Skip to main content

Renovation of the Injured Heart with Myocardial Tissue Engineering

  • Chapter
Stem Cell and Gene-Based Therapy

Summary and Future Perspectives

The ability to engineer or regenerate lost myocardial tissue caused by injury, aging, disease, or genetic abnormality holds great promise. The vision is to generate significant mass of functional heart muscle tissue. However, the area of myocardial tissue engineering still faces significant difficulties. Scientists are still searching for cell types other than cardiomyocytes. Novel approaches are warranted for material processing to create bioactive scaffolds, which would allow composition of the evolving myocardial structure. There is a need for development of strategies to promote vascularization and/or innervations within engineered myocardial tissue. Other important goals include achievement of immunologic tolerance for engineered constructs and increased understanding of the basic principles governing tissue formation, function, and failure, including the assembly of multiple cell types and biomaterials into multidimensional structures that mimic the architecture and function of native myocardial tissue.

In addition to laboratory-grown myocardial tissue, more research is warranted in the area of cardiac self-repair and regenerating functional myocardium in situ. If successful, these strategies could be used for surgical repair of the infarcted myocardium or congenital cardiac defects and would have a dramatic impact on the future of cardiovascular medicine and public health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Walsh RA. Molecular and cellular biology of the normal, hypertrophied, and failing heart. In: O’Rouke RA, ed. The Heart, Arteries and Veins. 10th ed. New York: McGraw-Hill; 2001:115–118.

    Google Scholar 

  2. Jugdutt BI. Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 2003;108:1395–1403.

    Article  PubMed  Google Scholar 

  3. Weber KT, Anversa P, Armstrong PW, et al. Remodeling and reparation of the cardiovascular system. J Am Coll Cardiol 1992;20:3–16.

    Article  CAS  PubMed  Google Scholar 

  4. Nag AC. Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios 1980;28:41–61.

    CAS  PubMed  Google Scholar 

  5. Garry DJ, Martin CM. Cardiac regeneration: self-service at the pump. Circ Res 2004;95:852–854.

    Article  CAS  PubMed  Google Scholar 

  6. Lapidos KA, Kakkar R, McNally EM. The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res 2004;94:1023–1031.

    Article  CAS  PubMed  Google Scholar 

  7. Sun Y, Kiani MF, Postlethwaite AE, Weber KT. Infarct scar as living tissue. Basic Res Cardiol 2002;97:343–347.

    Article  PubMed  Google Scholar 

  8. Nian M, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 2004;94:1543–1553.

    Article  CAS  PubMed  Google Scholar 

  9. Etzion S, Kedes LH, Kloner RA, Leor J. Myocardial regeneration: present and future trends. Am J Cardiovasc Drugs 2001;1:233–244.

    Article  CAS  PubMed  Google Scholar 

  10. Lee MS, Makkar RR. Stem-cell transplantation in myocardial infarction: a status report. Ann Intern Med 2004;140:729–737.

    Article  PubMed  Google Scholar 

  11. Minatoguchi S, Takemura G, Chen XH, et al. Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation 2004;109:2572–2580.

    Article  CAS  PubMed  Google Scholar 

  12. Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 2003;362:697–703.

    Article  CAS  PubMed  Google Scholar 

  13. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003;114:763–776.

    Article  CAS  PubMed  Google Scholar 

  14. Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 2003;100:12313–12318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matsuura K, Nagai T, Nishigaki N, et al. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 2004;279:11384–11391.

    Article  CAS  PubMed  Google Scholar 

  16. Messina E, De Angelis L, Frati G, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 2004;95:911–921.

    Article  CAS  PubMed  Google Scholar 

  17. Leor J, Aboulafia-Etzion S, Dar A, et al. Bioengineered cardiac grafts: a new approach to repair the infracted myocardium? Circulation 2000;102:III56–61.

    Article  CAS  PubMed  Google Scholar 

  18. Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 1999;354(suppl 1):SI32–34.

    Article  PubMed  Google Scholar 

  19. Etzion S, Battler A, Barbash IM, et al. Influence of embryonic cardiomyocyte transplantation on the progression of heart failure in a rat model of extensive myocardial infarction. J Mol Cell Cardiol 2001;33:1321–1330.

    Article  CAS  PubMed  Google Scholar 

  20. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature 2004;428:487–492.

    Article  CAS  PubMed  Google Scholar 

  21. Humphries MJ, Akiyama SK, Komoriya A, Olden K, Yamada KM. Identification of an alternatively spliced site in human plasma fibronectin that mediates cell type-specific adhesion. J Cell Biol 1986;103:2637–2647.

    Article  CAS  PubMed  Google Scholar 

  22. Griffith LG, Lopina S. Microdistribution of substratum-bound ligands affects cell function: hepatocyte spreading on PEO-tethered galactose. Biomaterials 1998;19:979–986.

    Article  CAS  PubMed  Google Scholar 

  23. Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999;20:45–53.

    Article  CAS  PubMed  Google Scholar 

  24. Tiwari A, Salacinski HJ, Punshon G, Hamilton G, Seifalian AM. Development of a hybrid cardiovascular graft using a tissue engineering approach. FASEB J 2002;16:791–796.

    Article  CAS  PubMed  Google Scholar 

  25. Pratt AB, Weber FE, Schmoekel HG, Muller R, Hubbell JA. Synthetic extracellular matrices for in situ tissue engineering. Biotechnol Bioeng 2004;86:27–36.

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen H, Qian JJ, Bhatnagar RS, Li S. Enhanced cell attachment and osteoblastic activity by P-15 peptidecoated matrix in hydrogels. Biochem Biophys Res Commun 2003;311:179–186.

    Article  CAS  PubMed  Google Scholar 

  27. Koo LY, Irvine DJ, Mayes AM, Lauffenburger DA, Griffith LG. Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J Cell Sci 2002;115:1423–1433.

    CAS  PubMed  Google Scholar 

  28. Kim MR, Jeong JH, Park TG. Swelling induced detachment of chondrocytes using RGD-modified poly(Nisopropylacrylamide) hydrogel beads. Biotechnol Prog 2002;18:495–500.

    Article  CAS  PubMed  Google Scholar 

  29. Mann BK, West JL. Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. J Biomed Mater Res 2002;60:86–93.

    Article  CAS  PubMed  Google Scholar 

  30. Halstenberg S, Panitch A, Rizzi S, Hall H, Hubbell JA. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 2002;3:710–723.

    Article  CAS  PubMed  Google Scholar 

  31. Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 2001;108:407–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scheubel RJ, Zorn H, Silber RE, et al. Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting. J Am Coll Cardiol 2003;42:2073–2080.

    Article  PubMed  Google Scholar 

  33. Rauscher FM, Goldschmidt-Clermont PJ, Davis BH, et al. Aging, progenitor cell exhaustion, and atherosclerosis. Circulation 2003;108:457–463.

    Article  PubMed  Google Scholar 

  34. Dimmeler S, Vasa-Nicotera M. Aging of progenitor cells: limitation for regenerative capacity? J Am Coll Cardiol 2003;42:2081–2082.

    Article  PubMed  Google Scholar 

  35. Leor J, Barbash IM. Cell transplantation and genetic engineering: new approaches to cardiac pathology. Expert Opin Biol Ther 2003;3:1023–1039.

    Article  CAS  PubMed  Google Scholar 

  36. Menasche P. Cellular transplantation: hurdles remaining before widespread clinical use. Curr Opin Cardiol 2004;19:154–161.

    Article  PubMed  Google Scholar 

  37. Smits PC, van Geuns RJ, Poldermans D, et al. Catheterbased intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure. Clinical experience with six-month follow-up. J Am Coll Cardiol 2003;42:2063–2069.

    Article  PubMed  Google Scholar 

  38. Yoon Y-S, Park J-S, Tkebuchava T, Luedeman C, Losordo DW. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation 2004;109:3154–3157.

    Article  PubMed  Google Scholar 

  39. Vulliet PR, Greeley M, Halloran SM, MacDonald KA, Kittleson MD. Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet 2004;363:783–784.

    Article  PubMed  Google Scholar 

  40. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145–1147.

    Article  CAS  PubMed  Google Scholar 

  41. Mummery C, Ward-Van Oostwaard D, Doevendans P, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 2003;107:2733–2740.

    Article  CAS  PubMed  Google Scholar 

  42. Takahashi T, Lord B, Schulze PC, et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 2003;107:1912–1916.

    Article  CAS  PubMed  Google Scholar 

  43. Zimmermann WH, Melnychenko I, Eschenhagen T. Engineered heart tissue for regeneration of diseased hearts. Biomaterials 2004;25:1639–1647.

    Article  CAS  PubMed  Google Scholar 

  44. Leor J, Cohen S. Myocardial tissue engineering: creating a muscle patch for a wounded heart. Ann NY Acad Sci 2004;1015:312–319.

    Article  PubMed  Google Scholar 

  45. Cohen S, Leor J. Rebuilding broken hearts. Biologists and engineers working together in the fledgling field of tissue engineering are within reach of one of their greatest goals: constructing a living human heart patch. Sci Am 2004;291:44–51.

    Article  PubMed  Google Scholar 

  46. Zimmermann WH, Didie M, Wasmeier GH, et al. Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 2002;106:I151–157.

    PubMed  Google Scholar 

  47. Zimmermann WH, Schneiderbanger K, Schubert P, et al. Tissue engineering of a differentiated cardiac muscle construct. Circ Res 2002;90:223–230.

    Article  CAS  PubMed  Google Scholar 

  48. Shimizu T, Yamato M, Isoi Y, et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperatureresponsive cell culture surfaces. Circ Res 2002;90:e40.

    Article  CAS  PubMed  Google Scholar 

  49. Shimizu T, Yamato M, Akutsu T, et al. Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured cardiomyocyte sheets. J Biomed Mater Res 2002;60:110–117.

    Article  CAS  PubMed  Google Scholar 

  50. Dar A, Shachar M, Leor J, Cohen S. Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol Bioeng 2002;80:305–312.

    Article  CAS  PubMed  Google Scholar 

  51. Carrier RL, Rupnick M, Langer R, Schoen FJ, Freed LE, Vunjak-Novakovic G. Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng 2002;8:175–188.

    Article  CAS  PubMed  Google Scholar 

  52. Papadaki M, Bursac N, Langer R, Merok J, Vunjak-Novakovic G, Freed LE. Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am J Physiol Heart Circ Physiol 2001;280:H168–178.

    CAS  PubMed  Google Scholar 

  53. Carrier RL, Papadaki M, Rupnick M, et al. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng 1999;64:580–589.

    Article  CAS  PubMed  Google Scholar 

  54. Bursac N, Papadaki M, Cohen RJ, et al. Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am J Physiol 1999;277:H433–444.

    CAS  PubMed  Google Scholar 

  55. Akins RE, Boyce RA, Madonna ML, et al. Cardiac organogenesis in vitro: reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng 1999;5:103–118.

    Article  CAS  PubMed  Google Scholar 

  56. Bursac N, Papadaki M, White JA, Eisenberg SR, Vunjak-Novakovic G, Freed LE. Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties. Tissue Eng 2003;9:1243–1253.

    Article  CAS  PubMed  Google Scholar 

  57. Kofidis T, Lenz A, Boublik J, et al. Pulsatile perfusion and cardiomyocyte viability in a solid three-dimensional matrix. Biomaterials 2003;24:5009–5014.

    Article  CAS  PubMed  Google Scholar 

  58. Kofidis T, Akhyari P, Boublik J, et al. In vitro engineering of heart muscle: artificial myocardial tissue. J Thorac Cardiovasc Surg 2002;124:63–69.

    Article  CAS  PubMed  Google Scholar 

  59. Radisic M, Park H, Shing H, et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci USA 2004;101:18129–18134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Radisic M, Yang L, Boublik J, et al. Medium perfusion enables engineering of compact and contractile cardiac tissue. Am J Physiol Heart Circ Physiol 2004;286:H507–516.

    Article  CAS  PubMed  Google Scholar 

  61. Zimmermann WH, Fink C, Kralisch D, Remmers U, Weil J, Eschenhagen T. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng 2000;68:106–114.

    Article  CAS  PubMed  Google Scholar 

  62. Zimmermann WH, Eschenhagen T. Cardiac tissue engineering for replacement therapy. Heart Fail Rev 2003;8:259–269.

    Article  CAS  PubMed  Google Scholar 

  63. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 2003;21:157–161.

    Article  CAS  PubMed  Google Scholar 

  64. McDevitt TC, Angello JC, Whitney ML, et al. In vitro generation of differentiated cardiac myofibers on micropatterned laminin surfaces. J Biomed Mater Res 2002;60:472–479.

    Article  CAS  PubMed  Google Scholar 

  65. McDevitt TC, Woodhouse KA, Hauschka SD, Murry CE, Stayton PS. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J Biomed Mater Res 2003;66A:586–595.

    Article  CAS  Google Scholar 

  66. Krupnick AS, Kreisel D, Engels FH, et al. A novel small animal model of left ventricular tissue engineering. J Heart Lung Transplant 2002;21:233–243.

    Article  PubMed  Google Scholar 

  67. Papadaki M, Bursac N, Langer R, Merok J, Vunjak-Novakovic G, Freed LE. Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am J Physiol Heart Circ Physiol 2001;280:H168–178.

    CAS  PubMed  Google Scholar 

  68. Akhyari P, Fedak PW, Weisel RD, et al. Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 2002;106:I137–142.

    Article  PubMed  Google Scholar 

  69. Sodian R, Sperling JS, Martin DP, et al. Fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering. Tissue Eng 2000;6:183–188.

    Article  CAS  PubMed  Google Scholar 

  70. Dohmen PM, Ozaki S, Verbeken E, Yperman J, Flameng W, Konertz WF. Tissue engineering of an auto-xenograft pulmonary heart valve. Asian Cardiovasc Thorac Ann 2002;10:25–30.

    Article  PubMed  Google Scholar 

  71. Colton CK. Implantable biohybrid artificial organs. Cell Transplant 1995;4:415–436.

    Article  CAS  PubMed  Google Scholar 

  72. Zandonella C. Tissue engineering: the beat goes on. Nature 2003;421:884–886.

    Article  CAS  PubMed  Google Scholar 

  73. Li RK, Jia ZQ, Weisel RD, Mickle DA, Choi A, Yau TM. Survival and function of bioengineered cardiac grafts. Circulation 1999;100:II63–69.

    Article  CAS  PubMed  Google Scholar 

  74. Leor J, Aboulafia-Etzion S, Dar A, et al. Bioengineered cardiac grafts: a new approach to repair the infracted myocardium? Circulation 2000;102:III56–61.

    Article  CAS  PubMed  Google Scholar 

  75. Kelley ST, Malekan R, Gorman JH 3rd, et al. Restraining infarct expansion preserves left ventricular geometry and function after acute anteroapical infarction. Circulation 1999;99:135–142.

    Article  CAS  PubMed  Google Scholar 

  76. Oz MC, Konertz WF, Kleber FX, et al. Global surgical experience with the Acorn cardiac support device. J Thorac Cardiovasc Surg 2003;126:983–991.

    Article  PubMed  Google Scholar 

  77. Kellar RS, Landeen LK, Shepherd BR, Naughton GK, Ratcliffe A, Williams SK. Scaffold-based three-dimensional human fibroblast culture provides a structural matrix that supports angiogenesis in infarcted heart tissue. Circulation 2001;104:2063–2068.

    Article  CAS  PubMed  Google Scholar 

  78. Matsubayashi K, Fedak PW, Mickle DA, Weisel RD, Ozawa T, Li RK. Improved left ventricular aneurysn repair with bioengineered vascular smooth muscle grafts. Circulation 2003;108(suppl 1):II219–225.

    PubMed  Google Scholar 

  79. Patel ZS, Mikos AG. Angiogenesis with biomaterial-based drug-and cell-delivery systems. J Biomater Sci Polym Ed 2004;15:701–726.

    Article  CAS  PubMed  Google Scholar 

  80. Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part II. Cellbased therapies. Circulation 2004;109:2692–2697.

    Article  PubMed  Google Scholar 

  81. Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I. Angiogenic cytokines. Circulation 2004;109:2487–2491.

    Article  PubMed  Google Scholar 

  82. Epstein SE, Kornowski R, Fuchs S, Dvorak HF. Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects. Circulation 2001;104:115–119.

    Article  CAS  PubMed  Google Scholar 

  83. Richardson TP, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual growth factor delivery. Nat Biotechnol 2001;19:1029–1034.

    Article  CAS  PubMed  Google Scholar 

  84. Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res 2003;65A:489–497.

    Article  CAS  Google Scholar 

  85. Peters MC, Isenberg BC, Rowley JA, Mooney DJ. Release from alginate enhances the biological activity of vascular endothelial growth factor. J Biomater Sci Polym Ed 1998;9:1267–1278.

    Article  CAS  PubMed  Google Scholar 

  86. Hench LL, Xynos ID, Polak JM. Bioactive glasses for in situ tissue regeneration. J Biomater Sci Polym Ed 2004;15:543–562.

    Article  CAS  PubMed  Google Scholar 

  87. Park HJ, Yoo JJ, Kershen RT, Moreland R, Atala A. Reconstitution of human corporal smooth muscle and endothelial cells in vivo. J Urol 1999;162:1106–1109.

    Article  CAS  PubMed  Google Scholar 

  88. Hench LL, Polak JM. Third-generation biomedical materials. Science 2002;295:1014–1017.

    Article  CAS  PubMed  Google Scholar 

  89. Christman KL, Fok HH, Sievers RE, Fang Q, Lee RJ. Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng 2004;10:403–409.

    Article  CAS  PubMed  Google Scholar 

  90. Kofidis T, De Bruin JL, Hoyt G, et al. Injectable bioartificial myocardial tissue for large-scale intramural cell transfer and functional recovery of injured heart muscle. J Thorac Cardiovasc Surg 2004;128:571–578.

    Article  PubMed  Google Scholar 

  91. Kamelger FS, Marksteiner R, Margreiter E, et al. A comparative study of three different biomaterials in the engineering of skeletal muscle using a rat animal model. Biomaterials 2004;25:1649–1655.

    Article  CAS  PubMed  Google Scholar 

  92. Li RK. Cell transplantation to improve heart function: cell or matrix. Yonsei Med J 2004;45(suppl):S72–73.

    Article  Google Scholar 

  93. Ryu JH, Kim IK, Cho SW, et al. Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infracted myocardium. Biomaterials 2005;26:319–326.

    Article  CAS  PubMed  Google Scholar 

  94. Wu X, Rabkin-Aikawa E, Guleserian KJ, et al. Tissueengineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am J Physiol Heart Circ Physiol 2004;287:H480–487.

    Article  CAS  PubMed  Google Scholar 

  95. Stamm C, Westphal B, Kleine HD, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003;361:45–46.

    Article  PubMed  Google Scholar 

  96. Krupnick AS, Kreisel D, Szeto WY, Popma SH, Rosengard BR. A murine model of left ventricular tissue engineering. J Heart Lung Transplant 2001;20:197–198.

    Article  PubMed  Google Scholar 

  97. Kadner A, Zund G, Maurus C, et al. Human umbilical cord cells for cardiovascular tissue engineering: a comparative study. Eur J Cardiothorac Surg 2004;25:635–641.

    Article  PubMed  Google Scholar 

  98. Li RK, Yau TM, Weisel RD, et al. Construction of a bioengineered cardiac graft. J Thorac Cardiovasc Surg 2000;119:368–375.

    Article  CAS  PubMed  Google Scholar 

  99. Kehat I, Khimovich L, Caspi O, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 2004;22:1282–1289.

    Article  CAS  PubMed  Google Scholar 

  100. Lanza R, Moore MA, Wakayama T, et al. Regeneration of the infarcted heart with stem cells derived by nuclear transplantation. Circ Res 2004;94:820–827.

    Article  CAS  PubMed  Google Scholar 

  101. Chandy T, Rao GH, Wilson RF, Das GS. The development of porous alginate/elastin/PEG composite matrix for cardiovascular engineering. J Biomater Appl 2003;17:287–301.

    Article  CAS  PubMed  Google Scholar 

  102. Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol 2004;44:654–660.

    Article  CAS  PubMed  Google Scholar 

  103. Stock UA, Mayer JE Jr. Tissue engineering of cardiac valves on the basis of PGA/PLA co-polymers. J Long Term Eff Med Implants 2001;11:249–260.

    Article  CAS  PubMed  Google Scholar 

  104. Ozawa T, Mickle DA, Weisel RD, Koyama N, Ozawa S, Li RK. Optimal biomaterial for creation of autologous cardiac grafts. Circulation 2002;106:I176–182.

    PubMed  Google Scholar 

  105. Pego AP, Siebum B, Van Luyn MJ, et al. Preparation of degradable porous structures based on 1,3-trimethylene carbonate and D,L-lactide (co)polymers for heart tissue engineering. Tissue Eng 2003;9:981–994.

    Article  CAS  PubMed  Google Scholar 

  106. Zammaretti P, Jaconi M. Cardiac tissue engineering: regeneration of the wounded heart. Curr Opin Biotechnol 2004;15:430–434.

    Article  CAS  PubMed  Google Scholar 

  107. Calvillo L, Latini R, Kajstura J, et al. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci USA 2003;100:4802–4806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Takano H, Ohtsuka M, Akazawa H, et al. Pleiotropic effects of cytokines on acute myocardial infarction: GCSF as a novel therapy for acute myocardial infarction. Curr Pharm Des 2003;9:1121–1127.

    Article  CAS  PubMed  Google Scholar 

  109. Wang Y, Ahmad N, Wani MA, Ashraf M. Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis. J Mol Cell Cardiol 2004;37:1041–1052.

    Article  CAS  PubMed  Google Scholar 

  110. Jayasankar V, Woo YJ, Bish LT, et al. Gene transfer of hepatocyte growth factor attenuates postinfarction heart failure. Circulation 2003;108(suppl 1):II230–236.

    PubMed  Google Scholar 

  111. Musaro A, Giacinti C, Borsellino G, et al. Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1. Proc Natl Acad Sci USA 2004;101:1206–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zou Y, Takano H, Mizukami M, et al. Leukemia inhibitory factor enhances survival of cardiomyocytes and induces regeneration of myocardium after myocardial infarction. Circulation 2003;108:748–753.

    Article  CAS  PubMed  Google Scholar 

  113. Hiasa K-I, Ishibashi M, Ohtani K, et al. Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation 2004;109:2454–2461.

    Article  CAS  PubMed  Google Scholar 

  114. Bock-Marquette I, Saxena A, White MD, Dimaio JM, Srivastava D. Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 2004;432:466–472.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Leor, J., Landa, N., Cohen, S. (2006). Renovation of the Injured Heart with Myocardial Tissue Engineering. In: Stem Cell and Gene-Based Therapy. Springer, London. https://doi.org/10.1007/1-84628-142-3_1

Download citation

  • DOI: https://doi.org/10.1007/1-84628-142-3_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-979-1

  • Online ISBN: 978-1-84628-142-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics