, Fleming S, Mullins JJ (1996) Targeted inactivation of the Ren-2 gene in mice. Hypertension 28:1126-31

    Google Scholar 

  • Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O (1996) Elevated blood pressures in mice lacking endothelial nitric oxide synthase.Proc Natl Acad Sci USA 93:13176-81

    Google Scholar 

  • Shi SJ, Nguyen HT, Sharma GD, Navar LG, Pandey KN (2001) Genetic disruption of atrial natriuretic peptide receptor-A alters renin and angiotensin II levels. Am J Physiol Renal Physiol 281:F665-73

    Google Scholar 

  • Sigmund CD, Gross KW (1991) Structure, expression, and regulation of the murine renin genes. Hypertension 18:446-57

    Google Scholar 

  • Silver MA (2006) The natriuretic peptide system: kidney and cardiovascular effects. Curr Opin Nephrol Hypertens 15:14-21

    Google Scholar 

  • Singh I, Grams M, Wang WH, Yang T, Killen P, Smart A, Schnermann J, Briggs JP (1996)Coordinate regulation of renal expression of nitric oxide synthase, renin, and angiotensinogen mRNA by dietary salt. Am J Physiol 270:F1027-37

    Google Scholar 

  • Siragy HM, Linden J (1996) Sodium intake markedly alters renal interstitial fluid adenosine. Hypertension 27:404-7

    Google Scholar 

  • Skott O (1986) Episodic release of renin from single isolated superfused rat afferent arterioles. Pflugers Arch 407:41-5

    Google Scholar 

  • Skott O, Briggs JP (1987) Direct demonstration of macula densa-mediated renin secretion. Science 237:1618-20

    Google Scholar 

  • Smyth JT, Dehaven WI, Jones BF, Mercer JC, Trebak M, Vazquez G, Putney JW, Jr. (2006) Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP. Biochim Biophys Acta 1763:1147-60

    Google Scholar 

  • Söhl G, Willecke K (2004) Gap junctions and the connexin protein family. Cardiovasc Res 62:228-32

    Google Scholar 

  • Stichtenoth DO, Marhauer V, Tsikas D, Gutzki FM, Frolich JC (2005) Effects of specific COX-2-inhibition on renin release and renal and systemic prostanoid synthesis in healthy volunteers. Kidney Int 68:2197-207

    Google Scholar 

  • Struthers AD, Anderson JV, Payne N, Causon RC, Slater JD, Bloom SR (1986) The effect of atrial natriuretic peptide on plasma renin activity, plasma aldosterone, and urinary dopamine in man. Eur J Clin Pharmacol 31:223-6

    Google Scholar 

  • Sun D, Samuelson LC, Yang T, Huang Y, Paliege A, Saunders T, Briggs J, Schnermann J (2001) Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci USA 98:9983-8

    Google Scholar 

  • Takagi M, Franco-Saenz R, Mulrow PJ (1988a) Effect of atrial natriuretic peptide on renin release in a superfusion system of kidney slices and dispersed juxtaglomerular cells. Endocrinology 122:1437-42

    Google Scholar 

  • Takagi M, Matsuoka H, Atarashi K, Yagi S (1988b) Endothelin: a new inhibitor of renin release. Biochem Biophys Res Commun 157:1164-8

    Google Scholar 

  • Takahashi N, Chernavvsky DR, Gomez RA, Igarashi P, Gitelman HJ, Smithies O (2000) Uncompensated polyuria in a mouse model of Bartter’s syndrome. Proc Natl Acad Sci USA 97:5434-9

    Google Scholar 

  • Takenaka T, Inoue T, Kanno Y, Okada H, Meaney KR, Hill CE, Suzuki H (2008) Expression and role of connexins in the rat renal vasculature. Kidney Int 73:415-22

    Google Scholar 

  • Tan DY, Meng S, Manning RD, Jr. (1999) Role of neuronal nitric oxide synthase in Dahl salt-sensitive hypertension. Hypertension 33:456-61

    Google Scholar 

  • Taugner R, Hackenthal E (1988) On the character of the secretory granules in juxtaglomerular epithelioid cells. Int Rev Cytol 110:93-131

    Google Scholar 

  • Taugner R, Schiller A, Kaissling B, Kriz W (1978) Gap junctional coupling between the JGA and the glomerular tuft. Cell Tissue Res 186:279-85

    Google Scholar 

  • Taugner R, Hackenthal E, Inagami T, Nobiling R, Poulsen K (1982) Vascular and tubular renin in the kidneys of mice. Histochemistry 75:473-84

    Google Scholar 

  • Taugner R, Buhrle CP, Nobiling R(1984a) Ultrastructural changes associated with renin secretion from the juxtaglomerular apparatus of mice. Cell Tissue Res 237:459-72

    Google Scholar 

  • Taugner R, Kirchheim H, Forssmann WG (1984b) Myoendothelial contacts in glomerular arterioles and in renal interlobular arteries of rat, mouse and Tupaia belangeri. Cell Tissue Res 235:319-25

    Google Scholar 

  • Taugner R, Nobiling R, Metz R, Taugner F, Buhrle C, Hackenthal E (1988) Hypothetical interpretation of the calcium paradox in renin secretion. Cell Tissue Res 252:687-90

    Google Scholar 

  • Tharaux PL, Dussaule JC, Pauti MD, Vassitch Y, Ardaillou R, Chatziantoniou C (1997) Activation of renin synthesis is dependent on intact nitric oxide production. Kidney Int 51:1780-7

    Google Scholar 

  • Thomson S, Bao D, Deng A, Vallon V (2000) Adenosine formed by 5’-nucleotidase mediates tubuloglomerular feedback. J Clin Invest 106:289-98

    Google Scholar 

  • Thrasher TH (1994) Baroreceptor regulation of vasopressin and renin secretion: low-pressure versus high-pressure receptors. Front Neuroendocrinol 15:157-96

    Google Scholar 

  • Thurau K, Schnermann J (1965) [The sodium concentration in the macula densa cells as a regulating factor for glomerular filtration (micropuncture experiments).]. Klin Wochenschr 43:410-3

    Google Scholar 

  • Tigerstedt R, Bergmann P (1898) Niere und Kreislauf. Vol 8. 223-271

    Google Scholar 

  • Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275:33238-43

    Google Scholar 

  • Tkacs NC, Kim M, Denzon M, Hargrave B, Ganong WF (1990) Pharmacological evidence for involvement of the sympathetic nervous system in the increase in renin secretion produced by a low sodium diet in rats. Life Sci 47:2317-22

    Google Scholar 

  • Toffelmire EB, Slater K, Corvol P, Menard J, Schambelan M (1989) Response of plasma prorenin and active renin to chronic and acute alterations of renin secretion in normal humans. Studies using a direct immunoradiometric assay. J Clin Invest 83:679-87

    Google Scholar 

  • Tojo A, Madsen KM, Wilcox CS (1995) Expression of immunoreactive nitric oxide synthase isoforms in rat kidney. Effects of dietary salt and losartan. Jpn Heart J 36:389-98

    Google Scholar 

  • Tomura Y, Hisa H, Satoh S (1990) Effects of atrial natriuretic peptide on phenylephrine-induced renin release in dogs. Clin Exp Pharmacol Physiol 17:381-4

    Google Scholar 

  • Ujiie K, Yuen J, Hogarth L, Danziger R, Star RA (1994) Localization and regulation of endothelial NO synthase mRNA expression in rat kidney. Am J Physiol 267:F296-302

    Google Scholar 

  • Vander AJ (1968) Direct effects of prostaglandin on renal function and renin release in anesthetized dog. Am J Physiol 214:218-21

    Google Scholar 

  • Vander AJ, Geelhoed GW (1965) Inhibition of renin secretion by angiotensin. II. Proc Soc Exp Biol Med1 20:399-403

    Google Scholar 

  • Vandongen R, Peart WS, Boyd GW(1973) Adrenergic stimulation of renin secretion in the isolated perfused rat kidney. Circ Res 32:290-6

    Google Scholar 

  • Veerappan A, Reid AC, Estephan R, O’Connor N, Thadani-Mulero M, Salazar-Rodriguez M, Levi R, Silver RB (2008) Mast cell renin and a local renin-angiotensin system in the airway: Role in bronchoconstriction. Proc Natl Acad Sci USA 105:1315-20

    Google Scholar 

  • Vikse A, Kiil F (1985) Enhancement of renal prostaglandin E2 and renin release by autoregulatory dilation of preglomerular vessels in dogs. Ren Physiol 8:169-78

    Google Scholar 

  • Vikse A, Bugge J, Dahl E, Kiil F (1985) Dissociation between renal prostaglandin E2 and renin release. Effects of glucagon, dopamine and cyclic AMP in dogs. Acta Physiol Scand 125:619-26

    Google Scholar 

  • Villarreal D, Freeman RH, Davis JO, Verburg KM, Vari RC (1986) Renal mechanisms for suppression of renin secretion by atrial natriuretic factor. Hypertension 8:II28-35

    Google Scholar 

  • Wagner C (2008) Function of connexins in the renal circulation. Kidney Int 73:547-55

    Google Scholar 

  • Wagner C, Kurtz A (1998) Regulation of renal renin release. Curr Opin Nephrol Hypertens 7:437-41

    Google Scholar 

  • Wagner C, Pfeifer A, Ruth P, Hofmann F, Kurtz A (1998) Role of cGMP-kinase II in the control of renin secretion and renin expression. J Clin Invest 102:1576-82

    Google Scholar 

  • Wagner C, Hinder M, Kramer BK, Kurtz A (1999) Role of renal nerves in the stimulation of the renin system by reduced renal arterial pressure. Hypertension 34:1101-5

    Google Scholar 

  • Wagner C, Godecke A, Ford M, Schnermann J, Schrader J, Kurtz A (2000) Regulation of renin gene expression in kidneys of eNOS- and nNOS-deficient mice. Pflugers Arch 439:567-72

    Google Scholar 

  • Wagner C, de Wit C, Kurtz L, Grunberger C, Kurtz A, Schweda F (2007) Connexin40 is essential for the pressure control of renin synthesis and secretion. Circ Res 100:556-63

    Google Scholar 

  • Wang JL, Cheng HF, Harris RC (1999) Cyclooxygenase-2 inhibition decreases renin content and lowers blood pressure in a model of renovascular hypertension. Hypertension 34:96-101

    Google Scholar 

  • Wang PH, Do YS, Macaulay L, Shinagawa T, Anderson PW, Baxter JD, Hsueh WA (1991) Identification of renal cathepsin B as a human prorenin-processing enzyme. J Biol Chem 266:12633-8

    Google Scholar 

  • Wang T, Brown MJ (2004) Differential expression of adenylyl cyclase subtypes in human cardiovascular system. Mol Cell Endocrinol 223:55-62

    Google Scholar 

  • Watkins BE, Davis JO, Lohmeier TE, Freeman RH (1976) Intrarenal site of action of calcium on renin secretion in dogs. Circ Res 39:847-53

    Google Scholar 

  • Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759-72

    Google Scholar 

  • Weihprecht H, Lorenz JN, Schnermann J, Skott O, Briggs JP (1990) Effect of adenosine1-receptor blockade on renin release from rabbit isolated perfused juxtaglomerular apparatus. J Clin Invest 85:1622-8

    Google Scholar 

  • Weinberger MH, Aoi W, Henry DP (1975) Direct effect of beta-adrenergic stimulation on renin release by the rat kidney slice in vitro. Circ Res 37:318-24

    Google Scholar 

  • Wilcox CS, Welch WJ, Murad F, Gross SS, Taylor G, Levi R, Schmidt HH (1992) Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci USA 89:11993-7

    Google Scholar 

  • Wilcox CS, Welch WJ, Schreiner GF, Belardinelli L (1999) Natriuretic and diuretic actions of a highly selective adenosine A1 receptor antagonist. J Am Soc Nephrol 10:714-20

    Google Scholar 

  • Yang T, Endo Y, Huang YG, Smart A, Briggs JP, Schnermann J (2000a) Renin expression in COX-2-knockout mice on normal or low-salt diets. Am J Physiol Renal Physiol 279:F819-25

    Google Scholar 

  • Yang T, Park JM, Arend L, Huang Y, Topaloglu R, Pasumarthy A, Praetorius H, Spring K, Briggs JP, Schnermann J (2000b) Low chloride stimulation of prostaglandin E2 release and cyclooxygenase-2 expression in a mouse macula densa cell line. J Biol Chem 275:37922-9

    Google Scholar 

  • Yao J, Suwa M, Li B, Kawamura K, Morioka T, Oite T (2003) ATP-dependent mechanism for coordination of intercellular Ca2+ signaling and renin secretion in rat juxtaglomerular cells. Circ Res 93:338-45

    Google Scholar 

  • Yokosawa N, Takahashi N, Inagami T, Page DL (1979) Isolation of completely inactive plasma prorenin and its activation by kallikreins. A possible new link between renin and kallikrein. Biochim Biophys Acta 569:211-9

    Google Scholar 

  • Zhang J, Hill CE (2005) Differential connexin expression in preglomerular and postglomerular vasculature: accentuation during diabetes. Kidney Int 68:1171-85

    Google Scholar 

  • Zhang Y, Morgan T (1994) Role of the macula densa in renin synthesis and secretion. Am J Hypertens 7:448-52

    Google Scholar 

  • Zou AP, Wu F, Li PL, Cowley AW, Jr. (1999) Effect of chronic salt loading on adenosine metabolism and receptor expression in renal cortex and medulla in rats. Hypertension 33:511-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Schweda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schweda, F., Kurtz, A. (2009). Regulation of Renin Release by Local and Systemic Factors. In: Amara, S., et al. Reviews of Physiology, Biochemistry and Pharmacology 161. Reviews of Physiology, Biochemistry and Pharmacology, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/112_2008_1

Download citation

Publish with us

Policies and ethics