Skip to main content

Floating-dot Memory Transistors on SOI Substrate

  • Chapter
Materials for Information Technology

Part of the book series: Engineering Materials and Processes ((EMP))

  • 1535 Accesses

Conclusion

Non-volatile memories have become an indispensable part of today’s digital data processing. The quickly growing mobile electronics market especially fuels the demand for these devices. The presented floating-dot memory concept discloses a related and CMOS-compatible alternative with enhanced write/erase endurance compared to FLASH while not demanding severe changes of the manufacturing process at the same time. Here, the charge-storing silicon nano-dots are deposited by a self-organized LPCVD technique. The introduced concept is based on advanced SOI substrates, which exhibit fabrication as well as device advantages and offer higher scaling potential than conventional bulk silicon substrates. The electrical data of the presented examination devices prove the suitability of the floatingdot memory concept and pave the way for enhanced non-volatile memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.M. Sze, Future Trends in Microelectronics, Wiley p. 291 (1999).

    Google Scholar 

  2. B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, D. Finzi, IEEE Electron Device Lett. 21, pp. 542–545 (2000).

    Article  Google Scholar 

  3. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbé, K. Chan, Appl. Phys. Lett. 68(10), 1377–1379 (1996).

    Article  Google Scholar 

  4. O. Winkler, F. Merget, M. Heuser, B. Hadam, M. Baus, B. Spangenberg et al., Microelectron. Eng. 61–62, pp. 497–503 (2002).

    Article  Google Scholar 

  5. O. Winkler, M. Baus, B. Spangenberg, H. Kurz, Microelectron. Eng. 73–74, pp. 719–724 (2004).

    Article  Google Scholar 

  6. L. Tsybeskov, G.F. Grom, M. Jungo, L. Montes, P.M. Fauchet, J.P. McCaffrey et al., Mater. Sci. Eng. B69–70, p. 303 (2000).

    Article  Google Scholar 

  7. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, J. Bläsing, Appl. Phys. Lett. 80(4), p. 661 (2002).

    Article  Google Scholar 

  8. M. Hao, H. Hwang, J. C. Lee, Appl. Phys. Lett. 62(13), p. 1530 (1993).

    Article  Google Scholar 

  9. T. Shimizu-Iwayama, N. Kurumado, D. E. Hole, P. D. Townsend, J. Appl. Phys. 83(11), p. 6018 (1998).

    Article  Google Scholar 

  10. Y. Shi, K. Saito, H. Ishikuro, T. Hiramoto, Japan J. Appl. Phys. 38, 2453–2456 (1999).

    Article  Google Scholar 

  11. E. Nagata, N. Takahashi, Y. Yasuda, T. Inukai, H. Ishikuro, T. Hiramoto, Japan J. Appl. Phys. 38, pp. 7230–7232 (1999).

    Article  Google Scholar 

  12. M.C. Lemme, T. Mollenhauer, W. Henschel, T. Wahlbrink, M. Baus, O. Winkler et al., Solid State Electron. 48,4, 529–534 (2004).

    Article  Google Scholar 

  13. M. Lemme, T. Mollenhauer, W. Henschel, T. Wahlbrink, M. Heuser, M. Baus et al., Microelectron. Eng. 67–68,. 810–817 (2003).

    Article  Google Scholar 

  14. Y. Choi et al., IEEE Elec. Dev. Lett., 23,1, pp. 25–27 (2002).

    Article  MATH  Google Scholar 

  15. R. Chau et al., 2002 Int. Conf. on Solid State Devices and Materials, Japan, (2002).

    Google Scholar 

  16. S. Miyazaki, Y. Hamamoto, E. Yoshida, M. Ikeda, M. Hirose, Thin Solid Films, Elsevier, 369, 55–59 (2000).

    Article  Google Scholar 

  17. R. Rölver, O. Winkler, M. Först, B. Spangenberg, H. Kurz, 13th Workshop on Dielectrics in Microelectronics, 2004, Cork, Ireland, to be published in Microelectronics Reliability.

    Google Scholar 

  18. R. Rölver, O. Winkler, M. Först, B. Spangenberg, H. Kurz, 19th European Solar Energy Conference and Exhibition, 2004, Paris, France, to be published in the conference proceedings.

    Google Scholar 

  19. M. Specht, M. Städele, F. Hofmann, ESSDERC 2002, Proceedings of the 32nd European Solid-State Device Research Conference, Bologna, Italy, pp. 599–602 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Winkler, O., Baus, M., Lemme, M.C., Rölver, R., Spangenberg, B., Kurz, H. (2005). Floating-dot Memory Transistors on SOI Substrate. In: Zschech, E., Whelan, C., Mikolajick, T. (eds) Materials for Information Technology. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/1-84628-235-7_12

Download citation

  • DOI: https://doi.org/10.1007/1-84628-235-7_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-941-8

  • Online ISBN: 978-1-84628-235-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics