
7
Numerical Integration

7.1 Introduction

In this chapter we shall discuss techniques whereby functions can be integrated;
these are quite classical. We will give the derivation of the approximations and
will mention the likely failings of the techniques. Two versions of the code will
be given for each of the main methods, so we can start to appreciate the power
of MATLAB. It is of course possible to write the code as if it were Fortran or
C, but that would waste the power of the package.

Before we start we note: if we consider two points we can fit a straight line
through them; with three we can fit a quadratic and with four we can fit a
cubic (this was discussed in more detail in Chapter 5).

We start by breaking down the integration régime into small intervals and
approximating the area below the curve by slices. This method is tantamount
to counting the squares and dealing with the parts of squares at the tops of the
columns in sophisticated ways.



226 7. Numerical Integration

In this case the area under the curve is approximately

7 × 4 × “the area of the boxes”

(the fourth row up has a few part squares as does the fifth row). We obviously
need a scheme which is slightly more robust.

7.2 Integration Using Straight Lines

In this chapter our objective is to calculate the value of the integral

I =

b∫
x=a

f(x) dx.

We shall assume we can calculate (easily) the value of f(x) for all values of
x between a and b. This means we are dealing with a function rather than a
set of data values. We shall explore the latter case in due course but at this
juncture we shall use a new routine integrand.m:�

�

�

�

%

% integrand.m

% input a set of values (x)

% output function values f(x)

%

function [f] = integrand(x)

% Here we use f = sin(xˆ2) as a

% sample function.

f = sin(x.ˆ2);



7.2 Integration Using Straight Lines 227

We shall now take a while to derive the method we are going to use to integrate
the function on the grid of points. We shall use N points and as such we use
the code


�

�

�
step = (b-a)/(N-1);

x = a:step:b;

f = integrand(x);

In order to derive the form for the integration we introduce the nomenclature
that the points we have defined above are (xj , fj), where j runs from 1 to N . Let
us consider the consecutive points (xj , fj) and (xj+1, fj+1) and approximate
the curve between them by a straight line. We use the formula for the line
through the points (x1, y1) and (x2, y2) which is

y − y1

y2 − y1
=

x − x1

x2 − x1
or y = y1 +

y2 − y1

x2 − x1
(x − x1) .

In our case this gives

fL(x) = fj +
fj+1 − fj

h
(x − xj) ,

where we have introduced h = xj+1 −xj and fL(x) the formula for the straight
line (This is just a direct application of Newton’s Forward Differences, (5.1).)
Let us now perform the analytical integration of the function fL(x) between
xj and xj+1 to determine the area Aj,j+1:

Aj,j+1 =

xj+1∫
x=xj

fL(x) dx =

xj+1∫
x=xj

fj+1 − fj

h
(x − xj) + fj dx.

We introduce the linear transformation X = x − xj , where dX = dx and when
x = xj , X = 0 and x = xj+1 correspond to X = h. The integral becomes

Aj,j+1 =

h∫
X=0

[
fj+1 − fj

h
X + fj

]
dX,

which can be integrated to yield

Aj,j+1 =
h

2
(fj + fj+1) .

This is the area of a trapezium with vertices at (xj , 0), (xj , fj), (xj+1, fj+1)
and (xj+1, 0)1.

1 The area of a trapezium is the mean of the length of the two parallel sides times
the perpendicular distance between them; that is (fj + fj+1)/2 times (xj+1 − xj).



228 7. Numerical Integration

xj xj+1

Aj,j+1

This method is unsurprisingly called the trapezium rule. In order to determine
the total area from x = a to x = b we sum all the parts

Area =
j=N−1∑

j=1

Aj,j+1 =
j=N−1∑

j=1

h

2
(fj + fj+1) .

In order to perform this summation it is instructive to write out the series

Area =
h

2
(f1 + f2) +

h

2
(f2 + f3) +

h

2
(f3 + f4) + · · ·

+
h

2
(fN−2 + fN−1) +

h

2
(fN−1 + fN ) ,

so that

Area =
h

2
(f1 + 2f2 + 2f3 + · · · + 2fN−1 + fN ) ≈

b∫
x=a

f(x) dx.

Example 7.1 We shall calculate the integral of the function f(x) = x3 sin x

between zero and one. We shall use N points�

�

�

�

N = 10;

x = linspace(0,1,N);

h = x(2)-x(1);

f = x.ˆ3.*sin(x);

g = h*(sum(f)-f(1)/2-f(N)/2);



7.2 Integration Using Straight Lines 229

Here we have constructed a grid of points running from zero to one and then
worked out the gap between successive points (that is h). We now construct the
function f and work out the expression for the trapezium rule, which is the
sum of the values of f minus half of the end values. This gives the value of the
integral as g.

7.2.1 Errors in the Trapezium Method

The number of points required for a calculation depends on how exactly you
need to know the answer (in general). The error in this scheme is encountered
because we approximate the curve between the points (xj , fj) and (xj+1, fj+1)
by a straight line. This can be reduced by using a quadratic instead over the
interval spanned by the requisite three points.

We could have used the fundamental code which did not make use of the
combinations of the terms:�

�

�

 
integral = 0;

for i = 2:N

integral = integral+(f(i)+f(i-1))/2*h;

end

The advantage of this form of the code is it is far easier to convert to one
in which intermediate results are available. We note that the command /2*h

divides by two and multiplies by h rather than dividing by 2h: this would be
accomplished via parentheses, that is /(2*h).

Before we proceed we should consider the error involved in approximating
the area by a set of trapezia.

 x
j

 x
j+1

 f(x
j
)

 f(x
j+1

)



230 7. Numerical Integration

The error is the unshaded part below the curve. To estimate the extent of
this we again use “Taylor Series” and note that

f(x) = f(xj) +
f(xj+1) − f(xj)

h
(x − xj) +

(x − xj)(x − xj+1)
2

d2f

dx2

∣∣∣∣
x=ξ

,

where ξ ∈ [xj , xj+1]. This can be integrated to give

xj+1∫
x=xj

f(x) dx =
h

2
(f(xj) + f(xj+1)) +

h3

6
d2f

dx2

∣∣∣∣
x=ξ

.

Consequently the error in using just the first term is proportional to h3 and
f ′′(ξ). Notice that if the second derivative is zero over the range the error is
actually zero. Unsurprisingly this corresponds to f(x) being a straight line.

7.3 Integration Using Quadratics

We need to construct a curve which passes through the points (xj−1, fj−1),
(xj , fj) and (xj+1, fj+1). Let us consider a value of j = 1: this is purely to
reduce the verbosity of our expressions. The quadratic passing through these
three points can be written as

fq(x) = f0 + ∆f0
x − x0

h
+ ∆2f0

(x − x0)(x − x1)
2h2 ,

using a truncation of Newton’s forward difference formula, (5.1).
In passing we mention this series expansion is similar to a Taylor series

expansion but instead of the terms being differentials they are differences. In
order to derive the formula we now need to integrate the function fq(x) from
x = x0 to x = x2. This is quite straightforward: however at this point we will
exploit the symbolic capabilities of MATLAB

syms x f0 f1 f2 h x0

q = f0+(f1-f0)/h*(x-x0)+(f2-2*f1+f0)/(2*hˆ2)*(x-x0)*(x-(x0+h));

iq = int(q,x0,x0+2*h);

simplify(iq)

ans =

1/3*h*(f0+4*f1+f2)

We shall dissect this portion of code so you can appreciate what is happen-
ing.



7.3 Integration Using Quadratics 231

– In the first line we assign the variables x, f0, f1, f2, h and x0 to be symbolic.
This means that MATLAB does not have to know the value of the variables
and treats them as mathematical objects.

– In the second line we set up the function q (which is just the quadratic fq(x)).

– This is integrated in the third line (between x0 and x2 = x0+2*h. (This
produces a verbose answer.)

– Finally we simplify our answer.

Hence we have the answer
x=x2∫

x=x0

fq(x) dx =
h

3
(f0 + 4f1 + f2) .

Although we know there is only one quadratic through a given set of points, it
is instructive to re-derive this in another way. We shall start with the general
quadratic

fq(x) = a + b(x − x0) + c(x − x0)(x − x1).

The requirement that the quadratic goes through the point (x0, f0) gives us
that a = f0. Using the point (x1, f1) gives us b = (f1 − f0)(x1 − x0). Finally
using (x2, f2) we have

f2 = f0 +
f1 − f0

x1 − x0
(x2 − x0) + c(x2 − x0)(x2 − x1),

which can be manipulated to give:

c =
1

x2 − x1

(
f2 − f0

x2 − x0
− f1 − f0

x1 − x0

)
.

This gives us the general form of the quadratic through three points (which can
be used for Task 7.10). We now return to the form for regularly spaced points
so ∆xj = h and integrating from x = x0 to x = x2 = x0 + 2h:

x=x0+2h∫
x=x0

fq(x) dx =

x=x0+2h∫
x=x0

f0 +
f1 − f0

h
(x − x0)

+
1
h

(
f2 − f0

2h
− f1 − f0

h

)
(x − x0)(x − x1) dx.

Now using the substitution X = x − x0, so that x = x0 corresponds to X = 0
and x = x2 = x0 + 2h corresponds to X = 2h the expression x − x1 =



232 7. Numerical Integration

X + x0 − x1 = X − h and dx = dX. Hence we have

=

2h∫
X=0

f0 +
f1 − f0

h
X +

1
2h2 (f2 − f0 − 2(f1 − f0)) X(X − h) dX

=
[
f0X +

f1 − f0

h

X2

2
+

1
2h2 (f0 − 2f1 + f2)

(
X3

3
− h

X2

2

)]2h

0

= 2hf0 +
f1 − f0

h
2h2 +

1
2h2 (f0 − 2f1 + f2)

(
8h3

3
− 2h3

)

= h

(
2f0 + 2(f1 − f0) +

1
3

(f0 − 2f1 + f2)
)

=
h

3
(f0 + 4f1 + f2) .

We now need to divide the range of integration into the appropriate number
of subintervals. Notice the number of intervals needs to be even (and hence the
number of points needs to be odd). The total integral is approximated by

b∫
x=a

f(x) dx ≈h

3
(f0 + 4f1 + f2) +

h

3
(f2 + 4f3 + f4) +

h

3
(f4 + 4f5 + f6) + · · ·

+
h

3
(fN−4 + 4fN−3 + fN−2) +

h

3
(fN−2 + 4fN−1 + fN ) .

This can be simplified to give

b∫
x=a

f(x) dx ≈ h

3
(f0 + 4f1 + 2f2 + 4f3 + 2f4 + · · · + 2fN−2 + 4fN−1 + fN ) .

This is called Simpson’s 1
3 rule.

We shall now construct a code to determine the integral. At this point we
could use a code which used a conventional approach, but we shall try to use
a version which exploits the power of MATLAB.



7.3 Integration Using Quadratics 233

�

�

�

�

%

% Simpson’s 1/3 rule.

%

x = 0.0:0.1:1.0;

h = x(2)-x(1);

N = length(x);

if mod(N,2) == 0

disp(’Routine needs an odd number of points’)

break % Ensure the number of points is odd

end

rodd = 1:2:N;

reven = 2:2:(N-1);

weights(rodd) = 2; weights(1) = 1; weights(N) = 1;

weights(reven) = 4;

f = sin(x.ˆ2);

integral = h/3*sum(weights.*f);

format long e

disp([integral])

This calculates the value of the expression

1∫
0

sin x2 dx.

The value which MATLAB comes out with is 3.102602344332209e-01, where
we have changed the way in which these numbers are displayed by using the
command format long e. This answer can be checked using MATLAB’s sym-
bolic capabilities:

syms x f

f = sin(xˆ2);

f1 = int(f,0,1)

f1 =

1/2*FresnelS(2ˆ(1/2)/piˆ(1/2))*2ˆ(1/2)*piˆ(1/2)

This value can be compared with that attained using the symbolic toolbox,
using the command vpa (variable precision arithmetic):



234 7. Numerical Integration

vpa(f1)

ans =

.310268301723381101808152423165

(Note we can change the number of digits using the command digits(10)). We
further note that this is still a symbolic object: in order to obtain a value (which
can be used for plotting, for example) we use the command double. This is a
case of MATLAB being too clever: it has solved the integral and written it as a
Fresnel integral (for further details see Abramowitz and Stegun – Handbook of
Mathematical Functions). Our simple integration using ten points does quite
well: in fact the error is proportional to h4, which can be shown using the same
technique as we used for the trapezium rule on page 230.

In the above code we have introduced the term weights which is applied
to the terms before they are added together to obtain the integral. The MAT-
LAB command mod allows the user to determine the remainder when the first
argument is divided by the second. In this case when considering mod 2 we are
checking for parity (that is whether N is even or odd).

In the code for Simpson’s one third rule we have re-introduced another
MATLAB command, namely break. This stops the code, or more exactly it
exits the current level: for example if it is used in a nested loop it will terminate
the current level and return to the previous level. This manual entry for break
is instructive here

>> help break

BREAK Terminate execution of WHILE or FOR loop.

BREAK terminates the execution of FOR and WHILE loops.

In nested loops, BREAK exits from the innermost loop only.

We now progress to consider cubic approximations to the function in the
hope that this will provide even more accurate answers.

Again we can use a technique which involves summing the separate intervals,
which you may prefer:�

�

�

 
integral = 0;

for j = 1:2:N-2

integral = integral + h*(f(j)+4*f(j+1)+f(j+2))/3;

end



7.4 Integration Using Cubic Polynomials 235

7.4 Integration Using Cubic Polynomials

As in the previous sections we need to define an approximating curve and in
order to do so we need four points (x0, f0), (x1, f1), (x2, f2) and (x3, f3). Using
the same form as above we can write the cubic equation as

fc(x) = f0+∆f0
x − x0

h
+∆2f0

(x − x0)(x − x1)
2h2 +∆3f0

(x − x0)(x − x1)(x − x2)
6h3 .

In addition to the terms defined earlier we have introduced the third-order
forward difference. This can be defined recursively using ∆2, so that

∆3f0 = ∆2(∆f0) = ∆2f1 − ∆2f0

= (f3 − 2f2 + f1) − (f2 − 2f1 + f0)

= f3 − 3f2 + 3f1 − f0,

using the Newton forward difference for ∆2f0. We now need to integrate from
x = x0 to x = x3, and we again exploit the symbolic tool box for this, using
the code

syms x f0 f1 f2 f3 h x0

x1 = x0+h; x2 = x0+2*h; x3 = x0+3*h;

t1 = (f1-f0)/h*(x-x0);

t2 = (f2-2*f1+f0)/(2*hˆ2)*(x-x0)*(x-x1);

t3 = (f3-3*f2+3*f1-f0)/(6*hˆ3)*(x-x0)*(x-x1)*(x-x2);

q = f0+t1+t2+t3;

q1 = int(q,x,x0,x3);

simplify(q1)

This gives the answer 3/8*h*(f0+3*f1+3*f2+f3). Thus we have

x3∫
x=x0

fc(x) dx =
3h

8
(f0 + 3f1 + 3f2 + f3) .

You should note it is possible to do all these integrals by hand, but we wish to
demonstrate the power and the utility of this particular toolbox.

We now need to combine all the subintervals, so

b∫
x=a

f(x) dx ≈ 3h

8
(f0 + 3f1 + 3f2 + f3) +

3h

8
(f3 + 3f4 + 3f5 + f6) + · · ·

+
3h

8
(fN−3 + 3fN−2 + 3fN−1 + fN ) ,



236 7. Numerical Integration

which can be simplified to give
b∫

x=a

f(x) dx ≈ 3h

8
(f0 + 3f1 + 3f2 + 2f3 + 3f4 + 3f5 + · · ·

+2fN−3 + 3fN−2 + 3fN−1 + fN ) .

This is referred to as Simpson’s 3
8 rule.

We shall now give a MATLAB program based on the same structure as the
previous one. Notice this time the number of points needs to be divisible by
three.�

�

�

�

%

% simpson’s 3/8 rule.

%

N = 10;

x = linspace(0,1,N);

h = x(2)-x(1);

ms = ’Number of intervals should be divisible by three’;

if mod(N-1,3) ˜= 0

disp(ms)

break

end

m = (N-1)/3;

rdiff = 3*(1:(m-1))+1;

weights = 3*ones(1,N);

weights(1) = 1; weights(N) = 1;

weights(rdiff) = 2;

f = sin(x.ˆ2);

integral = 3*h/8*sum(weights.*f);

disp([integral])

The answer given by this is 0.31024037588964. In fact this is not quite as good
as the previous method. The error is again proportional to h4 but the constant
of proportionality is larger. We could also write the integral in separate regions,
that is without combination, so�

�

�

�

integral = 0;

for j = 1:3:N-3

integral = integral + h*(f(j)+3*f(j+1) ...

+3*f(j+2)+f(j+3))*3/8;

end



7.5 Integrating Using MATLAB Commands 237

Each of these methods has a restriction on the numbers of points one can
use. However these can be circumvented by using an amalgamation of the two
schemes. There are other methods available for integrating functions and some
of these will be met in due course. We could continue this process, especially
with the symbolic toolbox at our disposal to perform the algebra. For instance
the formula obtained by using a quartic over five points is

x4∫
x=x0

f(x) dx ≈ 2h

45
(7f0 + 32f1 + 12f2 + 32f3 + 7f4) .

Although you might think the higher the order the polynomial the more
accurately you would know the answer, there are problems which are intrinsic
to using high-order polynomials. In fact the optimum method is to use a com-
bination of the two Simpson methods. If the number of points supplied is even
we use the one third rule for the first N − 3 points (which is necessarily an odd
number of points and consequently an even number of intervals) and then we
use the three-eighths rule on the remaining points.

7.5 Integrating Using MATLAB Commands

As with many examples in this text we can also use standard MATLAB com-
mands, for instance quad and quad8 (see help quad). These commands use
similar techniques to those above but with the advantage of automation. For
instance they exploit grids which can adapt. This means that in regions which
are harder to integrate (perhaps with more variation in the function) the scheme
adds extra points.

The syntax is:	




�

�
tol = [1e-4 1e-5];

a = 0; b = pi;

trace = 1;

q = quad(’sin’,a,b,tol,trace)

These quantities are respectively the extent of the domain x ∈ [a, b], the
tolerances (relative and absolute) and whether the user wants to see a trace or
not (setting trace as non-zero shows the evolution of the calculation).

Example 7.2 We show the integration of the function J1(x) for x = 0 to
x = 10. This is actually a Bessel function which occurs as one of the solutions



238 7. Numerical Integration

to the differential equation

x2 d2y

dx2 + x
dy

dx
+ (x2 − 1)y = 0,

and is revisited in Chapter 8.
Fortunately MATLAB has a routine which evaluates Bessel functions but

we need to write our own routine to make sure that it is available for quad:�
�

�
�

function [value]=ourbess(x)

value = besselj(1,x);

and then we simply need the code:�
�

�
�q = quad(’ourbess’,0,10,[1e-5 1e-5],1);

This gives a value of 1.24593587184673. The integral of the function J1(x) is
−J0(x) and hence the value we seek is −J0(10) + J0(0) ≈ 1.245935764; so as
we can see the integration scheme does very well.

7.6 Specific Examples of Integrals

We shall now describe how we can deal with other problems which arise when
evaluating numerical integrals.

7.6.1 Infinite Integrals and Removable Singularities

Using the various methods we can evaluate integrals from a to b, but if one or
more of these values is infinite we need a different treatment. This will vary
depending on the form of the integral or more exactly the integrand.

Example 7.3 For example let us consider the integral

I =

∞∫
0

e−x2
dx.



7.6 Specific Examples of Integrals 239

In this case the integrand e−x2
decays very quickly so we can adequately deter-

mine the value of the integral using

IX =

X∫
0

e−x2
dx,

for a suitable value of X (in this case X = 10 is more than sufficient). We
can evaluate the integral for a few values of X until IX is constant (to within
a defined tolerance). We could develop an algorithm to decide what value of X

to use, but in general we will use the above method. We can also exploit the
symmetry of problems, for instance

∞∫
−∞

e−x2
dx = 2

∞∫
0

e−x2
dx ≈ 2

X∫
0

e−x2
dx,

provided X � 1. We can also use transformations to rescale the regions of
integration.

In fact in this example we could have used the MATLAB command erf which
gives the error function

E(q) =
2√
π

x∫
q=0

e−q2
dq.

We can use erf(Inf) which gives us the value unity.
We now consider how we might perform an integral for which the integrand

is singular at an end-point of the range. For instance:

1∫
q=0

1
q1/2 dq =

[
2q1/2

]1
q=0

= 2.

Example 7.4 We consider the integral of the function f(x) = e−x/
√

x between
x = 0 and x = 1. Firstly we separate the range into the two disjoint ranges
[0, ε)∪ [ε, 1] where ε � 1 (that is it is very small). We now consider the integral:

ε∫
0

e−x

√
x

dx



240 7. Numerical Integration

and note that over this range e−x ≈ 1 − x + x2/2 + · · · . Thus

ε∫
0

e−x

√
x

dx ≈
ε∫

0

1√
x

(
1 − x +

x2

2
+ · · ·

)
dx =

[
2x1/2 − 2

3
x3/2 − 1

5
x5/2 + · · ·

]ε

0

=
(

2ε1/2 − 2
3
ε3/2 − 1

5
ε5/2

)
.

The integral can now be evaluated using:�

�

�

�

epsil = 0.01;

val = 2*sqrt(epsil)-2/3*epsilˆ1.5-1/5*epsilˆ2.5;

x = linspace(epsil,1,100);

f = exp(-x)./sqrt(x);

h = x(2)-x(1);

N = length(x);

int = val;

for j = 1:N-1

int = int + h/2*(f(j+1)+f(j));

end

This gives a value 1.49764481658781 (the value given by MATLAB is
erf(1)*sqrt(pi) which is erf(1)

√
π ≈ 1.493648266) where

erf(x) =
2√
π

x∫
t=0

e−t2 dt.

7.6.2 Indefinite Integrals

So far we have only been interested in definite integrals, but we shall now
consider how one might determine

I(x) =

x∫
q=a

f(q) dq.

Instead of using a scalar variable to store the cumulative total, we exploit a
vector to store intermediate results, so that



7.6 Specific Examples of Integrals 241

�

�

�

�

integral = zeros(size(x));

step = x(2)-x(1);

N = length(integral);

for j = 2:N

integral(j) = integral(j-1)+step*(f(j)+f(j-1))/2;

end

disp([’Value of total integral ’ num2str(integral(N))]);

Example 7.5 We now plot the function

g(x) =

x∫
q=0

e−q2
dq.

We determine g(x) for x = 0 to x = 10 using the code�

�

�

�

xv = linspace(0,10);

f = exp(-xv.ˆ2);

N = length(xv);

step = xv(2)-xv(1);

g(1) = 0.0;

for j = 2:N

g(j) = g(j-1)+step*(f(j)+f(j-1))/2;

end

plot(xv,g)

text(5,max(g)/2,’Integral of eˆ{-xˆ2}’,’FontSize’,20)

which gives



242 7. Numerical Integration

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Integral of e−x
2

7.7 Tasks

Task 7.1 Construct the sequence

f(i) =

⎧⎨
⎩

1 if mod (i, 3) = 0
2 if mod (i, 3) = 1
3 if mod (i, 3) = 2

up to N = 12.

Task 7.2 In Chapter 7 for Simpson’s one third rule we used	




�

�
rodd = 1:2:N;

reven = 2:2:(N-1);

weights(rodd) = 2; weights(1) = 1; weights(N) = 1;

weights(reven) = 4;

and for Simpson’s three eighths rule�

�

�

�

m = (N-1)/3;

rdiff = 3*(1:(m-1))+1;

weights = 3*ones(1,N);

weights(1) = 1; weights(N) = 1;

weights(rdiff) = 2;



7.7 Tasks 243

Write out these coefficients for N = 9 for the one third rule and N = 10 for
the three eighths rule. You should construct each of the vectors by hand.

By now you should be able to read the codes trap.m, simp13.m and simp38.m

and understand what they do. You should also be able write your own program
which returns the value of a function evaluated at a given point. Try this task.

Task 7.3 Write a routine which takes an input x and returns the value of
f(x) = ln

(
x +

√
x2 + 1

)
.

Task 7.4 Using the trapezium rule calculate the integral of the quadratic x2 −
3x + 2 between x = 1 and x = 3 (check your answer with the exact answer).

Task 7.5 Using Simpson’s one third rule integrate the cubic x3 −x+1 between
the limits x = 0 and x = 1 (check your answer against the exact answer).

Task 7.6 Using Simpson’s one third rule integrate the function f(x) = sinx

between the limits x = 0 and x = π (check your answer against the exact
answer). You might want to change the number of points you use and see what
happens to the error.

Task 7.7 Calculate the value of the integral

∞∫
0

1√
x2 + 1

dx.

You will need to truncate the domain, and you should investigate the effect of
this truncation as well as the number of points required to accurately calculate
the integral.

Task 7.8 The length along a curve y = y(x) from x = a to x = b is given by
the expression

S =

b∫
x=a

√
1 +

(
dy

dx

)2

dx.

In many cases this expression can be determined analytically: however there are
some very simple cases for which it can’t be. Consider the problem of a sine
curve truncated over the range [θ, π − θ]:



244 7. Numerical Integration

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

The expression for the length of this curve is

S =

π−θ∫
φ=θ

√
1 + cos2 xdx.

Unfortunately this integral is intractable using analytic means, but determine
the value numerically using the trapezium rule for a variety of values of θ.

Task 7.9 (*) Determine the integral

10∫
0

cos x

x1/2 dx

by splitting the integral into two ranges [0, ε] and [ε, 10] where ε is taken to be
small. In this first range the function cos x can be approximated by its Taylor
series and this form can be used to work out the contribution from the “singular
part” of the integral.

Task 7.10 (*) Derive an expression for the integral of the quadratic passing
through the points (xi, fi) i = 0, 1 and 2 from x = x0 to x = x2 (use the general
quadratic on page 231). This gives you Simpson’s scheme for variably spaced
points this can also be extended to four points with a cubic.

If you are feeling very brave you could also work out the errors associated
with these approximations.



7.7 Tasks 245

Task 7.11 Integrate the function x lnx between the limits 1 and 2 using the
MATLAB function quad.




