Skip to main content

Towards the Role of the Range of Intermolecular Interactions

Systematic computer simulations of the fluids with electrostatic interactions

  • Conference paper
Ionic Soft Matter: Modern Trends in Theory and Applications

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 206))

Abstract

It has been traditionally believed that, unlike simple fluids whose properties are determined primarily by the short-range repulsions, the properties of complex fluids are strongly affected by the long-range electrostatic interactions. In the course of investigations, extensive and systematic computer simulations have been performed on typical quadrupolar, dipolar and associating fluids using available realistic potential models. The structural characteristics as well as dielectric constant and the thermodynamic properties of both the homogeneous liquid and supercritical fluid phases, and vapor-liquid equilibria have also been considered. The obtained results lead to the conclusion that the structure of pure fluids, both polar and associating, is governed by the same molecular mechanism as for simple fluids, i.e. by the short-range interactions, whereas the long-range part of the electrostatic forces, regardless of their strength, plays only a marginal role and may be treated as a perturbation only. However, it turns out that for mixtures of charged particles the situation is much more complex and that the observed behavior is very sensitive to the details of intermolecular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker, J.A., and Henderson, D. Rev. mod. Phys., 1976, 48, p. 587.

    Article  MathSciNet  ADS  Google Scholar 

  2. Hansen, J.P., and McDonald, I.R. (1986). Theory of Simple Liquids. London: Academic Press.

    Google Scholar 

  3. Rowlinson, J.S., and Swinton, F.L. (1982). Liquid and Liquid Mixtures, 3rd ed. London: Butterworths.

    Google Scholar 

  4. Stratton, J.A. (1941). Electromagnetic Theory. New York: Academic Press.

    MATH  Google Scholar 

  5. Boublík, T., Nezbeda, I., and Hlavatý, K. (1983). Statistical Thermodynamics of Simple Liquids and Their Mixtures. Amsterdam: Elsevier.

    Google Scholar 

  6. Andersen, H.C. Ann. Rev. Phys. Chem., 1975, 26, p. 145.

    Article  ADS  Google Scholar 

  7. Nezbeda, I., and Kolafa, J. Molec. Phys., 1999, 97, p. 1105.

    Article  ADS  Google Scholar 

  8. Kolafa, J., and Nezbeda, I. Molec. Phys., 2000, 98, p. 1505.

    Article  ADS  Google Scholar 

  9. Dahl, L.W., and Andersen, H.C. J. Chem. Phys., 1983, 78, p. 1980.

    Article  ADS  Google Scholar 

  10. Nezbeda, I. Fluid Phase Equil., 2000, 170, p. 13.

    Article  Google Scholar 

  11. Silverstein, K.A.T., Haymet, A.D.J., and Dill, K.A. J. Am. Chem. Soc., 1998, 120, p. 3166.

    Article  Google Scholar 

  12. Předota, M., and Nezbeda, I. Molec. Phys., 1999, 96, p. 1237.

    Article  ADS  Google Scholar 

  13. Předota, M., Nezbeda, I., and Cummings, P.T. Molec. Phys., 2002, 100, p. 2189.

    Article  ADS  Google Scholar 

  14. Nezbeda, I. Molec. Phys., 2001, 99, p. 1631.

    Article  ADS  Google Scholar 

  15. Muller, E.A., and Gubbins, K.E. Ind. Eng. Chem. Res., 2001, 40, p. 2193.

    Article  Google Scholar 

  16. Nezbeda, I., and Weingerl, U. Molec. Phys., 2001, 99, p. 1595.

    Article  ADS  Google Scholar 

  17. Nezbeda, I., and Kolafa, J. Czech. J. Phys., 1990, B40, p. 138.

    Article  ADS  Google Scholar 

  18. Nezbeda, I., and Lísal, M. Molec. Phys., 2001, 99, p. 291.

    Article  ADS  Google Scholar 

  19. Gray, C.G., and Gubbins, K.E. (1984). Theory of Molecular Fluids, vol. 1. Oxford: Clarendon Press.

    Google Scholar 

  20. Steinhauser, O. Molec. Phys., 1982, 45, p. 335.

    Article  ADS  Google Scholar 

  21. Kirkwood, J.G. J. Chem. Phys., 1935, 3, p. 911.

    Article  Google Scholar 

  22. de Leeuw, S.W., Perram, J.W., and Smith, E.B. Proc. Roy. Soc. London Ser. A, 1983, 388, p. 177.

    Article  ADS  Google Scholar 

  23. Allen, M.P., and Tildesley, D.J. (1987). The Computer Simulation of Liquids. Oxford: Clarendon Press.

    Google Scholar 

  24. Frenkel, D., and Smit, B. (2003). Understanding Molecular Simulation: From Algorithms to Applications. San Diego: Academic Press.

    Google Scholar 

  25. Kolafa, J., Lísal, M., and Nezbeda, I. Molec. Phys., 2001, 99, p. 1751.

    Article  ADS  Google Scholar 

  26. Kettler, M., Nezbeda, I., Chialvo, A.A., and Cummings, P.T. J. Phys. Chem. B, 2002, 106, p. 7537.

    Article  Google Scholar 

  27. Jorgensen, W.L., and Briggs, J.M. Molec. Phys., 1988, 63, p. 547.

    Article  ADS  Google Scholar 

  28. Cournoyer, M.E., and Jogensen, W.L. Molec. Phys., 1984, 51, p. 119.

    Article  ADS  Google Scholar 

  29. Pauling, L. J. Am. Chem. Soc., 1935, 57, p. 2680.

    Article  Google Scholar 

  30. Labik, S., and Nezbeda, I. Molec. Phys., 1983, 48, p. 109.

    Article  Google Scholar 

  31. Brodholt, J.P. Chem. Geol., 1998, 151, p. 11.

    Article  Google Scholar 

  32. Andersen, H.C., Chandler, D., and Weeks, J.D. Adv. chem. Phys., 1976, 14, p. 105.

    Article  Google Scholar 

  33. Nezbeda, I. J. Molec. Liquids, 1997, 73–74, p. 317.

    Article  Google Scholar 

  34. Vlček, L., and Nezbeda, I. Molec. Phys., 2003, 101, p. 2987.

    Article  ADS  Google Scholar 

  35. Vlček, L., and Nezbeda, I. Molec. Phys., 2004, 102, p. 485.

    Article  ADS  Google Scholar 

  36. Předota, M., Ben-Naim, A., and Nezbeda, I. J. Chem. Phys., 2003, 118, p. 6446.

    Article  ADS  Google Scholar 

  37. Lísal, M., Kolafa, J., and Nezbeda, I. J. Chem. Phys., 2002, 117, p. 8892.

    Article  ADS  Google Scholar 

  38. Koneshan, S., and Jayendran, J.C. J. Chem. Phys., 2000, 113, p. 8125.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Nezbeda, I., Kolafa, J. (2005). Towards the Role of the Range of Intermolecular Interactions. In: Henderson, D., Holovko, M., Trokhymchuk, A. (eds) Ionic Soft Matter: Modern Trends in Theory and Applications. NATO Science Series II: Mathematics, Physics and Chemistry, vol 206. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3659-0_4

Download citation

Publish with us

Policies and ethics