Skip to main content

Biodiversity in Production of Antibiotics and Other Bioactive Compounds

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 147))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Newman DJ, Cragg GM (2009) Microbial anti tumor drugs: natural products of microbial origin as anticancer agents. Curr Opin Investig Drugs 10(12):1280–1296

    CAS  Google Scholar 

  2. Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16

    Article  CAS  Google Scholar 

  3. Alan HL, Qiong Y, Karen AL, Susan AF, William FB III, Roger JS, Anthony JT (2008) Structural diversity of organic chemistry. A scaffold analysis of the CAS registry. J Org Chem 73:444–4451

    Google Scholar 

  4. DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, Martinez A, Sulli-van MB, Ed-wards R, Brito BR, Chisholm SW, Karl DM (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503

    Article  CAS  Google Scholar 

  5. Simon C, Daniel R (2009) Achievements and new knowledge unravelled by metagenomic approaches. Appl Microbiol Biotechnol 85:265–276

    Article  CAS  Google Scholar 

  6. Gullo VP, McAlpine J, Lam KS, Baker D, Petersen F (2006) Drug discovery from natural products. J Ind Microbiol Biotechnol 33:523–531

    Article  CAS  Google Scholar 

  7. Cragg GM, Newman DJ (2013) Natural products: a continuous source of novel drug leads. Biochem Biophys Acta 1830(6):3670–3695

    Article  CAS  Google Scholar 

  8. Molinari G (2009) Natural products in drug discovery: present status and perspectives. Adv Exp Med Biol 655:13–27

    Article  CAS  Google Scholar 

  9. Raiijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424

    Article  Google Scholar 

  10. Jimeno J, Faircloth G, Fernández Sousa-Faro JM, Scheuer P, Rinehart K (2004) New marine derived anticancer therapeutics a journey from the sea to clinical trials. Mar Drugs 1:14–29

    Article  Google Scholar 

  11. Donadio S, Brandi L, Monsiardini P, Sosio M, Gualerzi CO (2007) Novel assays and novel strains-promising routes to new antibiotics? Expert Opin Drug Discov 2(6):789–798

    Article  CAS  Google Scholar 

  12. Dondero NC, Scotti T (1957) Excretion by streptomycetes of factors causing formation of aerial hyphae by old cultures. J Bacteriol 73:584–585

    CAS  Google Scholar 

  13. Waksman SA (1940) On the classification of Actinomycetes. J Bacteriol 39(5):549–558

    CAS  Google Scholar 

  14. Williams ST, Goodfellow M, Alderson G (1989) Genus Streptomyces Waksman and Henrici 1943, 339AL. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore, pp 2452–2492

    Google Scholar 

  15. Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813

    CAS  Google Scholar 

  16. Buchanan RE, Gibbons NE (1974) Bergey’s manual of determinative bacteriology, vol 8. The Williams and Wilkins Co., Baltimore, pp 747–842

    Google Scholar 

  17. Korn-Wendisch F, Kutzner HJ (1992) The family Streptomycetaceae. In: Balows A, Trooper HG, Dworkin M,Harder W, Schleifer KH (eds) The prokaryotes, a handbook on the biology of bacteria: ecophysiology, isolation, identification, application, vol 1, 2nd edn. Springer, New York, pp 921–995

    Google Scholar 

  18. http://taxonomicon.taxonomy.nl/TaxonTree.aspx. Accessed 13 July 2013

  19. Mahajan GB, Balachandran L (2012) Antibacterial agents from actinomycetes—a review. Front Biosci (Elite Ed) 4:240–253

    Article  Google Scholar 

  20. http://chem.sis.nlm.nih.gov/chemidplus/cas/4696-76-8. Accessed 13 July 2013

  21. Ketaki B, Majumdar SK (1973) Utilization of carbon and nitrogen sources by Streptomyces kanamyceticus for kanamycin production. Antimicrob Agents Chemother 4(1):6–10

    Article  Google Scholar 

  22. Gonzalez R, Isla L, Obregon AAM, Escalante L, Sanchez S (1995) Gentamicin formation in Micromonospora purpurea: stimulatory effect of ammonium. J Antibiot 48(6):479–839

    Article  CAS  Google Scholar 

  23. http://www.drugs.com/mtm/neomycin.html. Accessed 25 Aug 2013

  24. Kupferberg AB, Styles H, Singher HO, Selman AW (1950) The production of Streptocin by different strains of Streptomyces griseus. J Bacteriol 59(4):523–526

    CAS  Google Scholar 

  25. Waksman SA (1952) Streptomycin: background, isolation, properties and utilization, nobel lecture. Elsevier, Amsterdam, pp 370–388

    Google Scholar 

  26. Wongtavatchai J, McLean JG, Ramos F, Arnold D (2004) Chloramphenicol. whqldoc.who.int/publications/…/9241660538_chloramphenicol.pdf

  27. Steffensky M, Mühlenweg A, Wang ZX, Li SM, Heide L (2000) Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891. Antimicrob Agents Chemother 44(5):1214–1222

    Article  CAS  Google Scholar 

  28. From the Centers for Disease Control and Prevention (2001) Update on spectinomycin availability in the United States. JAMA 286(11):1308–1309

    Google Scholar 

  29. Donald MR, Selman AW (1948) Grisein, an antibiotic produced by certain strains of Streptomyces griseus. J Bacteriol 55(5):739–752

    Google Scholar 

  30. Bryan A, Dorothy CH, Viswamitra MA (1970) The structure of thiostrepton. Nature 225:233–235

    Article  Google Scholar 

  31. Spizek J, Rezanka T (2004) Lincomycin, cultivation of producing strains and biosynthesis. Appl Microbiol Biotechnol 63(5):510–519

    Article  CAS  Google Scholar 

  32. http://www.merck.com/mmpe/lexicomp/clindamycin.html. Accessed 25 Aug 2013

  33. Jonker HRA, Baumann S, Wolf A, Schoof S, Hiller F, Schulte KW, Kirschner KN, Schwalbe H, Arndt HD (2011) NMR Structures of thiostrepton derivatives for characterization of the ribosomal binding site. Angew Chem Int Ed 50:3308–3312

    Article  CAS  Google Scholar 

  34. Farver DK, Hedge DD, Lee SC (2005) Ramoplanin: a lipoglycodepsipeptide antibiotic. Ann Pharmacother 39(5):863–868

    Article  CAS  Google Scholar 

  35. Levine D (2006) Vancomycin: a history. Clin Infect Dis 42:5–12

    Article  Google Scholar 

  36. http://www.aic.cuhk.edu.hk/web8/glycopeptides.htm. Accessed 25 Aug 2013

  37. Waksman SA (1943) Production and activity of streptothricin. J Bacteriol 46(3):299–310

    CAS  Google Scholar 

  38. Vivian M, Coëffet-LeGal Marie-Françoise, Paul B, Renee B, Julia P, Andrew W, Steven M, Robert F, Ian P, Mario B, Christopher JS, Stephen KW, Richard HB (2005) Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster revision of peptide stereochemistry. Microbiology 151:1507–1523

    Article  Google Scholar 

  39. http://www.steadyhealth.com/encyclopedia/Carbomycin. Accessed 25 Aug 2013

  40. http://www.rxlist.com/erythromycin-ethylsuccinate-drug.htm. Accessed 25 Aug 2013

  41. Luis MQ, Jos AS (1995) Biosynthesis of macrolide oleandomycin by Streptomyces antibioticus: purification and kinetic characterisation of an oleandomycin glucosyltransferase. J Biol Chem 270:18234–18239

    Article  Google Scholar 

  42. Anise L, Ahmed L, Choke B, Gerard L, Pierre G (1995) Glycerol effect on spiramycin production and valine catabolism in Streptomyces ambofaciens. Curr Microbiol 31(5):304–311

    Article  Google Scholar 

  43. Hafizur R, Brian A, Wilfrid JM, Peter CM, Derek JJ, David RA, Andrew MS, Michael S (2010) Novel anti-infective compounds from marine bacteria. Mar Drugs 8(3):498–518

    Article  Google Scholar 

  44. Ogawara H, Maeda K, Umezawa H (1968) Biosynthesis of Pyridomycin I. Biochem 7(9):3296–3302

    Article  CAS  Google Scholar 

  45. Mahajan GB, George SD, Ranadive P, Mishra PD, Sreekumar E, Panshikar RM, Sawant SN, Krishna S, Sivakumar M, Pari K, Thomas B, Patel Z, Vishwakarma RA, Naik CG, D’Souza L, Devi P (Piramal Life Sciences Limited, Mumbai and NIO, Goa) (2007) PM181104 and related antibacterial compounds, production, pharmaceutical compositions, and therapeutic use. PCT Int Appl WO 2007119201

    Google Scholar 

  46. Mahajan GB, Shanbhag P, Sivaramakrishnan H (2011) Poster entitled “Mode of action of antibiotic PM181104 on bacteria” at 1st Global Forum on Bacterial Infections: balancing treatment access and antibiotic resistance, organised by Center for Disease Dynamics, Economics and Policy, USA at New Delhi

    Google Scholar 

  47. http://www.merck.com/mmpe/print/sec14/ch170/ch170g.html. Accessed 25 Sept 2013

  48. Waksman SA, Geiger WB, Bugie E (1947) Micromonosporin, an antibiotic from a little known group of microorganisms. J Bacteriol 53(3):355–357

    CAS  Google Scholar 

  49. Biffi G, Boretti G, Di Marco A, Pennella P (1954, September issue) Metabolic behaviour and chlortetracycline production by Streptomyces aureofaciens in liquid culture. Appl Microbiol 2:288–293

    Google Scholar 

  50. Zygmunt WA (1961) Oxytetracycline formation by Streptomyces rimosus in chemically defined media. Appl Microbiol 9(6):502–507

    CAS  Google Scholar 

  51. Hiroshi S, Hideo O, Toshiaki H, Ikutoshi M, Kunio A, Mikio S (1982) Thiolactomycin, a new antibiotic. J Antibiot 35(4):396–400

    Article  Google Scholar 

  52. Schumacher RW, Talmage SC, Miller SA, Sarris KE, Davidson BS, Goldberg A (2003) Isolation and structure determination of an antimicrobial ester from a marine-derived bacterium. J Nat Prod 66:1291–1293

    Article  CAS  Google Scholar 

  53. Lucas X, Senger C, Erxleben A, Grüning BA, Döring K, Mosch J, Flemming S, Günther S (2013) StreptomeDB: a resource for natural compounds isolated from Streptomyces species. Nucl Acids Res 41(Database Issue):D1130–D1136

    Google Scholar 

  54. Genilloud O, González I, Salazar O, Martín J, Tormo JR, Vincente F (2011) Current approaches to exploit actinomycetes as a source of novel natural products. J Ind Microbiol Biotechnol 38(3):375–389

    Article  CAS  Google Scholar 

  55. Rahman H, Austin B, Mitchell WJ, Morris PC, Jamieson DJ, Adams DR, Spragg AM, Schweizer M (2010) Novel anti-infective compounds from marine bacteria. Mar Drugs 5(3):498–518

    Article  Google Scholar 

  56. Hopp DC, Milanowski DJ, Rhea J, Jacobsen D, Rabenstein J, Smith C, Romari K, Clarke M, Francis L, Irigoyen M, Luche M, Carr GJ, Mocek U (2008) Citreamicins with potent gram-positive activity. J Nat Prod 71(12):2032–2035

    Article  CAS  Google Scholar 

  57. Pei G, Dai H, Ren B, Liu X, Zhang L (2010) Exploiting bioactive Enediynes from marine microbe based on activity and gene screening. Wei Sheng Wu Xue Bao 50(4):472–477

    CAS  Google Scholar 

  58. Yunt Z, Reinhardt K, Li A, Engeser M, Dahse HM, Gütschow M, Bruhn T, Bringmann G, Piel J (2009) Cleavage of 4 carbon- carbon bonds during biosynthesis of griseorhod in a spiroketal pharmacophore. J Am Chem Soc 131(6):2297–2305

    Article  CAS  Google Scholar 

  59. Singh SB, Zink DL, Dorso K, Motyl M, Salazar O, Basilio A, Vicente F, Byrne KM, Ha S, Genilloud O (2009) Isolation, structure and anti-bacterial activities of lucensimycins D-G, discovered from Streptomyces lucencis MA7349 using an antisense strategy. J Nat Prod 72(3):345–352

    Article  CAS  Google Scholar 

  60. Cai P, Kong F, Fink P, Ruppen ME, Williamson RT, Keiko T (2007) Polyene antibiotics from Streptomyces mediocidicus. J Nat Prod 70(2):215–219

    Article  CAS  Google Scholar 

  61. Nicolaou KC, Chen JS, Dalby SM (2009) From nature to the laboratory and into the clinic. Bioorg Med Chem 17(6):2290–2303

    Article  CAS  Google Scholar 

  62. Xi Y, Chen R, Si S, Sun C, Xu H (2007) A new nucleosidyl peptide antibiotic, sansanmycin. J Antibiot (Tokyo) 60(2):158–161

    Article  Google Scholar 

  63. Jose PA, Jebakumar SRD (2013) Non-streptomycete actinomycetes nourish the current antimicrobial discovery. Front Microbiol 4(240):1–3

    Google Scholar 

  64. Islam VI, Saravanan S, Ignacimuthu S (2014) Microbicidal and anti-inflammatory effects of Actinomadura spadix (EHA-2) active metabolites from Himalayan soils, India. World J Microbiol Biotechnol 30(1):9–18

    Article  CAS  Google Scholar 

  65. Taurino C, Frattini L, Marcone GL, Gastaldo L, Marinelli F (2011) Actinoplanes teichomyceticus ATCC 31121 as a cell factory for producing teicoplanin. Microb Cell Fact 10:82

    Article  CAS  Google Scholar 

  66. Jeong H, Sim YM, Kim HJ, Lee DW, Lim SK, Lee SJ (2013) Genome sequence of the vancomycin producing Amycolatopsis orientalis subsp. orientalis strain KCTC 9412T. Genome Announc 1(3):pii e00408–13

    Google Scholar 

  67. Hartkoorn RC, Sala C, Neres J, Pojer F, Magnet S, Mukherjee R, Uplekar S, Boy-Röttger S, Altmann KH, Cole ST (2012) Towards a new tuberculosis drug: pyridomycin—nature’s isoniazid. EMBO Mol Med 4:1032–1042

    Article  CAS  Google Scholar 

  68. Grappel SF, Giovenella AJ, Phillips L, Pitkin DH, Nisbet LJ (1985) Antimicrobial activity of aricidins, novel glycopeptides antibiotics with high and prolonged levels in blood. Antimicrob Agents Chemother 28(5):660–662

    Article  CAS  Google Scholar 

  69. Evans PA, Huang MH, Lawler MJ, Maroto S (2012) Total synthesis of marinomycin A using salicylate as a molecular switch to mediate dimerization. Nat Chem 4:680–684

    Article  CAS  Google Scholar 

  70. Cheng YB, Jensen PR, Fenical W (2013) Cytotoxic and antimicrobial napyradiomycins from two marine-derived streptomyces strains. Eur J Org Chem 18:3751–3757

    Article  Google Scholar 

  71. Thorsten B, Doreen F, John V, Sonja V, Christine K, Sebastian T, Marc M, Brigitte K, Wagner-D Irene, Rolf D, Meinhard S (2012) Biogeography and phylogenetic diversity of a cluster of exclusively marine myxobacteria. ISME J 6:1260–1272

    Article  Google Scholar 

  72. Wenzel SC, Muller R (2009) Myxobacteria-microbial factories for the production of bioactive secondary metabolites. Mol BioSyst 5:567–574

    Article  CAS  Google Scholar 

  73. Reichenbach H, Gerth K, Irschik H, Brigitte K, Gerhard H (1988) Myxobacteria: a source of new antibiotics. Trends Biotechnol 6(6):115–121

    Article  CAS  Google Scholar 

  74. Diez J, Martinez JP, Mestres J, Sasse F, Frank R, Meyerhans A (2012) Myxobacteria: natural pharmaceutical factories. Microb Cell Fact 11:52

    Article  Google Scholar 

  75. Xiao Y, Wei X, Ebright R, Wall D (2011) Antibiotic production by myxobacteria plays a role in predation. J Bacteriol 193(18):4626–4683

    Article  CAS  Google Scholar 

  76. Weissman KJ, Müller R (2009) A brief tour of myxobacterial secondary metabolism. Bioorg Med Chem 17:2121–2136

    Article  CAS  Google Scholar 

  77. Irschik H, Schummer D, Höfle G, Reichenbach H, Steinmetz H, Jansen R (2007) Etnangien, a macrolide polyene antibiotic from Sorangium cellulosum that inhibits nucleic acid polymerases. J Nat Prod 70(6):1060–1063

    Article  CAS  Google Scholar 

  78. Menche D, Arikan F, Perlova O, Horstmann N, Ahlbrecht W, Wenzel SC, Jansen R, Irschik H, Müller R (2008) Stereochemical determination and complex biosynthetic assembly of etnangien, a highly potent RNA polymerase inhibitor from the myxobacterium Sorangium cellulosum. J Am Chem Soc 130(43):14234–14243

    Article  CAS  Google Scholar 

  79. Felder S, Dreisigacker S, Kehraus S, Neu E, Bierbaum G, Wright PR, Menche D, Schäberle TF, König GM (2013) Salimabromide: unexpected chemistry from the obligate marine Myxobacterium Enhygromxya salina. Chemistry 19(28):9319–9324

    Article  CAS  Google Scholar 

  80. Iizuka T, Fudou R, Jojima Y, Ogawa S, Yamanaka S, Inukai Y, Ojika M (2006) Miuraenamides A and B, novel antimicrobial cyclic depsipeptides from a new slightly halophilic myxobacterium: taxonomy, production, and biological properties. J Antibiot (Tokyo) 59(7):385–391

    Article  CAS  Google Scholar 

  81. Horstmann N, Essig S, Bockelmann S, Wieczorek H, Huss M, Sasse F, Menche D (2011) Arc-hazolid A-15-O-β-D-glucopyranoside and iso-archazolid B: potent V-ATPase inhibitory polyketides from the myxobacteria Cystobacter violaceus and Archangium gephyra. J Nat Prod 74(5):1100–1105

    Article  CAS  Google Scholar 

  82. Menche D, Hassfeld J, Steinmetz H, Huss M, Wieczorek H, Sasse F (2007) The first hydrox-ylated archazolid from the myxobacterium Cystobacter violaceus: isolation, structural elucidation and V-ATPase inhibition. J Antibiot (Tokyo) 60(5):328–331

    Article  CAS  Google Scholar 

  83. Kunze B, Böhlendorf B, Reichenbach H, Höfle G (2008) Pedein A and B: production, isolation, structure elucidation and biological properties of new antifungal cyclopeptides from Chondromyces pediculatus (Myxobacteria). J Antibiot (Tokyo) 61(1):18–26

    Article  CAS  Google Scholar 

  84. Desmond E, Gribaldo S (2009) Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol Evol 1:364–381

    Article  Google Scholar 

  85. Jansen R, Kunze B, Reichenbach H, Höfle G (2003) Chondrochloren A and B, new β-amino styrenes from Chondromyces crocatus (Myxobacteria). Eur J Org Chem 14:2684–2689

    Article  Google Scholar 

  86. Rachid S, Scharfe M, Blöcker H, Weissman KJ, Müller R (2009) Unusual chemistry in the biosynthesis of the antibiotic chondrochlorens. Chem Biol 16(1):70–81

    Article  CAS  Google Scholar 

  87. Iizuka T, Jojima Y, Fudou R, Tokura M, Hiraishi A, Yamanaka S (2003) Enhygromyxa salina gen. nov., sp. nov., a slightly halophilic myxobacterium isolated from the coastal areas of Japan. Syst Appl Microbiol 26(2):189–196

    Article  Google Scholar 

  88. Irma ESM, Gómez LJV, Rivas GG, Sánchez NEA (2012) Bioactive compounds from bacteria associated to marine algae. In: Sammour R (ed) Biotechnology—molecular studies and novel applications for improved quality of human life, pp 25–44

    Google Scholar 

  89. Avendaño-Herrera R, Lody M, Riquelme CE (2005) Producción de substancias inhibitorias en-tre bacterias de biopelículas en substratos marinos. Revista Biología Marina y Oceano-grafía 40(2):117–125

    Google Scholar 

  90. Ojika M, Inukai Y, Kito Y, Hirata M, Iizuka T, Fudou R (2008) Miuraenamides: antimicrobial cyclic depsipeptides isolated from a rare and slightly halophilic myxobacterium. Chem Asian J 3(1):126–133

    Article  CAS  Google Scholar 

  91. Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  92. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate re-visited. Mycol Res 105:1422–1431

    Article  Google Scholar 

  93. http://www.springerplus.com/content/2/1/8. Accessed 25 Sept 2013

  94. Cotter PD, Hill C, Ross RP (2005) Bacterial lantibiotics: strategies to improve the therapeutic potential. Curr Protein Pept Sci 6(1):61–75

    Article  CAS  Google Scholar 

  95. Gray AI, Igoli JO, Edradebel R (2012) Natural products isolation in modern drug discovery programs. In: Sarkar SD, Nahar L (eds) Natural product isolation, pp 515–534

    Google Scholar 

  96. Yoon SY, Eo SK, Kim YS, Lee CK, Kan SS (1994) Antimicrobial activity of Ganoderma lucidum extract alone or in combination with some antibiotics. Arch Pharm Res 17(6):438–442

    Article  CAS  Google Scholar 

  97. Jung M, Liermann JC, OPatz T, Erkel G (2011) Ganodermycin, a novel inhibitor of CXCL 10 expression from Ganoderma applanatum. J Antibiot (Tokyo) 64(10):683–686

    Article  CAS  Google Scholar 

  98. Sun X, Zhou X, Cai M, Zhou J, Zhang Y (2010) Significant stimulation of o-phthalic acid in biosynthesis of Aspergiolide A by a marine fungus Aspergillus glaucus. Bioresour Technol 101(10):3609–3616

    Article  CAS  Google Scholar 

  99. Jaturapat A, Isaka M, Hywel-Jones NL, Lertwerawat Y, Kamchonwongpaisan S, Kirtikara K, Tan-ticharoen M, Thebtaranonth Y (2001) Bioxanthracenes from the insect pathogenic fungus. Cordyceps pseu-domilitaris BCC 1620. I: taxonomy, fermentation, isolation and antimalarial activity. J Antibiot (Tokyo) 54(1):29–35

    Article  CAS  Google Scholar 

  100. Jiao RH, Xu S, Liu JY, Ge HM, Ding H, Xu C, Zhu HL, Tan RX (2006) Chaetominine, a cytotoxic alkaloid produced by endophytic Chaetomium sp IFB E015. Org Lett 8(25):5709–5712

    Article  CAS  Google Scholar 

  101. Kerzaon I, Pouchus YF, Monteau F, Le Bizec B, Nourrisson MR, Biard JF, Grovel O (2009) Structural investigation and elucidation of new communesins from a marine derived Penicillium expansum link by liquid chromatography/electrospray ionization mass spectroscopy. Rapid Commun Mass Spectrom 23(24):3928–3938

    Article  CAS  Google Scholar 

  102. Piplani H, Rana C, Vaish V, Vaiphei K (1830) Sanyal SN (2013) Dolastatin, along with Celecoxib, stimulates apoptosis by a mechanism involving oxidative stress, membrane potential change and P13 K/AKT pathway down regulation. Biochim Biophys Acta 11:5142–5156

    Google Scholar 

  103. Dong JY, He HP, Shen YM, Zhang KQ (2005) Nematicidal epipolysulfanyldioxopiperazines from Gliocladium roseum. J Nat Prod 68(10):1510–1513

    Article  CAS  Google Scholar 

  104. Nasini G, Bava A, Fronza G, Giannini G (2007) Microbial transformation of spirolaxine, a bioactive undecaketide fungal metabolite from the basidiomycete Sporotrichum laxum. Chem Biodivers 4(12):2772–2779

    Article  CAS  Google Scholar 

  105. Kanai Y, Ishiyama D, Senda H, Iwatani W, Takahashi H, Konno H, Tokumasu S, Kanazawa S (2000) Novel human topoisomerase I inhibitors A, B, C and D. I: producing strain, fermentation, isolation, physico chemical properties and biological activity. J Antibiot (Tokyo) 53(9):863–872

    Article  CAS  Google Scholar 

  106. Abdessamad D, Amal HA, Wen HL, Peter P (2010) Bioactive compounds from marine bacteria and fungi. Microb Biotechnol 3(5):544–563

    Article  Google Scholar 

  107. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):26

    Article  Google Scholar 

  108. Wang W, Zhu T, Tao H, Lu Z, Fang Y, Gu Q, Zhu W (2007) Two new cytotoxic quinone type compounds from the halotolerant fungus Aspergillus variecolor. J Antibiot. (Tokyo) 60(10):603–607

    Article  CAS  Google Scholar 

  109. Ishibashi M (2007) Study on myxomycetes as a new source of bioactive natural products. Yakugaku Zasshi 127(9):1369–1381

    Article  CAS  Google Scholar 

  110. Dembitsky VM, Rezanka T, Spízek J, Hanus LO (2005) Secondary metabolites of slime molds (myxomycetes). Phytochemistry 66(7):747–769

    Article  CAS  Google Scholar 

  111. Mitsunori T, Harold WK (2013) Aquatic myxomycetes. FUNGI 6(3):18–25

    Google Scholar 

  112. Wang WL, Zhu TJ, Tao HW, Lu ZY, Fang YC, Gu QQ, Zhu WM (2007) Three novel, structurally unique spirocyclic alkaloids from the halotolerant B 17 fungal strain of Aspergillus variecolor. Chem Biodivers 4(12):2913–2919

    Article  CAS  Google Scholar 

  113. Schroeder HR, Mallette MF (1973) Isolation and purification of antibiotic material from Physarum gyrosum. Antimicrob Agents Chemother 4(2):160–166

    Article  CAS  Google Scholar 

  114. https://www.centerwatch.com/drug-information/fda-approved-drugs/drug/1152/dificid-fidaxomicin. Accessed 22 Dec 2013

  115. Waters AL, Hill RT, Place AR, Hamann MT (2010) The expanding role of marine microbes in pharmaceutical development. Curr Opin Biotechnol 21(6):780–786

    Article  CAS  Google Scholar 

  116. http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed 22 Dec 2013

  117. http://www.prnewswire.com/news-releases/leading-anti-cancer-drugs-and-associated-market-2013-2023-219612141.html. Accessed 22 Dec 2013

  118. http://www.centerwatch.com/drug-information/fda-approvals/. Accessed 22 Dec 2013

  119. Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13(19/20):894–901

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the management of Piramal Enterprises Limited for their encouragement in the dissemination of science, which deals with the discovery of new drugs for alleviating disease on this planet. Very special thanks to Dr. P. D. Mishra, Head, Natural Product Chemistry Division-Piramal Enterprises Limited for his help in providing the necessary structures of requested compounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish Mahajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mahajan, G., Balachandran, L. (2014). Biodiversity in Production of Antibiotics and Other Bioactive Compounds. In: Mukherjee, J. (eds) Biotechnological Applications of Biodiversity. Advances in Biochemical Engineering/Biotechnology, vol 147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2014_268

Download citation

Publish with us

Policies and ethics