Skip to main content

High Order Eigentensors as Symbolic Rules in Competitive Learning

  • Conference paper
Hybrid Neural Systems (Hybrid Neural Systems 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1778))

Included in the following conference series:

Abstract

We discuss properties of high order neurons in competitive learning. In such neurons, geometric shapes replace the role of classic ‘point’ neurons in neural networks. Complex analytical shapes are modeled by replacing the classic synaptic weight of the neuron by high-order tensors in homogeneous coordinates. Such neurons permit not only mapping of the data domain but also decomposition of some of its topological properties, which may reveal symbolic structure of the data. Moreover, eigentensors of the synaptic tensors reveal the coefficients of polynomial rules that the network is essentially carrying out. We show how such neurons can be formulated to follow the maximum-correlation activation principle and permit simple local Hebbian learning. We demonstrate decomposition of spatial arrangements of data clusters including very close and partially overlapping clusters, which are difficult to separate using classic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, S., Thawonmas, R.: A fuzzy classifier with ellipsoidal regions. IEEE Trans. OnFuzzy Systems 5(3), 358–368 (1997)

    Article  Google Scholar 

  • Anderson, E.: The Irises of the Gaspe Peninsula. Bulletin of the American IRIS Society 59, 2–5 (1939)

    Google Scholar 

  • Bishop, C.M.: Neural Networks for Pattern Recognition. Clarendon press, Oxford (1997)

    Google Scholar 

  • Blatt, M., Wiseman, S., Domany, E.: Superparamagnetic clustering of data. Physical Review Letters 76(18), 3251–3254 (1996)

    Article  Google Scholar 

  • DavĂ©, R.N.: Use of the adaptive fuzzy clustering algorithm to detect lines in digital images. In: Proc. SPIE, Conf. Intell. Robots and Computer Vision, SPIE, vol. 1192(2), pp. 600–611 (1989)

    Google Scholar 

  • Duda, R.O., Hart, P.E.: Pattern classification and scene analysis. Wiley, New York (1973)

    MATH  Google Scholar 

  • Faux, I.D., Pratt, M.J.: Computational Geometry for Design and Manufacture. John Wiley & Sons, Chichester (1981)

    MATH  Google Scholar 

  • Frigui, H., Krishnapuram, R.: A comparison of fuzzy shell-clustering methods for the detection of ellipses. IEEE Transactions on Fuzzy Systems 4(2), 193–199 (1996)

    Article  Google Scholar 

  • Mclachlan, G.J., Krishnan, T.: The EM algorithm and extensions. Wiley-Interscience, New York (1997)

    MATH  Google Scholar 

  • Gnanadesikan, R.: Methods for statistical data analysis of multivariate observations. Wiley, New York (1977)

    MATH  Google Scholar 

  • Graham, A.: Kronecker products and Matrix Calculus: with Applications. Wiley, Chichester (1981)

    MATH  Google Scholar 

  • Gustafson, E.E., Kessel, W.C.: Fuzzy clustering with fuzzy covariance matrix. In: Proc. IEEE CDC, San Diego, CA, pp. 761–766 (1979)

    Google Scholar 

  • Haykin, S.: Neural Networks, A comprehensive foundation. Prentice Hall, New Jersey (1994)

    MATH  Google Scholar 

  • Kavuri, S.N., Venkatasubramanian, V.: Using fuzzy clustering with ellipsoidal units in neural networks for robust fault classification. Computers Chem. Eng. 17(8), 765–784 (1993)

    Article  Google Scholar 

  • Kohonen, T.: Self organizing maps. Springer, Berlin (1997)

    MATH  Google Scholar 

  • Krishnapuram, R., Frigui, H., Nasraoui, O.: Fuzzy and probabilistic shell clustering algorithms and their application to boundary detection and surface approximation - Parts I and II. IEEE Transactions on Fuzzy Systems 3(1), 29–60 (1995)

    Article  Google Scholar 

  • Lipson, H., Siegelmann, H.T.: Clustering Irregular Shapes Using High-Order Neurons. Neural Computation (1999) (accepted for publication)

    Google Scholar 

  • Mao, J., Jain, A.: A self-organizing network for hyperellipsoidal clustering (HEC). IEEE Transactions on Neural Networks 7(1), 16–29 (1996)

    Article  Google Scholar 

  • Pal, N., Bezdek, J.C., Tsao, E.C.-K.: Generalized clustering networks and Kohonen’s self-organizing scheme. IEEE Transactions on Neural Networks 4(4), 549–557 (1993)

    Article  Google Scholar 

  • Pan, J.S., McInnes, F.R., Jack, M.A.: Fast clustering algorithms for vector quantization. Pattern Recognition 29(3), 511–518 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lipson, H., Siegelmann, H.T. (2000). High Order Eigentensors as Symbolic Rules in Competitive Learning. In: Wermter, S., Sun, R. (eds) Hybrid Neural Systems. Hybrid Neural Systems 1998. Lecture Notes in Computer Science(), vol 1778. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10719871_20

Download citation

  • DOI: https://doi.org/10.1007/10719871_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67305-7

  • Online ISBN: 978-3-540-46417-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics