Skip to main content

Deformation Twinning in Nanocrystalline fcc Copper and Aluminum

  • Conference paper
Nanostructured Materials by High-Pressure Severe Plastic Deformation

Part of the book series: NATO Science Series ((NAII,volume 212))

  • 1627 Accesses

Abstract

Deformation twins have been oberved in nanocrystalline (nc) Al processed by cryogenic ball-milling and in nc Cu processed by high-pressure torsion at room temperature and very low strain rates. They were found formed by partial dislocations emitted from grain boundaries. This paper first reviews experimental evidences and molecular simulation results on deformation twinning and partial dislocation emissions from grain boundaries, and then discusses recent analytical models on the nucleation and growth of deformation twins. These models are compared with experimental results to establish their validity and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Valiev R.Z., Alexandrov I.V., Zhu Y.T., and Lowe T.C., J. Mater. Res., 17 (2002) 5–8.

    CAS  Google Scholar 

  2. Zhang X., Wang H., Scattergood R.O., Narayan J., Koch C.C., Sergueeva A.V., and Mukherjee A.K., Appl. Phys. Lett., 81 (2002) 823–25.

    CAS  Google Scholar 

  3. Jia D., Wang Y.M., Ramesh K.T., Ma E., Zhu Y.T., and Valiev R.Z., Appl. Phys. Lett., 79 (2001) 611–13.

    CAS  Google Scholar 

  4. Schiøtz J., Ditolla F.D., Jacobsen K.W., Nature, 391 (1998) 561–63.

    Google Scholar 

  5. Kumar K.S., Suresh S., Chisholm M.F., Horton J.A., and Wang P., Acta Mater., 51 (2003) 387–405.

    CAS  Google Scholar 

  6. Swygenhoven H.Van, Science, 296 (2002) 66–67.

    Article  Google Scholar 

  7. Yamakov V., Wolf D., Phillpot S.R., Mukherjee A.K., and Gleiter H., Nature Mater., 1 (2002) 45–48.

    Article  CAS  Google Scholar 

  8. Chen M.W., Ma E., Hemker K.J., Sheng H.W., Wang Y.M., Cheng X.M., Science, 300 (2003) 1275–77.

    CAS  Google Scholar 

  9. Liao X.Z., Zhou F., Lavernia E.J., Srinivasan S.G., Baskes M.I., He D.W. and Zhu Y.T., Appl. Phys. Lett., 83 (2003) 632–34.

    CAS  Google Scholar 

  10. Liao X.Z., Zhou F., Lavernia E.J., He D.W., and Zhu Y.T., Appl. Phys. Lett., 83 (2003) 5062–64.

    CAS  Google Scholar 

  11. Liao X.Z., Huang J.Y., Zhu Y.T., Zhou F., and Lavernia E.J. Phil. Mag., 83 (2003) 3065–75.

    CAS  Google Scholar 

  12. Liao X.Z., Zhao Y.H., Srinivasan S.G., Zhu Y.T., Valiev R.Z. and Gunderov D.V., Appl. Phys. Lett., 84 (2004) 592–94.

    CAS  Google Scholar 

  13. Rösner H., Markmann J., Weissmüller J., Phil. Mag. Lett., 84 (2004) 321–34.

    Google Scholar 

  14. Swygenhoven H.Van, Derlet P.M., Hasnaoui A., Phys. Rev. B, 66 (2002) 024101.

    Google Scholar 

  15. Yamakov V., Wolf D., Salazar M., Phillpot S.R., and Gleiter H., Acta Mater., 50 (2002) 5005–20.

    CAS  Google Scholar 

  16. Yamakov V., Wolf D., Phillpot S.R., Mukherjee A.K., and Gleiter H., Nature Mater., 3 (2004) 43–47.

    Article  CAS  Google Scholar 

  17. Ke M., Hackney S.A., Milligan W.W., and Aifantis E.C., NanoStructured Mater., 6 (1995) 689–97.

    Google Scholar 

  18. Shan Z., Stach E.A., Wiezorek J.M.K., Knapp J.A., Follstaedt D.M., Mao S.X., Science, 305 (2004) 654–57.

    Article  CAS  Google Scholar 

  19. Schiøtz J., Jacobsen K.W., Science 301 (2003) 1357–59.

    Google Scholar 

  20. Liao X.Z., Srinivasan S.G., Zhao Y.H., Baskes M.I., Zhu Y.T., Zhou F., Lavernia E.J., Xu H.F., Appl. Phys. Lett., 84 (2004) 3564–66.

    CAS  Google Scholar 

  21. Hai S., Tadmor E.B., Acta Mater., 51 (2003) 117–31.

    Article  CAS  Google Scholar 

  22. Liu C.D., Bassim M.N., You D.X., Acta Met. Mat., 42 (1994) 3695–04.

    CAS  Google Scholar 

  23. Hansen N., Ralph B., Acta Met., 30 (1982) 411–17.

    Article  CAS  Google Scholar 

  24. Johari O. and Thomas G., Acta Metall., 2 (1964) 1153–59.

    Google Scholar 

  25. Smith C.S., Trans. Met. Soc. AIME., 212 (1958) 574–89.

    CAS  Google Scholar 

  26. Blewitt T.H., Coltman R., and Redman J.K., J. Appl. Phys., 28 (1957) 651–60.

    CAS  Google Scholar 

  27. Meyers M.A., Vöhringer O., Lubarda V.A., Acta Mater., 49 (2001)4025–39.

    Article  CAS  Google Scholar 

  28. El-Danaf E., Kalidindi S.R., Doherty R.D., Metall. Mater. Trans., 30A (1999) 1223–33.

    CAS  Google Scholar 

  29. Liao X.Z., Zhao Y.H., Zhu Y.T., Valiev R.Z., Gunderov D.V., J. Appl. Phys., 96 (2004) 636–40.

    CAS  Google Scholar 

  30. Asaro R.J., Krysl P., Kad B., Phil. Mag. Lett., 83 (2003) 733–43.

    Article  CAS  Google Scholar 

  31. Zhu Y.T., Liao X.Z., Zhao Y.H., Srinivasan S.G., Zhou F., Lavernia E.J., Appl. Phys. Lett., 85 (2004) 5049–51

    CAS  Google Scholar 

  32. Kovács I., Zsoldos L., Dislocation and Plastic Deformation (Pergamon Press, Oxford, 1973), pp. 40–186.

    Google Scholar 

  33. Hirth J. P., Lothe J., Theory of Dislocations (John Wiley & Sons, New York, 1982), pp. 315–39.

    Google Scholar 

  34. Yamakov V., Wolf D., Salazar M., Phillpot S.R., and Gleiter H., Acta Mater., 49 (2001) 2713–22.

    Article  CAS  Google Scholar 

  35. Swygenhoven H.Van, Derlet P.M., and Frøseth A.G., Nature Mat., 3 (2004) 399–403.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuntian T. Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Zhu, Y.T. (2006). Deformation Twinning in Nanocrystalline fcc Copper and Aluminum. In: Zhu, Y.T., Varyukhin, V. (eds) Nanostructured Materials by High-Pressure Severe Plastic Deformation. NATO Science Series, vol 212. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3923-9_1

Download citation

Publish with us

Policies and ethics