Skip to main content

Early Evolution of the Foot

  • Chapter
Book cover The Human Foot

Abstract

The history of life can be best understood using the analogy of a tree. All living things, be they animals, plants, fungi, bacteria, or viruses are on the outside of the tree, .but they are all descended from a common ancestor at its base. The evolutionary history of all these living forms is represented by the branches within the tree. Modern humans are at the end of a relatively short twig. There is reliable genetic evidence to suggest that our nearest neighbor on the Tree of Life is the chimpanzee, with another African ape, the gorilla, being the next closest neighbour. The combined chimp/human twig is part of a small higher primate branch, which is part of a larger primate branch, which is just a small component of the bough of the Tree of Life that includes all animals (Figure 1.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clack J. Gaining Ground. Bloomington: Indiana University Press; 2002.

    Google Scholar 

  2. Westenberg K. From fins to feet. Nat Geo. 1999; 195: 114–127.

    Google Scholar 

  3. Romer A. Man and the Vertebrates. Chicago: Chicago University Press; 1933.

    Google Scholar 

  4. Romer A. Vertebrate Paleontology. 2nd ed. Chicago: Chicago University Press; 1945.

    Google Scholar 

  5. Young, J. The Life of Vertebrates. Oxford: Clarendon Press; 1981.

    Google Scholar 

  6. Radinsky L. The Evolution of the Vertebrate Design. Chicago: University of Chicago Press; 1987.

    Google Scholar 

  7. Carroll R. Vertebrate Paleontology and Evolution. New York: W.H. Freeman; 1988.

    Google Scholar 

  8. Romer A. Vertebrate Paleontology. Chicago: University of Chicago Press; 1966.

    Google Scholar 

  9. Ahlberg PE, Milner AR.The origin and early diversification of tetrapods. Nature. 1994; 368: 507–512.

    Article  Google Scholar 

  10. Sordino P, Duboule D. A molecular approach to the evolution of vertebrate paired appendages. Trends Ecol Evol. 1996; 11: 114–119.

    Article  CAS  PubMed  Google Scholar 

  11. Hinchlife JR. Developmental basis of limb evolution. Int J Dev Biol. 2002; 46: 835–845.

    Google Scholar 

  12. Lewis O.J. Functional Morphology of the Evolving Hand and Foot. Oxford: Clarendon Press; 1989.

    Google Scholar 

  13. Isidro A, Gonzalez-Casanova J. A glimpse into the evolution of the hallucial tarsometatarsal joint. Foot and Ankle Surgery. 2002; 8: 169–174.

    Article  Google Scholar 

  14. Benton M. Vertebrate Paleontology. Malden, MA: Blackwell; 2005.

    Google Scholar 

  15. Gegenbaur C. Untersuchung zur vergleichenden Anatomie der Wirbeltiere. I. Carpus and Tarsus. Leipzig: Englemann; 1864.

    Google Scholar 

  16. Baur G. Zur Morphologie des Tarsus der Säugethiere. Morphologisches Jahrbuch. 1884; 10: 458–461.

    Google Scholar 

  17. Baur G. On the morphology of the carpus and tarsus of vertebrates. Am Nat. 1885; 19: 718–720.

    Google Scholar 

  18. Romer A, Bryne F. The pes of Diadectes: Notes on the primitive tetrapod limb. Palaebiologica. 1931; 4: 25–48.

    Google Scholar 

  19. Romer A, Price L. Review of the Pelycosauria. Geo Soc Am Special Paper. 1940; 28: 538.

    Google Scholar 

  20. Steiner H. Die embryonale Hand-und Fussekelettentwicklung von Tupaia. Verhandlungen der Schweizerischen Naturforschenden Gesellschaft. 1951; 113: 153–154.

    Google Scholar 

  21. Berman D, Henrici A. Homology of the astragulus and structure and function of the tarsus of Diadectidae. J Paleont. 2003; 77: 172–188.

    Article  Google Scholar 

  22. Peabody F. The origin of the astragalus of reptiles. Evolution. 1951; 5: 339–344.

    Article  Google Scholar 

  23. Rogers E. Looking at Vertebrates. Essex: Longman; 1986.

    Google Scholar 

  24. Carroll R. Patterns and Processes of Vertebrate Evolution. Cambridge: Cambridge University Press; 1997.

    Google Scholar 

  25. Schaeffer B. The morphological and functional evolution of the tarsus in amphibians and reptiles. Bull Am Mus Nat Hist. 1941; 78: 395–472.

    Google Scholar 

  26. Romer A. Vertebrate Paleontology. Chicago: University of Chicago Press; 1955.

    Google Scholar 

  27. Albrecht P. Sur les homodynamies qui existent entre la main et le pied des mammiferes. Presse medicale blege. 1884; 36: 329–311.

    Google Scholar 

  28. Cope E. Fifth contribution to the knowledge of the fauna of the Permian formation of Texas and the Indian territory. Palaeontological Bull. 1884; 39: 28–47.

    Google Scholar 

  29. Cope E. The relationship between theromorphous reptiles and the monotreme. Mammalia Proc Am Assoc Advance Sci. 1885; 33: 471–482.

    Google Scholar 

  30. Bardeleben K. Ueber neue Bestandteile der Hand-und Fusswurzel der Säugethiere, sowie die normale Anlage von Rudimenten ‘Überzähliger’ Finger und Zehen beim Menschen. Sitzungsberichte der jena Gesellschaft für Medizin und Naturwissen schaften. 1885; 19: 149–164.

    Google Scholar 

  31. Conroy G, Rose, M. The evolution of the primate foot from the earliest primates to the Miocene hominoids. Foot Ankle. 1983; 3: 342–364.

    Article  CAS  PubMed  Google Scholar 

  32. Martin R. Primate Origins and Evolution. Princeton, NJ: Princeton University Press; 1990.

    Google Scholar 

  33. Hildebrand M. Analysis of Vertebrate Structure. 4th ed. New York: Wiley; 1995: 657.

    Google Scholar 

  34. Gebo D. Functional morphology of the foot in primates. In: Gebo D, ed. Postcranial Adaptations in Nonhuman Primates. DeKalb, IL: Northern Illinois University Press; 1993a:175–198.

    Google Scholar 

  35. Fleagle J. Primate Adaptations and Evolution. San Diego: Academic; 1999.

    Google Scholar 

  36. Gebo D. Postcranial adaptation and evolution in Lorisidae. Primates. 1989; 30: 347–367.

    Article  Google Scholar 

  37. Strasser E. Relative development of the hallux pedal digit formulae in Cercopithecidae. J Hum Evol. 1994; 26:5/6: 413–440.

    Article  Google Scholar 

  38. Wunderlich RE. Pedal Form and Function in Anthropoid Primates. In: Doctoral Program in Anthropological Sciences. Stony Brook: State University of New York at Stony Brook; 1999.

    Google Scholar 

  39. Demes AB, et al. The kinetics of primate quadrupedalism: “Hind limb drive” reconsidered. J Hum Evol. 1994; 26: 353–374.

    Article  Google Scholar 

  40. Rollison J, Martin R. Comparative aspects of primate locomotion, with special reference to arboreal cercopithecines. Symp Zool Soc Lond. 1981; 48: 377–427.

    Google Scholar 

  41. Lovejoy C. The evolution of human walking. Sci Am. 1988; 259: 118–125.

    Article  CAS  PubMed  Google Scholar 

  42. Aiello L, Dean C. An Introduction to Human Evolutionary Anatomy. San Diego: Academic; 2002.

    Google Scholar 

  43. Fleagle J. Primate Adaptations and Evolution. San Diego: Academic; 1988/1999.

    Google Scholar 

  44. Whipple I. The ventral surface of the mammalian cheiridium, with special reference to the conditions found in man. Z Morph Anthrop. 1904; 7: 261–368.

    Google Scholar 

  45. Johnson R. Pads on the palm and sole of the human fetus. Am Nat. 1899; 33: 729–734.

    Article  Google Scholar 

  46. Cartmill M. The volar skin of primates: Its frictional characteristics and their functional significance. Am J Phys Anthropol. 1979; 50: 497–510.

    Article  CAS  PubMed  Google Scholar 

  47. Hamrick M. Development and evolution of the mammalian limb: Adaptive diversification of nails, hooves, and claws. Evol Devel. 2001; 3: 355–363.

    Article  CAS  Google Scholar 

  48. Szalay FS, Delson E. Evolutionary History of the Primates. New York: Academic; 1979.

    Google Scholar 

  49. Steiner H. Der Aufbau des Säugetier-Carpus und-Tarsus nach neueren embyologischen Untersuchungen. Rev Suisse Zool. 1942; 49: 217–223.

    Google Scholar 

  50. Cartmill M. Rethinking primate origins. Science. 1974; 184: 436–443.

    Article  CAS  PubMed  Google Scholar 

  51. Schmitt D, Lemelin P. Origins of primate locomotion: Gait mechanics of the woolly opossum. Am J Phys Anthrop. 2002; 118: 231–238.

    Article  PubMed  Google Scholar 

  52. Bloch J, Boyer D. Grasping primate origins. Science. 2002; 298: 1606–1610.

    Article  CAS  PubMed  Google Scholar 

  53. Conroy G. Primate Evolution. New York: W.W. Norton; 1990

    Google Scholar 

  54. Szalay FS, Decker RL. Origins, evolution, and function of the tarsus in Late Cretaceous Eutheria and Paleocene primates. In: Jenkins FA, ed. Primate Locomotion, New York: Academic; 1974: 223–260.

    Google Scholar 

  55. Dagosto M. Postcranial anatomy and locomotor behavior in Eocene primates. In: Gebo D, ed. Postcranial Adaptations in Nonhuman Primates. DeKalb, IL: Northern Illinois University Press;1993:199–219.

    Google Scholar 

  56. Rasmussen D. Early catarrhines of the African Eocene and Oligocene. In: Hartwig W, ed. The Primate Fossil Record, Cambridge: Cambridge University Press; 2002.

    Google Scholar 

  57. Gebo D. Postcranial anatomy and locomotor adaptation in early African anthropoids. In: Gebo D, ed. Postcranial Adaptations in Nonhuman Primates, DeKalb, IL: Northern Illinois University Press; 1993b: 220–234.

    Google Scholar 

  58. Kay R, Fleagle J, Simons E. A revision of the Oligocene apes of Fayum Province, Egypt. Am J Phys Anthrop. 1981; 55: 293–322.

    Article  Google Scholar 

  59. Fleagle J, Kay R. The phyletic position of Parapithecidae. J Hum Evol. 1987; 16: 483–532.

    Article  Google Scholar 

  60. Andrews PJ. Family group systematics and evolution among catarrhine primates. In: Delson E, ed. Ancestors: The Hard Evidence. New York: Alan R. Liss; 1985: 14–22.

    Google Scholar 

  61. Harrison T. The phyletic relationships of the early catarrhine primates: A review of the current evidence. J Hum Evol. 1987; 16: 41–80.

    Article  Google Scholar 

  62. Sarmiento E. The significance of the heel process in anthropoids. Int J Primatol. 1983; 4: 127–152.

    Article  Google Scholar 

  63. Harrison T. Late Oligocene to Middle Miocene Catarrhines from Afro-Arabia. Hartwig W, ed. Cambridge: Cambridge University Press; 2002: 311–338.

    Google Scholar 

  64. Andrews PJ. Evolution and environment in the Hominoidea. Nature. 1992; 360: 41–646.

    Article  Google Scholar 

  65. Rose M. Locomotor anatomy of Miocene hominoids.In: Gebo D, ed. Functional Morphology of the Foot in Primates, 1993, DeKalb, IL: Northern Illinois University Press; 252–272.

    Google Scholar 

  66. Begun D, Teaford M, Walker A. Comparative and functional anatomy of Proconsul phalanges from the Kaswanga Primate Site, Rusinga Island, Kenya. J Hum Evol. 1994; 26: 89–165.

    Article  Google Scholar 

  67. Langdon J. Functional morphology of the Miocene hominoid foot. In: Contributions to Primatology. Vol. 22. Szalay F, ed. New York: Karger; 1986

    Google Scholar 

  68. Walker AC, Pickford M. New postcranial fossils of Proconsul africanus and Proconsul nyanzae. In: Ciochon RL, Corruccini RS, eds. New Interpretations of Ape and Human Ancestry. New York: Plenum;1983: 325–351.

    Chapter  Google Scholar 

  69. Ishida H, et al. Nacholapithecus skeleton from the Middle Miocene of Kenya. J. Hum. Evol. 2004; 46: 69–103.

    Article  PubMed  Google Scholar 

  70. Begun D. European hominoids. In: Hartwig W, ed. The Primate Fossil Record. Cambridge: Cambridge University Press; 2002: 339–368.

    Google Scholar 

  71. Begun DR. New catarrhine phalanges from Rudabanya (Northeastern Hungary) and the problem of parallelism and convergence in the hominoid postcranial morphology. J Human Evol. 1993a; 24: 373–402.

    Article  Google Scholar 

  72. Tuttle R. Knuckle-walking and the problem of human origins. Science. 1969;166: 953–961.

    Article  CAS  PubMed  Google Scholar 

  73. Tuttle R. Darwin’s apes, dental apes, and the descent of man: normal science in evolutionary anthropology. Curr Anthrop.1974;15: 389–398.

    Article  Google Scholar 

  74. Stern J. Before bipedality. Yrbk Phys Anthrop. 1975; 19: 59–68.

    Google Scholar 

  75. Prost, J., Origin of bipedalism. Am J Phys Anthrop. 1980; 52: 175–189.

    Article  CAS  PubMed  Google Scholar 

  76. Fleagle J, et al. Climbing: A biomechanical link with brachiation and bipedalism. Symp Zool Soc Lond. 1981; 48: 359–373.

    Google Scholar 

  77. Stern J, Susman R. Electromyography of the gluteal muscles in Hylobates, Pongo, and Pan: Implications for the evolution of hominid bipedality. Am J Phys Anthrop. 1981; 55: 153–166.

    Article  Google Scholar 

  78. Ishida H, Kumakura H, Kondo S.Primate bipedalism and quadrupedalism: comparative electromyography. In: Kondo S, ed. Primate Morphophysiology, Locomotor Analyses and Human Bipedalism, Tokyo: University of Tokyo Press; 1985: 59–79.

    Google Scholar 

  79. Senut B. Climbing as a crucial preadaptation for human bipedalism. Int J Skeletal Res. 1988; 14: 35–44.

    Google Scholar 

  80. Gebo D. Climbing, brachiation, and terrestrial quadrupedalism: historical precursors of hominid bipedalism. Am J Phys Anthrop. 1996; 101: 55–92.

    Article  CAS  PubMed  Google Scholar 

  81. Sarmiento E. Generalized quadrupeds, committed bipeds and the shift to open habitats: An evolutionary model of hominid divergence. Am Mus Novitates. 1998; 3250: 1–78.

    Google Scholar 

  82. Washburn S. Behavior and the origin of Man. Proc R Anthrop Inst Gr Br Ire. 1967; 3: 21–27.

    Google Scholar 

  83. Corruccini R. Comparative osteometrics of the hominoid wrist joint, with special reference to knuckle-walking. J Human Evol.1978; 7: 307–321.

    Article  Google Scholar 

  84. Shea B, Inouye S. Knuckle-walking ancestors. Science. 1993; 259: 293–294.

    Article  CAS  PubMed  Google Scholar 

  85. Begun D. Knuckle-walking ancestors. Science. 1993b. 259: 294.

    Article  Google Scholar 

  86. Begun D. Relations among the great apes and humans: new interpretations based on the fossil great ape Dryopithecus. Yrbk Phys Anthrop. 1994; 37: 11–63.

    Article  Google Scholar 

  87. Richmond B, Strait D. Evidence that humans evolved from a knuckle-walking ancestor. Nature. 2000; 404: 382–385.

    Article  CAS  PubMed  Google Scholar 

  88. Richmond B, Begun D, Strait D. Origin of human bipedalism: The knuckle-walking hypothesis revisited. Am J Phys Anthrop. 2001; 44: 70–105.

    Article  Google Scholar 

  89. Gebo D. Plantigrady and foot adaptation in African apes: implications for hominid evolution. Am J Phys Anthrop. 1992; 89: 29–58

    Article  CAS  PubMed  Google Scholar 

  90. Meldrum D. On plantigrady and quadrupedalism. Am J Phys Anthrop. 1993; 91: 379–381.

    Article  CAS  PubMed  Google Scholar 

  91. Schmitt D, Larson S. Heel contact as a function of substrate type and speed in primates. Am J Phys Anthrop. 1995; 96: 39–50.

    Article  CAS  PubMed  Google Scholar 

  92. Horai S, et al. Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc Nat Acad Sci USA. 1995; 92: 532–536.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Ruvolo M. Molecular phylogeny of the hominoids: Inferences from multiple independent DNA sequence data sets. Mol Biol Evol. 1997; 14: 248–265.

    Article  CAS  PubMed  Google Scholar 

  94. Chen F-C, Li W-H. Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am J Hum Genetics. 2001; 68: 444–456.

    Article  CAS  Google Scholar 

  95. Brunet M, et al. A new hominid from the upper Miocene of Chad, Central Africa. Nature. 2002; 418: 145–151.

    Article  CAS  PubMed  Google Scholar 

  96. Wolpoff M, et al. Sahelanthropus or ‘Sahelpithecus’? Nature. 2002; 419: 581–582.

    Article  CAS  PubMed  Google Scholar 

  97. Senut B, et al. First hominid from the Miocene (Lukeino Formation, Kenya). CR Acad Sci. 2001; 332: 137–144.

    Google Scholar 

  98. Ward S, Duren D. Middle and late Miocene African hominoids. In Hartwig W, ed. The Primate Fossil Record, Cambridge: Cambridge University Press; 2002: 385–397.

    Google Scholar 

  99. Haile-Selassie Y. Late Miocene hominids from the Middle Awash, Ethiopia. Nature. 2001; 412: 178–181.

    Article  CAS  PubMed  Google Scholar 

  100. Galick K, et al. External and internal morphology of the BAR 1002’ 00 Orrorin tugenensis femur. Science. 2004; 1450–1453.

    Google Scholar 

  101. Coates, M.I. and Clack, J.A. 1995. Romer’s Gap – Tetrapod origins and terrestriality. In: Arsenault M, Lelivre H, Janvier P, eds. Proceedings of the 7th International Symposium on Early Vertebrates. Bulletin du Muséum national d’Histoire naturelle, Paris. 373–388.

    Google Scholar 

  102. Adams LA, Eddy, S. 1949. Comparative Anatomy. 2d ed. London: Chapman & Hall.

    Google Scholar 

  103. Lewis O.J. The homologies of the mammalian tarsal bones. J Anat. 1964; 98.

    Google Scholar 

  104. Kirk EC, et al. Comment on “Grasping Primate Origins”. Science. 2003; 300:741.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Klenerman, L., Wood, B. (2006). Early Evolution of the Foot. In: The Human Foot. Springer, London. https://doi.org/10.1007/1-84628-032-X_1

Download citation

  • DOI: https://doi.org/10.1007/1-84628-032-X_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-925-8

  • Online ISBN: 978-1-84628-032-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics