Skip to main content

Role of Population Genetics in the Sterile Insect Technique

  • Chapter

Summary

The detection and analysis of genetic variation in natural and laboratory populations are reviewed. The application of population genetic methods and theory can help to plan and evaluate the implementation of area-wide integrated pest management (AW-IPM) programmes that use the sterile insect technique (SIT). Population genetic studies can play an important role in estimating dispersal rates and thus gene flow among target populations, determining if sibling species exist, establishing the origin of outbreaks or reintroductions, and supporting the quality control of mass-reared colonies. The target’s population history may be examined, in terms of “bottlenecks”, range fragmentations, and expansions. Genetic methods can be helpful in distinguishing wild insects from released sterile or substerile ones, and in ascertaining, together with mating cross-compatibility studies, the compatibility of mass-reared colonies with target wild insects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10. References

  • Avise, J. C. 2004. Molecular markers, natural history and evolution, 2nd ed. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • Barton, N. H., and M. Slatkin. 1986. A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 56: 409–415.

    PubMed  Google Scholar 

  • Bates, M. 1949. The natural history of mosquitoes. Macmillan, London, UK.

    Google Scholar 

  • Black, W. C. IV. 1993. PCR with arbitrary primers: approach with care. Insect Molecular Biology 2: 1–6.

    CAS  PubMed  Google Scholar 

  • Black, W. C. IV, and N. M. DuTeau. 1996. RAPD-PCR and SSCP analysis for insect population genetic studies, pp 361–383. In J. M. Crampton, C. B. Bear and C. Louis (eds.), The molecular biology of insect disease vectors: a methods manual. Chapman and Hall, London, UK.

    Google Scholar 

  • Black, W. C. IV, C. F. Baer, M. F. Antolin, and N. M. DuTeau. 2001. Population genomics: genomewide sampling of insect populations. Annual Review of Entomology 46: 441–469.

    CAS  PubMed  Google Scholar 

  • Briceño, R. D., and W. G. Eberhard. 2002. Decisions during courtship by male and female medflies (Diptera, Tephritidae): correlated changes in male behavior and female acceptance criteria in massreared flies. Florida Entomologist 85: 14–31. http://www.fcla.edu/FlaEnt/fe85p14.pdf

    Google Scholar 

  • Briceño, R. D., W. G. Eberhard, J. C. Vilardi, P. Liedo, and T. E. Shelly. 2002. Variation in the intermittent buzzing songs of male medflies (Diptera: Tephritidae) associated with geography, massrearing, and courtship success. Florida Entomologist 85: 32–40. http://www.fcla.edu/FlaEnt/fe85p32.pdf

    Google Scholar 

  • Briscoe, D. A., J. Malpica, A. Robertson, G. Smith, R. Frankkham, R. Branks, and J. Barker. 1992. Rapid loss of genetic variation in large captive populations of Drosophila flies: implications for the genetic management of captive populations. Conservation Biology 6: 416–425.

    Article  Google Scholar 

  • Brown, W. V., R. Morton, M. J. Lacey, J. P. Spradbery, and R. J. Mahon. 1998. Identification of the geographical source of adults of the Old World screw-worm fly, Chrysomya bezziana Villeneuve (Diptera: Calliphoridae), by multivariate analysis of cuticular hydrocarbons. Comparative Biochemistry and Physiology B 119: 391–399.

    Article  Google Scholar 

  • Bush, G. L., R. W. Neck, and G. B. Kitto. 1976. Screwworm eradication: inadvertent selection for noncompetitive ecotypes during mass rearing. Science 193: 491–493.

    CAS  PubMed  Google Scholar 

  • Carlson, D. A., S. K. Milstrey, and S. K. Narang. 1993. Classification of tsetse flies Glossina spp. (Diptera: Glossinidae) by gas chromatographic analysis of cuticular components. Bulletin of Entomological Research 83: 507–515.

    CAS  Google Scholar 

  • Cayol, J. P., P. Coronado, and M. Taher. 2002. Sexual compatibility in medfly (Diptera: Tephritidae) from different origins. Florida Entomologist 85: 51–57. http://www.fcla.edu/FlaEnt/fe85p51.pdf

    Google Scholar 

  • Colluzi, M. 1992. Malaria vector analysis and control. Parasitology Today 8: 113–118.

    Google Scholar 

  • Colluzi, M., A. Sabatini, A. della Torre, M. A. Di Deco, and V. Petrarca. 2002. A polytene chromosome analysis of the Anopheles gambiae species complex. Science 298: 1415–1418.

    Google Scholar 

  • Crow, J. F., and M. Kimura. 1970. An introduction to population genetics theory. Burgess, Minneapolis, MN, USA.

    Google Scholar 

  • Dame, D. A. 1979. The sterile insect technique against tsetse flies, Glossina spp. Bulletin of the Entomological Society of America 16: 24–30.

    Google Scholar 

  • Dobzhansky, T. 1970. Genetics of the evolutionary process. Columbia University Press, New York, NY, USA.

    Google Scholar 

  • Dowling, T. E., C. Moritz, J. D. Palmer, and L. H. Rieseberg. 1996. Nucleic acids III: analysis of fragments and restriction sites, pp 249–320. In D. M. Hillis, C. Moritz and B. Mable (eds.), Molecular systematics, 2nd ed. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • Eberhard, W. G. 2000. Sexual behavior and sexual selection in the medfly, Ceratitis capitata, pp. 459–489. In M. Aluja and A. L. Norrbom (eds.), Fruit flies (Tephritidae): phylogeny and evolution of behavior. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Fagerberg, A. J., R. E. Fulton, and W. C. Black IV. 2001. Microsatellite loci are not abundant in all arthropod genomes: analyses in the hard tick Ixodes scapularis and the yellow fever mosquito, Aedes. aegypti. Insect Molecular Biology 10: 225–236.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. 2004. http://evolution.genetics.washington.edu/phylip/software.html

    Google Scholar 

  • Futuyma, D. J. 1998. Evolutionary biology, 3rd ed. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • Gaggiotti, O. E., O. Lange, K. Rassmann, and C. Gliddon. 1999. A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Molecular Ecology 8: 1513–1520.

    Article  CAS  PubMed  Google Scholar 

  • Gooding, R. H., and E. S. Krafsur. 2005. Tsetse genetics: contributions to biology, systematics, and control of tsetse flies. Annual Review of Entomology 50: 101–123.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, M. B., E. L. Pincus, A. DiFiore, and R. C. Fleischer. 1999. Universal linker and ligation procedures for construction of genomic NDA libraries enriched for microsatellites. BioTechniques 27: 500–507.

    CAS  PubMed  Google Scholar 

  • Hartl, D. L., and A. G. Clark. 1997. Principles of population genetics, 3rd ed. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • Hedrick, P. W. 1999. Highly variable loci and their interpretation in evolution and conservation. Evolution 53: 313–318.

    Google Scholar 

  • Hiss, R. H., D. E. Norris, C. H. Dietrich, R. F. Whitecomb, D. F. West, C. F. Bosio, S. Kambhampati, J. Piesman, M. F. Antolin, and W. C. Black IV. 1994. Molecular taxonomy using single-strand conformational polymorphism (SSCP) analysis of mitochondrial ribosomal DNA genes. Insect Molecular Biology 3: 171–182.

    CAS  PubMed  Google Scholar 

  • Jungen, H., and D. L. Hartl. 1979. Average fitness of populations of Drosophila melanogaster as estimated by using compound chromosomes. Evolution 33: 359–370.

    Google Scholar 

  • Khambhampati, S., W. C. Black IV, and K. S. Rai. 1992. RAPD-PCR for identification and differentiation of mosquito species and populations. Journal of Medical Entomology 29: 939–945.

    Google Scholar 

  • Kijas, J. M. H., J. D. S. Fowler, C. A. Garbett, and M. R. Thomas. 1994. Enrichment of microsatellites from the citrus genome using biotinylated oligonucleotide sequences bound to streptavidin-coated magnetic particles. Biotechniques 16: 657–662.

    Google Scholar 

  • Krafsur, E. S. 1985. Screwworm flies (Diptera: Calliphoridae): analysis of sterile mating frequencies and covariates. Bulletin of the Entomological Society of America 4: 36–40.

    Google Scholar 

  • Krafsur, E. S. 1994. Application of models to screwworm eradication programs, pp 299–308. In B. Perry and J. Hansen (eds.), Proceedings, Workshop: Modelling Vector-Borne and Other Parasitic Diseases. ILRAD/FAO, 1992, Nairobi, Kenya.

    Google Scholar 

  • Krafsur, E. S. 1998. Sterile insect technique for suppressing and eradicating insect populations: 55 years and counting. Journal of Agricultural Entomology 15: 303–317.

    Google Scholar 

  • Krafsur, E. S. 2002. Population structure of the tsetse fly Glossina pallidipes estimated by allozyme, microsatellite, and mitochondrial gene diversities. Insect Molecular Biology 11: 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Krafsur, E. S., and B. G. Hightower. 1979. Field tests of sterile screwworm flies, Cochliomyia. hominivorax (Diptera: Calliphoridae), against natural populations in three coastal areas of Mexico. Journal of Medical Entomology 16: 33–42.

    CAS  PubMed  Google Scholar 

  • Krafsur, E. S., and J. J. Obrycki. 2000.Coleomegilla maculata (Coleoptera: Coccinellidae) is a species complex. Annals of the Entomological Society of America 93: 1156–1163.

    CAS  Google Scholar 

  • Krafsur, E. S., and C. J. Whitten. 1993. Breeding structure of screwworm fly populations (Diptera: Calliphoridae) in Colima, Mexico. Journal of Medical Entomology 30: 477–480.

    CAS  PubMed  Google Scholar 

  • Krafsur, E. S., and D. L. Wohlford. 1999. Breeding structure of Glossina pallidipes populations evaluated by mitochondrial variation. Journal of Heredity 90: 635–642.

    Article  CAS  PubMed  Google Scholar 

  • Krafsur, E. S., C. J. Whitten, and J. E. Novy. 1987. Screwworm eradication in North and Central America. Parasitology Today 3: 131–137.

    Article  CAS  PubMed  Google Scholar 

  • LaChance, L. E., A. C. Bartlett, R. A. Bram, R. J. Gagne, O. H. Graham, D. O. McInnis, C. J. Whitten, and J. A. Seawright. 1982. Mating types in screwworm populations? Science 218: 1142–1143.

    Google Scholar 

  • Lanzaro, G., K. Ostrovska, M. Herrero, P. Lawyer, and A. Warburg. 1993.Lutzomyia longipalpis is a species complex: genetic divergence and inter-specific hybrid sterility among three populations. American Journal of Tropical Medicine and Hygiene 48: 839–847.

    CAS  PubMed  Google Scholar 

  • Li, W. H. 1997. Molecular evolution. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • Löfstedt, C. 1993. Moth pheromone genetics and evolution. Philosophical Transactions of the Royal Society of London B 340: 167–177.

    Google Scholar 

  • Luikart, G., and P. R. England. 1999. Statistical analysis of microsatellite DNA data. Trends in Ecology and Evolution 14: 253–256.

    PubMed  Google Scholar 

  • Marquez, J. G., and E. S. Krafsur. 2002. Gene flow among geographically diverse house fly populations (Musca domestica L.): a worldwide survey of mitochondrial diversity. Journal of Heredity 93: 254–259.

    Article  CAS  PubMed  Google Scholar 

  • Marquez, J. G., M. J. B. Vreysen, A. S. Robinson, S. Bado, and E. S. Krafsur. 2004. Mitochondrial diversity analysis of Glossina palpalis gambiensis from Mali and Senegal. Medical and Veterinary Entomology 18: 288–295.

    Article  CAS  PubMed  Google Scholar 

  • Murphey, R. W., J. W. Sites Jr., D. G. Buth, and C. H. Haufler. 1996. Molecular techniques, pp. 51–120. In D. M. Hillis, C. Moritz and B. K. Mable (eds.), Molecular systematics, 2nd ed. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York, NY, USA.

    Google Scholar 

  • Norris, D. E., J. S. H. Klompen, J. E. Keirans, and W. C. Black IV. 1996. Population genetics of Ixodes scapularis (Acari: Ixodidae) based on mitochondrial 16S and 12S genes. Journal of Medical Entomology 33: 78–89.

    CAS  PubMed  Google Scholar 

  • Phelan, P. L. 1997. Genetics and phylogenetics in the evolution of sex pheromones, pp 563–579. In R. T. Carde and A. K. Minks (eds.), Insect pheromone research: new directions. Chapman and Hall, New York, NY, USA.

    Google Scholar 

  • Rand, D. M. 2001. The units of selection on mitochondrial DNA. Annual Review of Ecology and Systematics 32: 415–448.

    Article  Google Scholar 

  • Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.

    Google Scholar 

  • Richardson, B. J., P. R. Baverstock, and M. Adams. 1986. Allozyme electrophoresis: a handbook for animal systematics and population structure. Academic Press, Sydney, Australia.

    Google Scholar 

  • Richardson, R. H. (ed.). 1978. The screwworm problem. University of Texas Press, Austin, TX, USA.

    Google Scholar 

  • Richardson, R. H., J. R. Ellison, and W. W. Averhoff. 1982. Autocidal control of screwworms in North America. Science 215: 361–370.

    CAS  PubMed  Google Scholar 

  • Roderick, G. K. 1996. Geographic structure of insect populations: gene flow, phylogeography, and their uses. Annual Review of Entomology 41: 325–352.

    Article  CAS  PubMed  Google Scholar 

  • Rousset, F., and M. Raymond. 1997. Statistical analysis of population genetic data: new tools, old concepts. Trends in Ecology and Evolution 12: 313–317.

    Article  Google Scholar 

  • Schneider, S., D. Roessli, and L. Excoffier. 2000. Arlequin: a software for population genetics data analysis, Version 2.000. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva, Geneva, Switzerland.

    Google Scholar 

  • Simon, C., F. Frati, A. Beckenbach, B. Crespi, H. Liu, and P. Flook. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequence and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87: 651–701.

    CAS  Google Scholar 

  • Slatkin, M. 1985. Rare alleles as indicators of gene flow. Evolution 39: 53–65.

    Google Scholar 

  • Slatkin, M. 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457–462.

    CAS  PubMed  Google Scholar 

  • Slatkin, M., and N. H. Barton. 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43: 1349–1368.

    Google Scholar 

  • Templeton, A. R. 1998. Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Molecular Ecology 7: 381–397.

    Article  CAS  PubMed  Google Scholar 

  • Vajime, C. G., and W. G. Gregory. 1990. Onchocerciasis: species complex of vectors and epidemiology. Acta Leidensia 59: 235–252.

    CAS  PubMed  Google Scholar 

  • Vale, G. A., J. W. Hargrove, A. M. Jordan, P. A. Langley, and A. R. Mews. 1976. Survival and behaviour of tsetse flies (Diptera, Glossinidae) released in the field: a comparison between wild flies and animal-fed and in vitro-fed laboratory-reared flies. Bulletin of Entomological Research 66: 731–744.

    Google Scholar 

  • Vera, M. T., C. Cáceres, V. Wornoayporn, A. Islam, A. S. Robinson, M. H. de la Vega, J. Hendrichs, and J. P. Cayol. 2005. Mating incompatibility among populations of the South American fruit fly Anastrepha fraterculus (Wied.) (Diptera: Tephritidae). Annals of the Entomological Society of America 98: (in press).

    Google Scholar 

  • Vos, P., R. Hoger, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, and M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407–4414.

    CAS  PubMed  Google Scholar 

  • Weir, B. S. 1996. Genetic data analysis II. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • Weir, B. S., and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.

    Google Scholar 

  • Whitlock, M. C., and D. E. McCauley. 1999. Indirect measures of gene flow and migration FST ≠ 1/(4Nem+1). Heredity 82: 117–125.

    Article  PubMed  Google Scholar 

  • Wohlford, D. L., E. S. Krafsur, N. T. Griffiths, J. G. Marquez, and M. D. Baker. 1999. Genetic differentiation of some Glossina morsitans morsitans populations. Medical and Veterinary Entomology 13: 377–385.

    Article  CAS  PubMed  Google Scholar 

  • Wright, S. 1969a. Evolution and the genetics of populations. Volume 1. Genetics and biometric foundations. University of Chicago Press, Chicago, MI, USA.

    Google Scholar 

  • Wright, S. 1969b. Evolution and the genetics of populations. Volume 2. The theory of gene frequencies. University of Chicago Press, Chicago, MI, USA.

    Google Scholar 

  • Wright, S. 1978a. Evolution and the genetics of populations. Volume 3. Experimental results and evolutionary deductions. University of Chicago Press, Chicago, MI, USA.

    Google Scholar 

  • Wright, S. 1978b. Evolution and the genetics of populations. Volume 4. Variability within and among natural populations. University of Chicago Press, Chicago, MI, USA.

    Google Scholar 

  • Zhang, D. X., and G. M. Hewitt. 1996. Assessment of the universality and utility of a set of conserved mitochondrial COI primers in insects. Insect Molecular Biology 6: 143–150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 IAEA. Springer

About this chapter

Cite this chapter

Krafsur, E.S. (2005). Role of Population Genetics in the Sterile Insect Technique. In: Dyck, V.A., Hendrichs, J., Robinson, A. (eds) Sterile Insect Technique. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4051-2_14

Download citation

Publish with us

Policies and ethics