Skip to main content

Quantitative Techniques in PET

  • Chapter
Positron Emission Tomography

Figures 1–3, 5, 6, 12–16 and 19–21 are reproduced from Valk PE, Bailey DL, Townsend DW, Maisey MN. Positron Emission Tomography: Basic Science and Clinical Practice. Springer-Verlag London Ltd 2003, 91–114.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sossi V, Pointon B, Cohen P, Johnson RR, Ruth TJ. Effect of shielding the radioactivity outside the field of view on image quality in a dual head coincidence. IEEE Trans Nucl Sci 2000;47(4):1561–1566.

    Article  Google Scholar 

  2. Spinks TJ, Miller MP, Bailey DL, Bloomfiled PM, Livieratos L, Jones T. The effect of activity outside the direct field of view in a 3D-only whole-body positron tomograph. Phys Med Biol 1998;43:895–904.

    Article  PubMed  CAS  Google Scholar 

  3. Karp JS, Muehllehner G, Mankoff DA, Ordonez CE, Ollinger JM, Daube-Witherspoon ME, et al. Continuous-slice PENN-PET: a positron tomograph with volume imaging capability. J Nucl Med 1990;31(617–627).

    PubMed  CAS  Google Scholar 

  4. Michel C, Sibomana M, Bol A, Bernard X, Lonneux M, Defrise M, et al. Preserving Poisson characteristics of PET data with weighted OSEM reconstruction. In: IEEE Nuclear Science Symposium and Medical Imaging Conference; 1998; Toronto: IEEE; 1998. p. 1323–1329.

    Google Scholar 

  5. Smith RJ, Karp JS. A practical method for randoms subtraction in volume imaging PET from detector singles countrate measurements. IEEE Trans Nucl Sci 1996;43(3):1981–1987.

    Article  Google Scholar 

  6. Hoffman EJ, Huang S-C, Phelps ME, Kuhl DE. Quantitation in positron emission computed tomography: 4. Effect of accidental coincidences. J Comput Assist Tomogr 1981;5(3):391–400.

    PubMed  CAS  Google Scholar 

  7. Swan WL, Vannoy SD, Harrison RL, Miyaoka RS, Lewellen TK. Randoms simulation for dual head coincidence imaging of cylindrically symmetric source distributions” IEEE Trans Nucl. Sci. 46 (4) II: 1156–1164. IEEE Trans Nucl Sci 1999;46(4):1156–1164.

    Article  Google Scholar 

  8. Casey ME, Hoffman EJ. Quantitation in positron emission tomography: 7. A technique to reduce noise in accidental coincidence measurements and coincidence efficiency calibration. J Comput Assist Tomogr 1986;10(5):845–850.

    PubMed  CAS  Google Scholar 

  9. Badawi RD, Miller MP, Bailey DL, Marsden PK. Randoms variance reduction in 3D PET. Phys Med Biol 1999;44(4):941–954.

    Article  PubMed  CAS  Google Scholar 

  10. Casey ME, Gadagkar H, Newport D. A component based method for normalisation in volume PET. In: Proceedings of the 3rd International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine; 1995; Aixles-Bains, France; 1995. p. 67–71.

    Google Scholar 

  11. Badawi RD, Ferreira NC, Kohlmyer SG, Dahlbom M, Marsden PK, Lewellen TK. A comparison of normalization effects on three whole-body cylindrical 3D PET systems. Phys Med Biol 2000;45(11):3253–3266.

    Article  PubMed  CAS  Google Scholar 

  12. Germano G, Hoffman EJ. Investigation of count-rate and deadtime characteristics of a high resolution PET system. J Comput Assist Tomogr 1988;12(5):836–846.

    PubMed  CAS  Google Scholar 

  13. Bai B, Li Q, H Holdsworth CH, Asma E, Tai YC, Chatziioannou A, et al. Model-based normalization for iterative 3D PET image reconstruction. Phys Med Biol 2002;47(15):2773–2784.

    Article  PubMed  CAS  Google Scholar 

  14. Ollinger JM. Detector efficiency and Compton scatter in fully 3D PET. IEEE Trans Nucl Sci 1995;42(4):1168–1173.

    Article  Google Scholar 

  15. Badawi RD, Marsden PK. Developments in component-based normalization for 3D PET. Phys Med Biol 1999;44(2):571–594.

    Article  PubMed  CAS  Google Scholar 

  16. Cherry SR, Dahlbom M, Hoffman EJ. 3D PET using a Conventional Multislice Tomograph without Septa. J Comput Assist Tomogr 1991;15(4):655–668.

    PubMed  CAS  Google Scholar 

  17. Hoffman EJ, Guerrero TM, Germano G, Digby WM, Dahlbom M. PET system calibration and corrections for quantitative and spatially accurate imags. IEEE Trans Nucl Sci 1989;36(1):1108–1112.

    Article  Google Scholar 

  18. Badawi RD, Lodge MA, Marsden PK. Algorithms for calculating detector efficiency normalization coefficients for true coincidences in 3D PET. Phys Med Biol 1998;43(1):189–205.

    Article  PubMed  CAS  Google Scholar 

  19. Chesler DA, Stearns CW. Calibration of detector sensitivity in positron cameras. IEEE Trans Nucl Sci 1990;37(2):768–772.

    Article  CAS  Google Scholar 

  20. Chatziioannou A-XF. Measurements and calculations towards quantitative whole body PET imaging. Los Angeles: UCLA School of Medicine; 1996.

    Google Scholar 

  21. Ferreira NC, Trebossen R, Comtat C, Gregoire M-C, Bendriem B. Iterative crystal efficiency calculation in fully 3-D PET. IEEE Trans Med Imag 2000;19(5):485–492.

    Article  CAS  Google Scholar 

  22. Defrise M, Townsend DW, Bailey DL, Geissbuhler A, Michel C, Jones T. A normalisation technique for 3D PET data. Phys Med Biol 1991;36:939–952.

    Article  PubMed  CAS  Google Scholar 

  23. Patiwan Y, Kohlmyer S, Lewellen T, O’Sullivan F. PET system calibration and attenuation correction. IEEE Trans Nucl Sci 1997;44(3):1249–1253.

    Article  Google Scholar 

  24. Badawi RD, Marsden PK. Self-normalization of emission data in 3D PET. IEEE Trans Nucl Sci 1999;46(3):709–712.

    Article  Google Scholar 

  25. Bailey DL, Townsend DW, Kinahan PE, Grootoonk S, Jones T. An investigation of factors affecting detector and geometric correction in normalisation of 3-D PET data. IEEE Trans Nucl Sci 1996;43(6):3300–3307.

    Article  Google Scholar 

  26. Oakes TR, Sossi V, Ruth TJ. Normalization for 3D PET with a low-scatter planar source and measured geometric factors. Phys Med Biol 1998;43:961–972.

    Article  PubMed  CAS  Google Scholar 

  27. Casey ME. An analysis of counting losses in positron emission tomography [PhD]: University of Tennessee; 1992.

    Google Scholar 

  28. Germano G, Hoffman EJ. A study of data loss and mispositioning due to pileup in 2-D detectors in PET. IEEE Trans Nucl Sci 1990;37(2):671–675.

    Article  Google Scholar 

  29. Wear JA, Karp JS, Freifelder R, Mankoff DA, Muehllehner G. A model of the high count-rate performance of NaI(Tl)-based PET detectors. IEEE Trans Nucl Sci 1998;45(3):1231–1237.

    Article  Google Scholar 

  30. Wong W-H, Li H, Uribe J, Baghaei H, Wang Y, Yokoyama S. Feasibility of a high-speed gamma-camera design using the highyield-pileup-event-recovery method. J Nucl Med 2001;42(4):624–632.

    PubMed  CAS  Google Scholar 

  31. Moisan C, Rogers JG, Douglas JL. A count-rate model for PET and its application to an LSO HR plus scanner. IEEE Trans Nucl Sci 1997;44:1219–1224.

    Article  CAS  Google Scholar 

  32. Daube-Witherspoon ME, Carson RE. Unified deadtime correction model for PET. IEEE Trans Med Imag 1991;10(3):267.

    Article  CAS  Google Scholar 

  33. Eriksson L, Wienhard K, Dahlbom M. A simple data loss model for positron camera systems. IEEE Transactions on Nuclear Science. IEEE Trans Nucl Sci 1994;41(4):1566–1570.

    Article  CAS  Google Scholar 

  34. Knoll GF. Radiation Detection and Measurement. 3rd ed. New York: Wiley and Sons; 2000.

    Google Scholar 

  35. Compton AH. A quantum theory of the scattering of X-rays by light elements. Phys Rev 1923;21:483–502.

    Article  CAS  Google Scholar 

  36. Cherry SR, Huang SC. Effects of scatter on model parameter estimates in 3D PET studies of the human brain. IEEE Trans Nucl Sci 1995;NS-42:1174–1179.

    Article  Google Scholar 

  37. Cherry SR, Meikle SR, Hoffman EJ. Correction and characterization of scattered events in three-dimensional PET using scanners with retractable septa. J Nucl Med 1993;34:671–678.

    PubMed  CAS  Google Scholar 

  38. Hasegawa T, Tanaka E, Yamashita T, Watanabe M, Yamaya T, Murayama H. A Monte Carlo simulation study on coarse septa for scatter correction in 3-D PET. IEEE Trans Nucl Sci 2002;49(5):2133–2138.

    Article  Google Scholar 

  39. Thompson CJ. The problem of scatter correction in positron volume imaging. IEEE Trans Med Imaging 1993;MI-12:124–132.

    Article  Google Scholar 

  40. Buvat I, Benali H, Todd-Pokropek A, Di Paola R. Scatter correction in scintigraphy: the state of the art. Eur J Nucl Med 1994;21(7):675–694.

    Article  PubMed  CAS  Google Scholar 

  41. Grootoonk S, Spinks TJ, Jones T, Michel C, Bol A. Correction for scatter using a dual energy window technique with a tomograph operated without septa. In: IEEE Nuclear Science Symposium and Medical Imaging Conference; 1991; Santa Fe: IEEE; 1991. p. 1569–1573.

    Google Scholar 

  42. Bendriem B, Trebossen R, Froulin V, Syrota A. A PET scatter correction using simultaneous acquisitions with low and high lower energy thresholds. In: Klaisner L, editor. IEEE Nuclear Science Symposium and Medical Imaging Conference; 1993; San Francisco: IEEE; 1993. p. 1779–1783.

    Google Scholar 

  43. Harrison RL, Haynor DR, Lewellen TK. Dual energy window scatter corrections for positron emission tomography. In: Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference; 1991; Santa Fe, NM: IEEE; 1991. p. 1700–1704.

    Google Scholar 

  44. Adam L-E, Karp JS, Freifelder R. Scatter correction using a dual energy window technique for 3D PET with NaI(Tl) detectors. In: IEEE Nuclear Science Symposium and Medical Imaging Conference; 1998; Toronto: IEEE; 1998. p. 2011–2018.

    Google Scholar 

  45. Shao L, Freifelder R, Karp JS. Triple energy window scatter correction technique in PET. IEEE Trans Med Imag 1994;13(4):641–648.

    Article  CAS  Google Scholar 

  46. Bentourkia M, Msaki P, Cadorette J, Lecomte R. Energy dependence of scatter components in multispectral PET imaging. IEEE Trans Nucl Sci 1995;NS-14(1):138–145.

    Google Scholar 

  47. Bergstrom M, Eriksson L, Bohm C, Blomqvist G, Litton J. Correction for scattered radiation in a ring detector positron camera by integral transformation of the projections. J Comput Assist Tomogr 1983;7:42–50.

    PubMed  CAS  Google Scholar 

  48. Shao L, Karp JS. Cross-plane scattering correction — point source deconvolution in PET. IEEE Trans Med Imag 1991;10:234–239.

    Article  CAS  Google Scholar 

  49. Bailey DL, Meikle SR. A convolution-subtraction scatter correction method for 3D PET. Phys Med Biol 1994;39:411–424.

    Article  PubMed  CAS  Google Scholar 

  50. Sossi V. Evaluation of the ICS and DEW scatter correction methods for low statistical content scans in 3D PET. In: Del Guerra A, editor. IEEE Nuclear Science Symposium and Medical Imaging Conference; 1996; Anaheim: IEEE; 1996. p. 1537–1541.

    Google Scholar 

  51. Yanch JC, Flower MA, Webb S. Improved quantification of radionuclide uptake using deconvolution and windowed subtraction techniques for scatter compensation in single photon emission computed tomography. Med Phys 1990;17(6):1011–1022.

    Article  PubMed  CAS  Google Scholar 

  52. Meikle SR, Hutton BF, Bailey DL, Fulton RR, Schindhelm K. SPECT scatter correction in non-homogeneous media. In: Colchester ACF, Hawkes DJ, editors. Information Processing in Medical Imaging, 12th International Conference. Berlin: Springer-Verlag; 1991. p. 34–44.

    Google Scholar 

  53. Bailey DL, Hutton BF, Meikle SR, Fulton RR, Jackson CB. An attenuation dependent scatter correction technique for SPECT. Phys Med Biol 1989;34:152.

    Google Scholar 

  54. Meikle SR, Hutton BF, Bailey DL. A transmission dependent method for scatter correction in SPECT. J Nucl Med 1994;35(2):360–367.

    PubMed  CAS  Google Scholar 

  55. Barney JS, Rogers JG, Harrop R, Hoverath H. Object shape dependent scatter simulations for PET. IEEE Trans Nucl Sci 1991;NS-38:719–725.

    Article  Google Scholar 

  56. Watson CC. New, faster, image-based scatter correction for 3D PET. In: IEEE Nuclear Science Symposium and Medical Imaging Conference; 1998; Toronto: IEEE; 1998.

    Google Scholar 

  57. Watson CC, Newport D, Casey ME. A single scatter simulation technique for scatter correction in 3D PET. In: Grangeat P, Amans J-L, editors. Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine. Dordrecht: Kluwer Academic; 1996. p. 255–268.

    Google Scholar 

  58. Ollinger JM. Model-based scatter correction for fully 3D PET. Phys Med Biol 1996;41:153–176.

    Article  PubMed  CAS  Google Scholar 

  59. Holdsworth CH, Badawi RD, Santos PA, Van den Abbeele AD, El Fakhri G. Evaluation of a Monte Carlo Scatter Correction in Clinical 3D PET. In: Metzler SD, editor. Conference Record of the IEEE Nuclear Science Symposium and Medical Imaging Conference; 2003; Portland: IEEE; 2003. (in press).

    Google Scholar 

  60. Levin CS, Dahlbom M, Hoffman EJ. A Monte Carlo correction for the effect of Compton scattering in 3D PET brain imaging. IEEE Trans Nucl Sci 1995;42:1181–1185.

    Article  Google Scholar 

  61. Holdsworth CH, Levin CS, Farquhar TH, Dahlbom M, Hoffman EJ. Investigation of accelerated Monte Carlo techniques for PET simulation and 3D PET scatter correction. IEEE Trans Nucl Sci 2001;48:74–81.

    Article  Google Scholar 

  62. Holdsworth CH, Levin CS, Janecek M, Dahlbom M, Hoffman EJ. Performance analysis of an improved 3D PET Monte Carlo simulation and scatter correction. IEEE Trans Nucl Sci 2002;49(1):83–89.

    Article  Google Scholar 

  63. Gullberg GT, Huesman RH. Emission and transmission noise propagation in positron emission computed tomography: Lawrence Berkely Laboratory; 1979. Report No.: LBL-9783.

    Google Scholar 

  64. Huang SC, Hoffman EJ, Phelps ME, Kuhl DE. Quantitation in positron emission tomography: 2. Effect of inaccurate attenuation correction. J Comput Assist Tomogr 1979;3(6):804–814.

    PubMed  CAS  Google Scholar 

  65. Dahlbom M, Hoffman EJ. Problems in signal-to-noise ratio for attenuation correction in high resolution PET. IEEE Trans Nucl Sci 1987;34(1):288–293.

    Google Scholar 

  66. Meikle SR, Dahlbom M, Cherry SR. Attenuation correction using count-limited transmission data in positron emission tomography. J Nucl Med 1993;34(1):143–150.

    PubMed  CAS  Google Scholar 

  67. Derenzo SE, Budinger TF, Huesman RH, Cahoon JL, Vuletich T. Imaging properties of a positron tomograph with 280 BGO crystals. IEEE Trans Nucl Sci 1981;28(1):81–89.

    Google Scholar 

  68. Carroll LR, Kretz P, Orcutt G. The orbiting rod source: Improving performance in PET transmission correction scans. In: Esser PD, editor. Emission Computed Tomography — Current Trends. New York: Society of Nuclear Medicine; 1983. p. 235–247.

    Google Scholar 

  69. Thompson CJ, Dagher A, Lunney DN, Strother SC, Evans AC. A technique to reject scattered radiation in PET transmission scans. In: Nalcioglu O, Cho ZH, Budinger TF, editors. International Workshop on Physics and Engineering of Computerized Multidimensional Imaging and Processing: Proc. SPIE; 1986. p. 244–253.

    Google Scholar 

  70. Ostertag H, Kubler WK, Doll J, Lorenz WJ. Measured attenuation correction methods. Eur J Nucl Med 1989;15(11):722–726.

    Article  PubMed  CAS  Google Scholar 

  71. Huesman RH, Derenzo SE, Cahoon JL, Geyer AB, Moses WW, Uber DC, et al. Orbiting transmission source for positron emission tomography. IEEE Trans Nucl Sci 1988;NS-35:735–739.

    Article  Google Scholar 

  72. Carson RE, Daube-Witherspoon ME, Green MV. A method for postinjection PET transmission measurements with a rotating source. J Nucl Med 1988;29:1558–1567.

    PubMed  CAS  Google Scholar 

  73. Daube-Witherspoon ME, Carson RE, Green MV. Post-injection transmission attenuation measurements for PET. IEEE Trans Nucl Sci 1988;35(1):757–761.

    Article  CAS  Google Scholar 

  74. Ranger NT, Thompson CJ, Evans AC. The application of a masked orbiting transmission source for attenuation correction in PET. J Nucl Med 1989;30:1056–1068.

    PubMed  CAS  Google Scholar 

  75. Hooper PK, Meikle SR, Eberl S, Fulham MJ. Validation of post injection transmission measurements for attenuation correction in neurologic FDG PET studies. J Nucl Med 1996;37:128–136.

    PubMed  CAS  Google Scholar 

  76. Thompson CJ, Ranger N, Evans AC, Gjedde A. Validation of simultaneous PET emission and transmission scans. J Nucl Med 1991;32:154–160.

    PubMed  CAS  Google Scholar 

  77. Thompson CJ, Ranger NT, Evans AC. Simultaneous transmission and emission scans in positron emission tomography. IEEE Trans Nucl Sci 1989;36(1):1011–1016.

    Article  CAS  Google Scholar 

  78. Tan P, Bailey DL, Meikle SR, Eberl S, Fulton RR, Hutton BF. A scanning line source for simultaneous emission and transmission measurements in SPECT. J Nucl Med 1993;34(10):1752–1760.

    PubMed  CAS  Google Scholar 

  79. Meikle SR, Bailey DL, Hooper PK, Eberl S, Hutton BF, Jones WF, et al. Simultaneous emission and transmission measurements for attenuation correction in whole body PET. J Nucl Med 1995;36:1680–1688.

    PubMed  CAS  Google Scholar 

  80. Meikle SR, Eberl S, Hooper PK, Fulham MJ. Simultaneous emission and transmission (SET) scanning in neurological PET studies. J Comput Assist Tomogr 1997;21(3):487–497.

    Article  PubMed  CAS  Google Scholar 

  81. Lodge MA, Badawi RD, Marsden PK. A clinical evaluation of the quantitative accuracy of simultaneous emission/transmission scanning in whole-body positron emission tomography. Eur J Nucl Med 1998;25(4):417–423.

    Article  PubMed  CAS  Google Scholar 

  82. Jones WF, Moyers JC, Casey ME, Watson CC, Nutt R. Fastchannel LSO detectors and fiber-optic encoding for excellent dual photon transmission measurements in PET. IEEE Trans Nucl Sci 1999;46(4):979–984.

    Article  Google Scholar 

  83. Watson CC, Eriksson L, Casey ME, Jones WF, Moyers JC, Miller S, et al. Design and performance of collimated coincidence point sources for simultaneous transmission measurements in 3-D PET. IEEE Trans Nucl Sci 2001;48(3):673–679.

    Article  Google Scholar 

  84. Derenzo SE, Zaklad H, Budinger TF. Analytical study of a highresolution positron ring detector system for transaxial reconstruction tomography. J Nucl Med 1975;16(12):1166–1173.

    PubMed  CAS  Google Scholar 

  85. deKemp RA, Nahmias C. Attenuation correction in PET using single photon transmission measurement. Med Phys 1994;21(6):771–778.

    Article  PubMed  CAS  Google Scholar 

  86. Karp JS, Muehllehner G, Qu H, Yan XH. Singles transmission in volume-imaging PET with a 137Cs source. Phys Med Biol 1995;40(5):929–944.

    Article  PubMed  CAS  Google Scholar 

  87. Yu SK, Nahmias C. Single-photon transmission measurements in positron tomography using 137Cs. Phys Med Biol 1995;40(7):1255–1266.

    Article  PubMed  CAS  Google Scholar 

  88. Beyer T, Townsend DW, Brun T, Kinihan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:1369–1379.

    PubMed  CAS  Google Scholar 

  89. Beyer T. Design, construction and validation of a combined PET/CT tomograph for clinical oncology [PhD thesis]: University of Surrey (UK), University of Pittsburgh (USA); 1999.

    Google Scholar 

  90. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998;25:2046–2053.

    Article  PubMed  CAS  Google Scholar 

  91. Bergstrom M, Litton J, Eriksson L, Bohm C, Blomqvist G. Determination of object contour from projections for attenuation correction in cranial positron emission tomography. J Comput Assist Tomogr 1982;6(2):365–372.

    Article  PubMed  CAS  Google Scholar 

  92. Siegel S, Dahlbom M. Implementation and evaluation of a calculated attenuation correction for PET. IEEE Trans Nucl Sci 1992;NS-39:1117–1121.

    Article  Google Scholar 

  93. Palmer MR, Rogers JG, Bergstrom M, Beddoes MP, Pate BD. Transmission profile filtering for positron emission tomography. IEEE Trans Nucl Sci 1986;33(1):478–481.

    Article  Google Scholar 

  94. Huang SC, Carson R, Phelps M, Hoffman E, Schelbert H, Kuhl D. A boundary method for attenuation correction in positron emission tomography. IEEE Trans Nucl Sci 1981;22:627–637.

    CAS  Google Scholar 

  95. Xu EZ, Mullani NA, Gould KL, Anderson WL. A segmented attenuation correction for PET. J Nucl Med 1991;32:161–165.

    PubMed  CAS  Google Scholar 

  96. Bettinardi V, Pagani E, Gilardi MC, Landoni C, Riddell C, Rizzo G, et al. An automatic classification technique for attenuation correction in positron emission tomography. Eur J Nucl Med 1999;26(5):447–458.

    Article  PubMed  CAS  Google Scholar 

  97. Green PJ. Bayesian reconstruction from emission tomography data using a modified EM algorithm. IEEE Trans Med Imag 1990;9(1):84–93.

    Article  CAS  Google Scholar 

  98. Qi J, Leahy RM, Hsu C, Farquar TH, Cherry SR. Fully 3D bayesian image reconstruction for the ECAT EXACT HR+. IEEE Trans Nucl Sci 1998;45(3):1096–1103.

    Article  Google Scholar 

  99. Muller-Gartner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab 1992;12(4):571–583.

    PubMed  CAS  Google Scholar 

  100. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med 1998;39:904–911.

    PubMed  CAS  Google Scholar 

  101. Ouyang X, Wong WH, Johnson VE, Hu X, Chen C-T. Incorporation of correlated structural images in PET image reconstruction. IEEE Trans Med Imag 1994;MI-14(4):627–640.

    Article  Google Scholar 

  102. Baete K, Nuyts J, Van Paesschen W, Suetens P, Dupont P. Anatomical based FDG-PET reconstruction for the detection of hypometabolic regions in epilepsy. In: Metzler SD, editor. 2002 IEEE Nuclear Science Symposium Conference Record; 2003; Norfolk, VA: IEEE; 2003. p. 1481–1485.

    Google Scholar 

  103. Ardekani BA, Braun M, Hutton BF, Kanno I, Iida H. A fully automatic multimodality image registration algorithm. J Comput Assist Tomogr 1995;19(4):615–623.

    PubMed  CAS  Google Scholar 

  104. Ardekani BA, Braun M, Hutton BF, Kanno I, Iida H. Minimum cross-entropy reconstruction of PET images using prior anatomical information. Phys Med Biol 1996;41(11):2497–2517.

    Article  PubMed  CAS  Google Scholar 

  105. Som S, Hutton BF, Braun M. Properties of minimum crossentropy reconstruction of emission tomography with anatomically based prior. IEEE Trans Nucl Sci 1998;45(6):3014–3021.

    Article  Google Scholar 

  106. Bailey DL, Jones T, Spinks TJ. A method for measuring the absolute sensitivity of positron emission tomographic scanners. Eur J Nucl Med 1991;18:374–379.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Meikle, S.R., Badawi, R.D. (2005). Quantitative Techniques in PET. In: Bailey, D.L., Townsend, D.W., Valk, P.E., Maisey, M.N. (eds) Positron Emission Tomography. Springer, London. https://doi.org/10.1007/1-84628-007-9_5

Download citation

  • DOI: https://doi.org/10.1007/1-84628-007-9_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-798-8

  • Online ISBN: 978-1-84628-007-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics