Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mankin HJ, Mow VC, Buckwalter JA, Ianotti JP, Ratcliffe A. Articular cartilage structure, composition and function. In: Buckwalter JA, Einhorn TA, Simon SR, eds. Orthopaedic Basic Science: Biology and Biomechanics of the Musculoskeletal System. Rosemont, IL: American Academy of Orthopaedic Surgeon; 2000:443–470.

    Google Scholar 

  2. Mow VC, Ratcliffe A, Poole AR. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 1992;13:67–97.

    Article  CAS  PubMed  Google Scholar 

  3. Ahmed AM, Burke DL. In-vitro measurement of static pressure distribution in synovial joints. Part I. Tibial surface of the knee. J Biomech Eng 1983;105:216–225.

    Article  CAS  PubMed  Google Scholar 

  4. Ahmed AM, Burke DL, Yu A. In-vitro measurement of static pressure distribution in synovial joints. Part II. Retropatellar surface. J Biomech Eng 1983;105:226–236.

    Article  CAS  PubMed  Google Scholar 

  5. Greenwald AS, O’Connor JJ. The transmission of load through the human hip joint. J Biomech 1971;4:507–528.

    Article  CAS  PubMed  Google Scholar 

  6. Hodge WA, Fijan RS, Carlson KL, et al. Contact pressures in the human hip joint measured in vivo. Proc Natl Acad Sci USA 1986;83:2879–2883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maroudas A. Physicochemical properties of articular cartilage. In: Freeman MAR, ed. Adult Articular Cartilage. Kent, UK: Pitman Medical Publishing; 1979:215–290.

    Google Scholar 

  8. Buschmann MD, Grodzinsky AJ. A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. J Biomech Eng 1995;117:170–192.

    Google Scholar 

  9. Lai WM, Hou JS, Mow VC. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J Biomech Eng 1991;113:245–258.

    Article  CAS  PubMed  Google Scholar 

  10. Hardingham TE, Fosang AJ, Dudhia J. Aggrecan, the chondroitin sulfate/keratan sulfate proteoglycan from cartilage. In: Kuettner KE, Schleyerbach R, Peyron JG, Hascall VC, eds. Articular Cartilage and Osteoarthritis. New York: Raven Press; 1992:5–20.

    Google Scholar 

  11. Mow VC, Gu WY, Chen FH. Structure and function of articular cartilage and meniscus. In: Mow VC, Huiskes R, eds. Basic Orthopaedic Biomechanics and Mechanobiology. Philadelphia: Lippincott-Raven; 2005:183–258.

    Google Scholar 

  12. Kempson GE. Mechanical properties of articular cartilage. In: Freeman MAR, ed. Adult Articular Cartilage. Kent, UK: Pitman Medical; 1979:333–414.

    Google Scholar 

  13. Kempson GE, Tuke MA, Dingle JT, Barrett AJ, Horsfield PH. The effects of proteolytic enzymes on the mechanical properties of adult human articular cartilage. Biochim Biophys Acta 1976;428:741–760.

    Article  CAS  PubMed  Google Scholar 

  14. Kempson GE, Muir H, Swanson SA, Freeman MA. Correlations between stiffness and the chemical constituents of cartilage on the human femoral head. Biochim Biophys Acta 1970;215:70–77.

    Article  CAS  PubMed  Google Scholar 

  15. Williamson AK, Chen AC, Sah RL. Compressive properties and function-composition relationships of developing bovine articular cartilage. J Orthop Res 2001;19:1113–1121.

    Article  CAS  PubMed  Google Scholar 

  16. Ameye L, Aria D, Jepsen K, et al. Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis. FASEB J 2002;16:673–680.

    Article  CAS  PubMed  Google Scholar 

  17. Neame PJ, Kay CJ, McQuillan DJ, Beales MP, Hassell JR. Independent modulation of collagen fibrillogenesis by decorin and lumican. Cell Mol Life Sci 2000;57:859–863.

    Article  CAS  PubMed  Google Scholar 

  18. Danielson KG, Baribault H, Holmes DF, et al. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 1997;136:729–743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eggli PS, Hunziker EB, Schenk RK. Quantitation of structural features characterizing weight-and less-weight-bearing regions in articular cartilage: a stereological analysis of medial femoral condyles in young adult rabbits. Anat Rec 1988;222:217–227.

    Article  CAS  PubMed  Google Scholar 

  20. Wong M, Wuethrich P, Eggli P, Hunziker EB. Zonespecific cell biosynthetic activity in mature bovine articular cartilage: a new method using confocal microscopic stereology and quantitative autoradiography. J Orthop Res 1996;14:424–432.

    Article  CAS  PubMed  Google Scholar 

  21. Lipshitz H, Etheredge R 3rd, Glimcher MJ. Changes in the hexosamine content and swelling ratio of articular cartilage as functions of depth from the surface. J Bone Joint Surg 1976;58:1149–1153.

    CAS  PubMed  Google Scholar 

  22. Muir H, Bullough P, Maroudas A. The distribution of collagen in human articular cartilage with some of its physiological implications. J Bone Joint Surg 1970;52:554–563.

    CAS  Google Scholar 

  23. Clark JM. The organization of collagen in cryofractured rabbit articular cartilage: a scanning electron microscopic study. J Orthop Res 1985;3:17–29.

    Article  CAS  PubMed  Google Scholar 

  24. Mow VC, Lai WM. Some surface characteristics of articular cartilage. I. A scanning electron microscopy study and a theoretical model for the dynamic interaction of synovial fluid and articular cartilage. J Biomech 1974;7:449–456.

    Article  CAS  PubMed  Google Scholar 

  25. Weiss C, Rosenberg L, Helfet AJ. An ultrastructural study of normal young adult human articular cartilage. J Bone Joint Surg 1968;50:663–674.

    CAS  PubMed  Google Scholar 

  26. Roth V, Mow VC. The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age. J Bone Joint Surg 1980;62:1102–1117.

    CAS  PubMed  Google Scholar 

  27. Kempson GE, Muir H, Pollard C, Tuke M. The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochim Biophys Acta 1973;297:456–472.

    Article  CAS  PubMed  Google Scholar 

  28. Franzen A, Inerot S, Hejderup SO, Heinegard D. Variations in the composition of bovine hip articular cartilage with distance from the articular surface. Biochem J 1981;195:535–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Broom ND. The collagen framework of articular cartilage: its profound influence on normal and abnormal load-bearing function. In: Nimni ME, ed. Collagen: Chemistry, Biology and Biotechnology. Boca Raton, FL: CRC Press; 1988:243–265.

    Google Scholar 

  30. Redler I, Mow VC, Zimny ML, Mansell J. The ultrastructure and biomechanical significance of the tidemark of articular cartilage. Clin Orthop Relat Res 1975;112:357–362.

    Article  PubMed  Google Scholar 

  31. Wu JZ, Herzog W. Elastic anisotropy of articular cartilage is associated with the microstructures of collagen fibers and chondrocytes. J Biomech 2002;35:931–942.

    Article  CAS  PubMed  Google Scholar 

  32. Trippel SB. Growth factor actions on articular cartilage. J Rheumatol Suppl 1995;43:129–132.

    CAS  PubMed  Google Scholar 

  33. Jortikka MO, Inkinen RI, Tammi MI, et al. Immobilisation causes longlasting matrix changes both in the immobilised and contralateral joint cartilage. Ann Rheum Dis 1997;56:255–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Palmoski M, Perricone E, Brandt KD. Development and reversal of a proteoglycan aggregation defect in normal canine knee cartilage after immobilization. Arthritis Rheum 1979;22:508–517.

    Article  CAS  PubMed  Google Scholar 

  35. Kiviranta I, Jurvelin J, Tammi M, Saamanen AM, Helminen HJ. Weight bearing controls glycosaminoglycan concentration and articular cartilage thickness in the knee joints of young beagle dogs. Arthritis Rheum 1987;30:801–809.

    Article  CAS  PubMed  Google Scholar 

  36. Armstrong CG, Bahrani AS, Gardner DL. In vitro measurement of articular cartilage deformations in the intact human hip joint under load. J Bone Joint Surg Am 1979;61:744–755.

    CAS  PubMed  Google Scholar 

  37. Macirowski T, Tepic S, Mann RW. Cartilage stresses in the human hip joint. J Biomech Eng 1994;116:10–18.

    Article  CAS  PubMed  Google Scholar 

  38. Eckstein F, Tieschky M, Faber SC, et al. Effect of physical exercise on cartilage volume and thickness in vivo: MR imaging study. Radiology 1998;207:243–248.

    Article  CAS  PubMed  Google Scholar 

  39. Guilak F, Hung CT. Physical regulation of cartilage metabolism. In: Mow VC, Huiskies R, eds. Basic Orthopaedic Biomechanics. Philadelphia: Lippincott-Raven; 2005:259–300.

    Google Scholar 

  40. Ahrens PB, Solursh M, Reiter RS. Stage-related capacity for limb chondrogenesis in cell culture. Dev Biol 1977;60:69–82.

    Article  CAS  PubMed  Google Scholar 

  41. DeLise AM, Stringa E, Woodward WA, Mello MA, Tuan RS. Embryonic limb mesenchyme micromass culture as an in vitro model for chondrogenesis and cartilage maturation. Methods Mol Biol 2000;137:359–375.

    CAS  PubMed  Google Scholar 

  42. San Antonio JD, Tuan RS. Chondrogenesis of limb bud mesenchyme in vitro: stimulation by cations. Dev Biol 1986;115:313–324.

    Article  CAS  PubMed  Google Scholar 

  43. Shum L, Coleman CM, Hatakeyama Y, Tuan RS. Morphogenesis and dysmorphogenesis of the appendicular skeleton. Birth Defects Res C Embryo Today 2003;69:102–122.

    Article  CAS  PubMed  Google Scholar 

  44. Knudson CB, Toole BP. Hyaluronate-cell interactions during differentiation of chick embryo limb mesoderm. Dev Biol 1987;124:82–90.

    Article  CAS  PubMed  Google Scholar 

  45. Knudson CB. Hyaluronan and CD44: strategic players for cell-matrix interactions during chondrogenesis and matrix assembly. Birth Defects Res C Embryo Today 2003;69:174–196.

    Article  CAS  PubMed  Google Scholar 

  46. Toole BP, Jackson G, Gross J. Hyaluronate in morphogenesis: inhibition of chondrogenesis in vitro. Proc Natl Acad Sci USA 1972;69:1384–1386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Toole BP, Linsenmayer TF. Newer knowledge of skeletogenesis: macromolecular transitions in the extracellular matrix. Clin Orthop Relat Res 1977;129:258–278.

    Article  CAS  PubMed  Google Scholar 

  48. Oberlender SA, Tuan RS. Spatiotemporal profile of N-cadherin expression in the developing limb mesenchyme. Cell Adhes Commun 1994;2:521–537.

    Article  CAS  PubMed  Google Scholar 

  49. Tavella S, Raffo P, Tacchetti C, Cancedda R, Castagnola P. N-CAM and N-cadherin expression during in vitro chondrogenesis. Exp Cell Res 1994;215:354–362.

    Article  CAS  PubMed  Google Scholar 

  50. Oberlender SA, Tuan RS. Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development 1994;120:177–187.

    CAS  PubMed  Google Scholar 

  51. Widelitz RB, Jiang TX, Murray BA, Chuong CM. Adhesion molecules in skeletogenesis. II. Neural cell adhesion molecules mediate precartilaginous mesenchymal condensations and enhance chondrogenesis. J Cell Physiol 1993;156:399–411.

    Article  CAS  PubMed  Google Scholar 

  52. Gehris AL, Stringa E, Spina J, et al. The region encoded by the alternatively spliced exon IIIA in mesenchymal fibronectin appears essential for chondrogenesis at the level of cellular condensation. Dev Biol 1997;190:191–205.

    Article  CAS  PubMed  Google Scholar 

  53. Bang OS, Kim EJ, Chung JG, et al. Association of focal adhesion kinase with fibronectin and paxillin is required for precartilage condensation of chick mesenchymal cells. Biochem Biophys Res Commun 2000;278:522–529.

    Article  CAS  PubMed  Google Scholar 

  54. Seghatoleslami MR, Kosher RA. Inhibition of in vitro limb cartilage differentiation by syndecan-3 antibodies. Dev Dyn 1996;207:114–119.

    Article  CAS  PubMed  Google Scholar 

  55. Mackie EJ, Thesleff I, Chiquet-Ehrismann R. Tenascin is associated with chondrogenic and osteogenic differentiation in vivo and promotes chondrogenesis in vitro. J Cell Biol 1987;105:2569–2579.

    Article  CAS  PubMed  Google Scholar 

  56. Haas AR, Tuan RS. Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells. II. Stimulation by bone morphogenetic protein-2 requires modulation of N-cadherin expression and function. Differentiation 1999;64:77–89.

    Article  CAS  PubMed  Google Scholar 

  57. Stott NS, Jiang TX, Chuong CM. Successive formative stages of precartilaginous mesenchymal condensations in vitro: modulation of cell adhesion by Wnt-7A and BMP-2. J Cell Physiol 1999;180:314–324.

    Article  CAS  PubMed  Google Scholar 

  58. Oh CD, Chang SH, Yoon YM, et al. Opposing role of mitogen-activated protein kinase subtypes, erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J Biol Chem 2000;275:5613–5619.

    Article  CAS  PubMed  Google Scholar 

  59. Pizette S, Niswander L. Early steps in limb patterning and chondrogenesis. Novartis Found Symp 2001;232:23–36.

    Article  CAS  PubMed  Google Scholar 

  60. Hogan BL. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 1996;10:1580–1594.

    Article  CAS  PubMed  Google Scholar 

  61. Macias D, Ganan Y, Sampath TK, et al. Role of BMP-2 and OP-1 (BMP-7) in programmed cell death and skeletogenesis during chick limb development. Development 1997;124:1109–1117.

    CAS  PubMed  Google Scholar 

  62. Merino R, Ganan Y, Macias D, et al. Morphogenesis of digits in the avian limb is controlled by FGFs, TGFbetas, and noggin through BMP signaling. Dev Biol 1998;200:35–45.

    Article  CAS  PubMed  Google Scholar 

  63. Archer CW, Rooney P, Wolpert L. Cell shape and cartilage differentiation of early chick limb bud cells in culture. Cell Differ 1982;11:245–251.

    Article  CAS  PubMed  Google Scholar 

  64. Shinomura T, Kimata K, Oike Y, et al. Appearance of distinct types of proteoglycan in a well-defined temporal and spatial pattern during early cartilage formation in the chick limb. Dev Biol 1984;103:211–220.

    Article  CAS  PubMed  Google Scholar 

  65. Schmid TM, Linsenmayer TF. Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues. J Cell Biol 1985;100:598–605.

    Article  CAS  PubMed  Google Scholar 

  66. Osdoby P, Caplan AI. Characterization of a bone-specific alkaline phosphatase in chick limb mesenchymal cell cultures. Dev Biol 1981;86:136–146.

    Article  CAS  PubMed  Google Scholar 

  67. Kronenberg HM, Karaplis AC, Lanske B. Role of parathyroid hormone-related protein in skeletal development. Ann NY Acad Sci 1996;785:119–123.

    Article  CAS  PubMed  Google Scholar 

  68. Lanske B, Karaplis AC, Lee K, et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 1996;273:663–666.

    Article  CAS  PubMed  Google Scholar 

  69. Vortkamp A, Lee K, Lanske B, et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 1996;273:613–622.

    Article  CAS  PubMed  Google Scholar 

  70. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 2002;10:432–463.

    Article  CAS  PubMed  Google Scholar 

  71. Kawamura S, Wakitani S, Kimura T, et al. Articular cartilage repair. Rabbit experiments with a collagen gel-biomatrix and chondrocytes cultured in it. Acta Orthop Scand 1998;69:56–62.

    Article  CAS  PubMed  Google Scholar 

  72. Rahfoth B, Weisser J, Sternkopf F, et al. Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits. Osteoarthritis Cartilage 1998;6:50–65.

    Article  CAS  PubMed  Google Scholar 

  73. Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 1982;30:215–224.

    Article  CAS  PubMed  Google Scholar 

  74. Zaucke F, Dinser R, Maurer P, Paulsson M. Cartilage oligomeric matrix protein (COMP) and collagen IX are sensitive markers for the differentiation state of articular primary chondrocytes. Biochem J 2001;358:17–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hunziker EB. Growth-factor-induced healing of partial-thickness defects in adult articular cartilage. Osteoarthritis Cartilage 2001;9:22–32.

    Article  CAS  PubMed  Google Scholar 

  76. Flechtenmacher J, Huch K, Thonar EJ, et al. Recombinant human osteogenic protein 1 is a potent stimulator of the synthesis of cartilage proteoglycans and collagens by human articular chondrocytes. Arthritis Rheum 1996;39:1896–1904.

    Article  CAS  PubMed  Google Scholar 

  77. Jelic M, Pecina M, Haspl M, et al. Regeneration of articular cartilage chondral defects by osteogenic protein-1 (bone morphogenetic protein-7) in sheep. Growth Factors 2001;19:101–113.

    Article  CAS  PubMed  Google Scholar 

  78. Blunk T, Sieminski AL, Appel B, et al. Bone morphogenetic protein 9: a potent modulator of cartilage development in vitro. Growth Factors 2003;21:71–77.

    Article  CAS  PubMed  Google Scholar 

  79. Fortier LA, Mohammed HO, Lust G, Nixon AJ. Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg Br 2002;84:276–288.

    Article  CAS  PubMed  Google Scholar 

  80. Elisseeff J, McIntosh W, Fu K, Blunk T, Langer R. Controlled-release of IGF-I and TGFβ1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res 2001;19:1098–1104.

    Article  CAS  PubMed  Google Scholar 

  81. Blunk T, Sieminski AL, Gooch KJ, et al. Differential effects of growth factors on tissue-engineered cartilage. Tissue Eng 2002;8:73–84.

    Article  CAS  PubMed  Google Scholar 

  82. Loeser RF, Pacione CA, Chubinskaya S. The combination of insulin-like growth factor 1 and osteogenic protein 1 promotes increased survival of and matrix synthesis by normal and osteoarthritic human articular chondrocytes. Arthritis Rheum 2003;48:2188–2196.

    Article  CAS  PubMed  Google Scholar 

  83. Vunjak-Novakovic G, Martin I, Obradovic B, et al. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res 1999;17:130–138.

    Article  CAS  PubMed  Google Scholar 

  84. Freed LE, Langer R, Martin I, Pellis NR, Vunjak-Novakovic G. Tissue engineering of cartilage in space. Proc Natl Acad Sci USA 1997;94:13885–13890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mauck RL, Nicoll SB, Seyhan SL, Ateshian GA, Hung CT. Synergistic effects of growth factors and dynamic loading for cartilage tissue engineering. Tissue Eng 2003;9:697–611.

    Article  CAS  Google Scholar 

  86. Mauck RL, Soltz MA, Wang CC, et al. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 2000;122:252–260.

    Article  CAS  PubMed  Google Scholar 

  87. Paul JP. Forces transmitted by joints in the human body. Proc Inst Mech Eng 1967;181:8.

    Google Scholar 

  88. Dillman CJ. Kinematic analysis of running. In: Wimore JH, ed. Exercise and Sport Sciences Review. New York: Academic Press; 1975:193–218.

    Google Scholar 

  89. Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci 1995;108:1497–1508.

    CAS  PubMed  Google Scholar 

  90. Lee DA, Bader DL. Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J Orthop Res 1997;15:181–188.

    Article  PubMed  Google Scholar 

  91. Davisson T, Kunig S, Chen A, Sah R, Ratcliffe A. Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J Orthop Res 2002;20:842–848.

    Article  CAS  PubMed  Google Scholar 

  92. Seidel JO, Pei M, Gray ML, et al. Long-term culture of tissue engineered cartilage in a perfused chamber with mechanical stimulation. Biorheology 2004;41:445–458.

    CAS  PubMed  Google Scholar 

  93. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966;16:381–390.

    CAS  PubMed  Google Scholar 

  94. Caplan AI. Mesenchymal stem cells. J Orthop Res 1991;9:641–650.

    Article  CAS  PubMed  Google Scholar 

  95. Mackay AM, Beck SC, Murphy JM, et al. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 1998;4:415–428.

    Article  CAS  PubMed  Google Scholar 

  96. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998;238:265–272.

    Article  CAS  PubMed  Google Scholar 

  97. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–147.

    Article  CAS  PubMed  Google Scholar 

  98. Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 2001;268:189–200.

    Article  CAS  PubMed  Google Scholar 

  99. Aubin JE, Liu F, Malaval L, Gupta AK. Osteoblast and chondroblast differentiation. Bone 1995;17:77S–83S.

    Article  CAS  PubMed  Google Scholar 

  100. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 1997;64:295–312.

    Article  CAS  PubMed  Google Scholar 

  101. Long MW. Osteogenesis and bone-marrow-derived cells. Blood Cells Mol Dis 2001;27:677–690.

    Article  CAS  PubMed  Google Scholar 

  102. Galmiche MC, Koteliansky VE, Briere J, Herve P, Charbord P. Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood 1993;82:66–76.

    CAS  PubMed  Google Scholar 

  103. Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998;279:1528–1530.

    Article  CAS  PubMed  Google Scholar 

  104. Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 1995;18:1417–1426.

    Article  CAS  PubMed  Google Scholar 

  105. Young RG, Butler DL, Weber W, et al. Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res 1998;16:406–413.

    Article  CAS  PubMed  Google Scholar 

  106. Awad HA, Butler DL, Boivin GP, et al. Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng 1999;5:267–277.

    Article  CAS  PubMed  Google Scholar 

  107. Cheng L, Qasba P, Vanguri P, Thiede MA. Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic progenitor cells. J Cell Physiol 2000;184:58–69.

    Article  CAS  PubMed  Google Scholar 

  108. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 1999;96:10711–10716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pereira RF, Halford KW, O’Hara MD, et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA 1995;92:4857–4861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Colter DC, Class R, DiGirolamo CM, Prockop DJ. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA 2000;97:3213–3218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Reyes M, Lund T, Lenvik T, et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001;98:2615–2625.

    Article  CAS  PubMed  Google Scholar 

  112. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cellbased therapies. Tissue Eng 2001;7:211–228.

    Article  CAS  PubMed  Google Scholar 

  113. De Bari C, Dell’Accio F, Luyten FP. Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum 2001;44:85–95.

    Article  PubMed  Google Scholar 

  114. Nakahara H, Goldberg VM, Caplan AI. Cultureexpanded human periosteal-derived cells exhibit osteochondral potential in vivo. J Orthop Res 1991;9:465–476.

    Article  CAS  PubMed  Google Scholar 

  115. De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 2001;44:1928–1942.

    Article  PubMed  Google Scholar 

  116. Hunziker EB, Rosenberg LC. Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am 1996;78:721–733.

    CAS  PubMed  Google Scholar 

  117. Young HE, Steele TA, Bray RA, et al. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 2001;264:51–62.

    Article  CAS  PubMed  Google Scholar 

  118. Bosch P, Musgrave DS, Lee JY, et al. Osteoprogenitor cells within skeletal muscle. J Orthop Res 2000;18:933–944.

    Article  CAS  PubMed  Google Scholar 

  119. Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003;100:5807–5812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Brighton CT, Lorich DG, Kupcha R, et al. The pericyte as a possible osteoblast progenitor cell. Clin Orthop Relat Res 1992;(257):287–299.

    Google Scholar 

  121. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2000;2:477–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Noth U, Osyczka AM, Tuli R, et al. Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res 2002;20:1060–1069.

    Article  PubMed  Google Scholar 

  123. Osyczka AM, Noth U, Danielson KG, Tuan RS. Different osteochondral potential of clonal cell lines derived from adult human trabecular bone. Ann NY Acad Sci 2002;961:73–77.

    Article  CAS  PubMed  Google Scholar 

  124. Wickham MQ, Erickson GR, Gimble JM, Vail TP, Guilak F. Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clin Orthop Relat Res 2003;(412):196–212.

    Article  PubMed  Google Scholar 

  125. Dell’Accio F, De Bari C, Luyten FP. Microenvironment and phenotypic stability specify tissue formation by human articular cartilage-derived cells in vivo. Exp Cell Res 2003;287:16–27.

    Article  PubMed  CAS  Google Scholar 

  126. Dowthwaite GP, Bishop JC, Redman SN, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci 2004;117:889–897.

    Article  CAS  PubMed  Google Scholar 

  127. Alsalameh S, Amin R, Gemba T, Lotz M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 2004;50:1522–1532.

    Article  PubMed  Google Scholar 

  128. Murphy JM, Dixon K, Beck S, et al. Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum 2002;46:704–713.

    Article  PubMed  Google Scholar 

  129. Quarto R, Thomas D, Liang CT. Bone progenitor cell deficits and the age-associated decline in bone repair capacity. Calcif Tissue Int 1995;56:123–129.

    Article  CAS  PubMed  Google Scholar 

  130. Rodriguez JP, Garat S, Gajardo H, Pino AM, Seitz G. Abnormal osteogenesis in osteoporotic patients is reflected by altered mesenchymal stem cells dynamics. J Cell Biochem 1999;75:414–423.

    Article  CAS  PubMed  Google Scholar 

  131. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med (Maywood) 2001;226:507–520.

    CAS  Google Scholar 

  132. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 2004;10:55–63.

    Article  CAS  PubMed  Google Scholar 

  133. Gregory CA, Singh H, Perry AS, Prockop DJ. The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J Biol Chem 2003;278:28067–28078.

    Article  CAS  PubMed  Google Scholar 

  134. Awad HA, Halvorsen YD, Gimble JM, Guilak F. Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng 2003;9:1301–1312.

    Article  CAS  PubMed  Google Scholar 

  135. Zhou S, Eid K, Glowacki J. Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Miner Res 2004;19:463–470.

    Article  CAS  PubMed  Google Scholar 

  136. Tuli R, Tuli S, Nandi S, et al. Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem 2003;278:41227–41236.

    Article  CAS  PubMed  Google Scholar 

  137. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002;30:42–48.

    Article  PubMed  Google Scholar 

  138. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003;31:890–896.

    Article  PubMed  CAS  Google Scholar 

  139. Horwitz EM, Prockop DJ, Gordon PL, et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 2001;97:1227–1231.

    Article  CAS  PubMed  Google Scholar 

  140. Djouad F, Plence P, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003;102:3837–3844.

    Article  CAS  PubMed  Google Scholar 

  141. Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg 1994;76:579–592.

    CAS  PubMed  Google Scholar 

  142. Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 2003;48:3464–3474.

    Article  PubMed  Google Scholar 

  143. Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 2004;25:3211–3222.

    Article  CAS  PubMed  Google Scholar 

  144. Williams CG, Kim TK, Taboas A, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng 2003;9:679–688.

    Article  CAS  PubMed  Google Scholar 

  145. Caterson EJ, Li WJ, Nesti LJ, et al. Polymer/alginate amalgam for cartilage-tissue engineering. Ann NY Acad Sci 2002;961:134–138.

    Article  CAS  PubMed  Google Scholar 

  146. Li WJ, Tuli R, Okafor C, et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 2005;26:599–609.

    Article  CAS  PubMed  Google Scholar 

  147. Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 2003;5:32–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Tuan, R.S., Chen, F.H. (2006). Cartilage. In: Stem Cell and Gene-Based Therapy. Springer, London. https://doi.org/10.1007/1-84628-142-3_12

Download citation

  • DOI: https://doi.org/10.1007/1-84628-142-3_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-979-1

  • Online ISBN: 978-1-84628-142-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics