Skip to main content

CONTINUOUS WAVE RADARS–MONOSTATIC, MULTISTATIC AND NETWORK

  • Conference paper
Advances in Sensing with Security Applications

Part of the book series: NATO Security Through Science Series ((NASTA,volume 2))

Abstract

Radar technology was designed to increase public safety on sea and in the air. Today radars are used in many .elds of application, such as airdefense, air-tra.c-control, zone protection (in military bases, airports, industry), people search and others. Classic pulse radars are often being replaced by continuous wave radars. Unique features of continuous wave radars, such as the lack of ambiguity, very low transmitted power and good electromagnetic compatibility with other radio-devices, enhance this trend. This chapter presents the theoretical background of continuous wave radar signal processing (for FMCW and noise radars), highlights the most important features of this type of radar and shows their abilities in the field of security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.M. Horton, “Noise-modulated distance measuring system”, Proc. IRE, V0147, pp. 821–828, May 1959.

    Google Scholar 

  2. G.R. Cooper and C.D. McGillem, "Random signal radar", School Electr. Eng., Purdue Univ., Final Report, TREE67-11, June 1967.

    Google Scholar 

  3. R.M. Naryanan et al., “Design and performance of a polarimetric random noise radar for detection of shallow buried targets”, Proc. SPIE Meeting on Detection Techn. Mines, Orlando, April 1995, vol. 2496, pp. 20–30.

    Google Scholar 

  4. I.P. Theron et al., “Ultra-Band Noise Radar in the VHF/UHF Band”, IEEE AP-47, June 1999, pp. 1080–1084.

    Google Scholar 

  5. S.R.J. Axelsson, “On the Theory of Noise Doppler Radar”, Proc. IGARSS 2000, Honolulu, 24–28 July 2000, pp. 856–860.

    Google Scholar 

  6. R. M. Narayanan, Y. Xu, P. D. Hoffmeyer, and J. O. Curtis, “Design, performance, and applications of a coherent ultra wide-band random noise radar”, Opt. Eng., vol. 37, no. 6, pp. 1855–1869, June 1998.

    Article  Google Scholar 

  7. Y. Xu, R. M. Narayanan, X. Xu, and J. O. Curtis, “Polarimetric processing of coherent random noise radar data for buried object detection”, IEEE Trans. Geosci. Remote Sensing, vol. 39, no. 3, pp. 467–478, Mar. 2001.

    Google Scholar 

  8. R. M. Narayanan and M. Dawood, “Doppler estimation using a coherent ultra wide-band random noise radar”, IEEE Trans. Antennas Propagat., vol. 48, pp. 868–878, June 2000.

    Article  Google Scholar 

  9. D. Garmatyuk and R. M. Narayanan, “Ultrawide-band noise synthetic radar: Theory and experiment”, in IEEE Antennas Propagat. Soc. Int. Symp. 1999, vol. 3, Orlando, FL, July 1999, pp. 1764–1767.

    Google Scholar 

  10. D. C. Bell and R. M. Narayanan, “ISAR turntable experiments using a coherent ultra wide-band random noise radar”, in IEEE Antennas Propagat. Soc. Int. Symp. 1999, Orlando, July 1999, pp. 1768–1771.

    Google Scholar 

  11. D. J. Daniels, “Resolution of ultra wide-band radar signals”, Proc. Inst. Elec. Eng.-Radar, Sonar Navig., vol. 146, no. 4, pp. 189–194, Aug 1999.

    Google Scholar 

  12. M. E. Davis, “Technical challenges in ultra wide-band radar development for target detection and terrain mapping”, in Proc. IEEE 1999 Radar Conf., Boston, MA, April 1999, pp. 1–6.

    Google Scholar 

  13. F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform”, Proc. IEEE, vol. 66, no. 1, pp. 51–83, Jan. 1978.

    Article  Google Scholar 

  14. B. D. Steinberg, D. Carlson, and R. Bose, “High resolution 2-D imaging with spectrally thinned wide-band waveforms”, in Ultra Wideband Short-Pulse Electromagnetics 2, L. Carin and L. B. Felsen, Eds. New York: Plenum, 1995, pp. 563–569.

    Google Scholar 

  15. Craig. S.E, Fishbein, W., Rittenbach, O.E., “Continuous-Wave Radar with High Range Resolution and Unambiguous Velocity Determination”, IRE Trans. Mil Electronics, vol. MIL 6. No. 2. April 1962, pp. 153–161.

    Google Scholar 

  16. D. S. Garmatyuk and R. M. Narayanan, “SAR imaging using acoherent ultrawideband random noise radar”, in Radar Processing, Technology, ond Applications IV, (William I. Miceli, Editor), Proceedings of SPIE Vol. 3810. pp. 223-230, Denver, CO, July 1999.

    Google Scholar 

  17. M Soumekh, “Reconnaissance with ultra wideband UHF synthetic aperture radar”, in IEEE Signal Proc. Mag. Vol. 12, No. 4, pp. 21–40, July 1995.

    Google Scholar 

  18. L. Y. Astanin and A . A. Kostylev, “Ultrawideband Radar Measurements, Analysis and Processing”, The Institution of Electrical Engineers, London, 1997.

    Google Scholar 

  19. Garmatyuk, D.S.; Narayanan, R.M., “SAR imaging using fully random bandlimited signals”, Antennas and Propagation Society International Symposium, 2000. IEEE Vol. 4 (2000), pp. 1948–1951.

    Google Scholar 

  20. Mogila, A.A.; Lukin, K.A.; Kovalenko, N.P.; Kovalenko, R.P., “Ka-band noise SAR simulation”, Physics and Engineering of Millimeter and Sub-Millimeter Waves, 2001. The Fourth International Kharkov Symposium, 4-9 June 2001, Volume 1, pp. 441–443.

    Google Scholar 

  21. M. P. Grant, G. R. Cooper, and A. K. Kamal, “A class of noise radar systems”, Proc. IEEE, vol. 51, pp. 1060–1061, July 1963.

    Google Scholar 

  22. R. M. Narayanan, R. D. Mueller, and R. D. Palmer, “Random noise radar interferometry”, in Proc. SPIE Conf. Radar Processing, Technol. Appl., vol. 2845, W. Miceli, Ed., Denver, CO, Aug. 1996, pp. 75–82.

    Google Scholar 

  23. R. M. Narayanan, Y. Xu, P. D. Ho.meyer, and J. O. Curtis, “Design, performance, and applications of a coherent ultrawideband random noise radar”, Opt. Eng., vol. 37, no. 6, pp. 1855–1869, June 1998.

    Article  Google Scholar 

  24. R. M. Narayanan and M. Dawood, “Doppler estimation using a coherent ultrawide-band random noise radar”, IEEE Trans. Antennas Propagat., vol. 48, pp. 868–878, June 2000.

    Article  Google Scholar 

  25. I. P. Theron, E. K. Walton, and S. Gunawan, “Compact range radar crosssection measurements using a noise radar”, IEEE Trans. Antennas Propagat., vol. 46, pp. 1285–1288, Sept. 1998.

    Article  Google Scholar 

  26. I. P. Theron, E. K. Walton, S. Gunawan, and L. Cai, “Ultrawide-band noise radar in the VHF/UHF band”, IEEE Trans. Antennas Propagat., vol. 47, pp. 1080–1084, June 1999.

    Article  Google Scholar 

  27. L. Guosui, G. Hong, and S. Weimin, “Development of random signal radars”, IEEE Trans. Aerosp. Electron. Syst., vol. 35, pp. 770–777, July 1999.

    Google Scholar 

  28. J. D. Sahr and F. D. Lind, “The Manastash Ridge radar: A passive bistatic radar for upper atmospheric radio science”, Radio Sci., vol. 32, no. 6, pp. 2345–2358, Nov. 1997.

    Google Scholar 

  29. M. A. Ringer and G. J. Frazer, “Waveform analysis of transmissions of opportunity for passive radar,” in Proc. ISSPA, Brisbane, Australia, Aug. 1999, pp. 511–514.

    Google Scholar 

  30. D. S. Garmatyuk and R. M. Narayanan, “Ultra wide-band continuous-wave random noise arc-SAR”, in IEEE Transactions on Geoscience and Remote Sensing, Volume 40, Issue 12, Dec. 2002, pp. 2543–2552.

    Article  Google Scholar 

  31. Xu Xiaojian and R. M. Narayanan, “FOPEN SAR imaging using UWB stepfrequency and random noise waveforms”, IEEE Transactions on Aerospace and Electronic Systems, Volume 37, Issue 4, Oct. 2001, pp. 1287–1300.

    Google Scholar 

  32. S. R. J. Axelsson, “Noise radar using random phase and frequency modulation”, Proc. of IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2003, Volume 7, 21–25 July 2003, pp. 4226–4231.

    Google Scholar 

  33. S. R. J. Axelsson, “Suppressed ambiguity in range by phase-coded waveforms”, Proc. of IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2001, Volume 5, 9-13 July 2001, pp. 2006–2009.

    Google Scholar 

  34. K.S. Kulpa, Z. Czekala, “Ground Clutter Suppression in Noise Radar”, Proc. Int. Conf. RADAR 2004, 18–22 October2004, Toulouse, France, p. 236.

    Google Scholar 

  35. M.Nalecz, K. Kulpa, A. Piatek, “Hardware/Software Co-designin DSP-Based Radar and Sonar Systems”, International Radar Symposium 2004 19-21 Maj, Warsaw, Poland, pp. 137–142.

    Google Scholar 

  36. K. Kulpa, “Adaptive Clutter Rejection in Bi-static CW Radar”, International Radar Symposium 2004 19-21 Maj, Warszawa Polska, pp. 61–68.

    Google Scholar 

  37. M. Nalecz, K. Kulpa, R. Rytel-Andrianik, S. Plata, B. Dawidowicz, “Data recording and processing in FMCW SAR system”, International Radar Symposium 2004 19-21 Maj, Warsaw, Poland, pp. 171–177.

    Google Scholar 

  38. K. Kulpa, Z. Czekala, “Short Distance Clutter Masking Effects in Noise Radars”, Proceedings of the International Conference on the Noise Radar Technology. Kharkiv, Ukraine, 21–23 October 2003.

    Google Scholar 

  39. A.Wojtkiewicz, M. Nalecz, K. Kulpa, R. Rytel-Adrianiuk, “A novel Approach to Signal Processing in FMCW Radar”, Bulletin of the Polish Academy of Science, Technical Sciences, Vol. 50, No. 4, Warszawa 2002, pp. 346–359.

    Google Scholar 

  40. K. Kulpa, Z. Czekala, M. Smolarczyk, “Long-Time-Integration Surveillance Noise Radar”, First International Workshop On The Noise Radar Technology (NRTW 2002), Yalta, Crimea, Ukraine, September 18-20, 2002, pp. 238–243.

    Google Scholar 

  41. K.Kulpa, A.Wojtkiewicz, M.Nalecz, J.Misiurewicz, “The simple analysis method of nonlinear frequency distortions in FMCW radar”, Journal of Telecommunications and Information Technology, No. 4, 2001, pp. 26–29.

    Google Scholar 

  42. A. Wojtkiewicz, M. Nalecz, K. Kulpa, “A novel approach to signal processing in FMCW radar”, Proc. Int. Conf. on Signals and Electronic Systems ICSES’2000, Ustron, Poland, 17-20 Oct. 2000, pp. 63–68.

    Google Scholar 

  43. Stove A.G., “Linear FMCW radar techniques”, IEE Proceedings-F, Vol. 139, No. 5, Oct. 1992, pp. 343-350.

    Google Scholar 

  44. M. J. Skolnik, “Radar Handbook”, McGraw-Hill Professional; 2nd edition, January 1990.

    Google Scholar 

  45. A.Wojtkiewicz, M.Nalecz, K.Kulpa, W.Klembowski, “Use of Polynomial Phase Modeling to FMCW Radar. Part C: Estimation of Target Acceleration in FMCW Radars”, NATO Research and Technology Agency, Sensors and Electronics Technology Symposium on Passive and LPI (Low Probability Of Intercept) Radio Frequency Sensors, Warsaw, Poland, April 23-25, 2001, paper #40C.

    Google Scholar 

  46. K. Kulpa, “Novel Metchod of Decreasing Influence of Phase Noise on FMCW Radar”, 2001 CIE International Conference on Radar Processing, Oct. 15-18, 2001, Beijing, China, pp. 319–323.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Kulpa, K. (2006). CONTINUOUS WAVE RADARS–MONOSTATIC, MULTISTATIC AND NETWORK. In: Byrnes, J., Ostheimer, G. (eds) Advances in Sensing with Security Applications. NATO Security Through Science Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4295-7_10

Download citation

Publish with us

Policies and ethics