Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 234))

Summary

This essay surveys a number of results and open questions concerning the curvature of Riemannian metrics associated to a contact form.

This essay is an expanded version of the author’s lecture given at the conference “Curvature in Geometry” in honor of Professor Lieven Vanhecke in Lecce, Italy, 11–14 June 2003.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ch. Baikoussis and Th. Koufogiorgos, On a type of contact metric manifolds, J. Geom. 46 (1993), 1–9.

    Article  MATH  MathSciNet  Google Scholar 

  2. K. Bang, Riemannian Geometry of Vector Bundles, Thesis, Michigan State University, 1994.

    Google Scholar 

  3. K. Bang and D. E. Blair, On conformally flat contact metric manifolds, to appear.

    Google Scholar 

  4. D.E. Blair, On the non-existence of flat contact metric structures, Tôhoku Math. J. 28 (1976), 373–379.

    MATH  MathSciNet  Google Scholar 

  5. D.E. Blair, Two remarks on contact metric structures, Tôhoku Math. J. 29 (1977), 319–324.

    MATH  MathSciNet  Google Scholar 

  6. D.E. Blair, When is the tangent sphere bundle locally symmetric?, in: Geometry and Topology, World Scientific, Singapore, 1989,15–30

    Google Scholar 

  7. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, 203, Birkhäuser, Boston, Cambridge, MA, 2002.

    MATH  Google Scholar 

  8. D. E. Blair, J.-S. Kim and M. M. Tripathi, On the concircular curvature tensor of a contact metric manifold, to appear.

    Google Scholar 

  9. D. E. Blair and Th. Koufogiorgos, When is the tangent sphere bundle conformally flat?, J. Geom. 49 (1994), 55–66.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. E. Blair, Th. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), 189–214.

    MATH  MathSciNet  Google Scholar 

  11. D. E. Blair and R. Sharma, Generalization of Myers’ theorem on a contact metric manifold, Ill. J. Math. 34 (1990), 837–844.

    MATH  MathSciNet  Google Scholar 

  12. D. E. Blair and R. Sharma, Three dimensional locally symmetric contact metric manifolds, Bollettino U. M. I. (7) 4-A (1990), 385–390.

    MathSciNet  Google Scholar 

  13. D. E. Blair and L. Vanhecke, Symmetries and φ-symmetric spaces, Tôhoku Math. J. 39 (1987), 373–383.

    MATH  MathSciNet  Google Scholar 

  14. E. Boeckx, A class of locally φ-symmetric contact metric spaces, Arch. Math. 72 (1999), 466–472.

    Article  MATH  MathSciNet  Google Scholar 

  15. E. Boeckx, A full classification of contact metric (k,μ)-spaces, Ill. J. Math. 44 (2000), 212–219.

    MATH  MathSciNet  Google Scholar 

  16. E. Boeckx and G. Calvaruso, When is the unit tangent sphere bundle semi-symmetric?, Tôhoku Math. J., 56 (2004), 357–366.

    Article  MATH  MathSciNet  Google Scholar 

  17. E. Boeckx and L. Vanhecke, Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), 427–448.

    MATH  MathSciNet  Google Scholar 

  18. E. Boeckx, P. Bueken and L. Vanhecke, φ-symmetric contact metric spaces, Glasgow Math. J. 41 (1999), 409–416.

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Bueken and L. Vanhecke, Reflections in K-contact geometry, Math. Rep. Toyama Univ. 12 (1989), 41–49.

    MATH  MathSciNet  Google Scholar 

  20. G. Calvaruso, Einstein-like and conformally flat contact metric three-manifolds, Balkan J. Geom. and App. 5 (2000), 17–36.

    MATH  MathSciNet  Google Scholar 

  21. G. Calvaruso, D. Perrone and L. Vanhecke, Homogeneity on three-dimensional contact metric manifolds, Israel J. Math. 114 (1999), 301–321.

    MATH  MathSciNet  Google Scholar 

  22. B.-Y. Chen and L. Vanhecke, Isometric, holomorphic and symplectic reflections, Geometria Dedicata 29 (1989), 259–277.

    Article  MathSciNet  Google Scholar 

  23. J. T. Cho, A class of contact Riemannian manifolds whose associated CR-structures are integrable, Publ. Math. Debrecen 63/1–2 (2003), 193–211.

    MATH  MathSciNet  Google Scholar 

  24. A. Ghosh, Th. Koufogiorgos and R. Sharma, Conformally flat contact metric manifolds, J. Geom. 70 (2001), 66–76.

    Article  MATH  MathSciNet  Google Scholar 

  25. F. Gouli-Andreou and N. Tsolakidou, On conformally flat contact metric manifolds, J. Geom. 79 (2004), 75–88.

    Article  MATH  MathSciNet  Google Scholar 

  26. F. Gouli-Andreou and Ph. Xenos, Two classes of conformally flat contact metric 3-manifolds, J. Geom. 64 (1999), 80–88.

    Article  MATH  MathSciNet  Google Scholar 

  27. I. Hasegawa and M. Seino, Some remarks on Sasakian geometry, J. Hokaido Univ. Education 32 (1981), 1–7.

    MathSciNet  Google Scholar 

  28. J. A. Jiménez and O. Kowalski, The classification of φ-symmetric Sasakian manifolds, Mh. Math. 115 (1993), 83–98.

    Article  MATH  Google Scholar 

  29. Th. Koufogiorgos, On a class of contact Riemannian 3-manifolds, Results in Math. 27 (1995), 51–62.

    MATH  MathSciNet  Google Scholar 

  30. Th. Koufogiorgos, and C. Tsichlias On the existence of a new class of contact metric manifolds, Can. Math. Bull. 43 (2000), 440–447.

    MATH  MathSciNet  Google Scholar 

  31. R. Lutz, Sur la géométrie des structures de contact invariantes, Ann. Inst. Fourier 29 (1979), 283–306.

    MATH  MathSciNet  Google Scholar 

  32. J. Milnor, Curvature of left invariant metrics on Lie groups, Advances in Math. 21 (1976), 293–329.

    Article  MATH  MathSciNet  Google Scholar 

  33. S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941), 401–404.

    Article  MATH  MathSciNet  Google Scholar 

  34. M. Okumura, Some remarks on space with a certain contact metric structure, Tôhoku Math. J. 14 (1962), 135–145.

    MATH  MathSciNet  Google Scholar 

  35. Z. Olszak, On contact metric manifolds, Tôhoku Math. J. 31 (1979), 247–253.

    MATH  MathSciNet  Google Scholar 

  36. B. J. Papantoniou, Contact Riemannian manifolds satisfying R(ξ,X) · R = 0 and ξ(k,μ)-nullity distribution, Yokohama Math. J. 40 (1993), 149–161.

    MATH  MathSciNet  Google Scholar 

  37. A. M. Pastore, Classification of locally symmetric contact metric manifolds, Balkan J. Geom. Appl. 3 (1998), 89–96.

    MathSciNet  Google Scholar 

  38. D. Perrone, Contact Riemannian manifolds satisfying R(ξ,X) · R = 0, Yokohama Math. J. 39 (1992), 141–149.

    MATH  MathSciNet  Google Scholar 

  39. D. Perrone, Homogeneous contact Riemannian three-manifolds, Ill. J. Math. 42 (1998), 243–256.

    MATH  MathSciNet  Google Scholar 

  40. D. Perrone, Contact metric manifolds whose characteristic vector field is a harmonic vector field, Differential Geometry and its Applications 20 (2004), 367–378.

    MATH  MathSciNet  Google Scholar 

  41. T. Takahashi, Sasakian φ-symmetric spaces, Tôhoku Math. J. 29 (1977), 91–113.

    MATH  Google Scholar 

  42. S. Tanno, Some transformations on manifolds with almost contact and contact metric structures II, Tôhoku Math. J. 15 (1963), 322–331.

    MATH  MathSciNet  Google Scholar 

  43. S. Tanno, Locally symmetric K-contact Riemannian manifolds, Proc. Japan Acad. 43 (1967), 581–583.

    Article  MATH  MathSciNet  Google Scholar 

  44. S. Tanno, Sasakian manifolds with constant ϕ-holomorphic sectional curvature, Tôhoku Math. J. 21 (1969), 501–507.

    MATH  MathSciNet  Google Scholar 

  45. S. Tanno, Isometric immersions of Sasakian manifolds in spheres, Kōdai Math. Sem. Rep. 21 (1969), 448–458.

    Article  MATH  MathSciNet  Google Scholar 

  46. S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), 349–379.

    Article  MATH  MathSciNet  Google Scholar 

  47. S. Tanno, The standard CR-structure on the unit tangent bundle, Tôhoku Math. J. 44 (1992), 535–543.

    MATH  MathSciNet  Google Scholar 

  48. A. Zeghib, Subsystems of Anosov systems, Amer. J. Math. 117 (1995), 1431–1448.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Lieven Vanhecke

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Boston

About this chapter

Cite this chapter

Blair, D.E. (2005). Curvature of Contact Metric Manifolds. In: Kowalski, O., Musso, E., Perrone, D. (eds) Complex, Contact and Symmetric Manifolds. Progress in Mathematics, vol 234. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4424-5_1

Download citation

Publish with us

Policies and ethics