Skip to main content

Molecular Orbital Calculations and Optical Transitions of PAHs and Asphaltenes

  • Chapter
Asphaltenes, Heavy Oils, and Petroleomics

Abstract

In order to understand the chemistry and aggregation of asphaltenes, it is essential to know the size and structure of their fused aromatic ring (FAR) region. It is well established that the FAR region in asphaltenes is similar to polycyclic aromatic hydrocarbons (PAHs); asphaltene molecules additionally may contain heteroatoms and alkyl groups. It is essential to characterize the number of rings in the FAR group as well as their geometry in asphaltenes. Regarding geometry, the terms pericondensed vs. catacondensed are generally used; pericondesation refers to single bridgehead carbons attached to three rings, while catacondensation refers to aromatic carbons shared by at most two rings. 13C NMR and more recently XRRS (X-ray Raman spectroscopy) have been applied to investigate the type of aromatic ring condensation in asphaltenes. A different approach is to employ molecular orbital (MO) calculations especially coupled with the ubiquitous optical absorption and emission data for asphaltenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chilingarian, G.V. and T.F. Yen (eds.) (1978). Bitumens, Asphalts, and Tar Sands. Elsevier.

    Google Scholar 

  2. Speight, J.G. (1980). The Chemistry and Technology of Petroleum. Marcel Dekker, pp. 189–252.

    Google Scholar 

  3. Tissot, B.P. and D.H. Weite (1984). Petroleum Formation and Occurrence. Springer-Verlag, Berlin.

    Google Scholar 

  4. Bunger, J.W. and N. C. Li (eds.) (1981). Chemistry of Asphaltenes. American Chemical Society, Washington.

    Google Scholar 

  5. Sheu, E. Y. and O.C. Mullins (eds.) (1995). Asphaltenes, Fundamentals and Applications. Plenum Press, New York.

    Google Scholar 

  6. Mullins, O.C. and E.Y. Sheu (eds.) (1998). Structures and Dynamics of Asphaltenes. Plenum Press, New York.

    Google Scholar 

  7. Groenzin, H. and O.C. Mullins (1999). J. Phys. Chem. A. 103, 11237.

    Article  CAS  Google Scholar 

  8. Groenzin, H. and O.C. Mullins (2000). Energy Fuels 14, 677.

    Article  CAS  Google Scholar 

  9. Mullins, O.C. (1998). Optical Interrogation of Aromatic Moieties in crude oils and Asphaltenes. In: Mullins, O.C. and E.Y Sheu (eds.) Structures and Dynamics of Asphaltenes. Plenum Press, New York.

    Google Scholar 

  10. Boduszynski, M.M. (1981). Asphaltenes in Petroleum Asphalts: Composition and Formation. In: Bunger J.W. and N.C. Li (eds.) (1981). Chemistry of Asphaltenes. Advances in Chemistry Series 195. American Chemical society, Washington.

    Google Scholar 

  11. Boduszynski, M.M. (1988). Energy Fuels 2, 597.

    Article  CAS  Google Scholar 

  12. Miller, J.T., R.B. Fisher, P. Thiyagarajan, R.E. Winans, and J.E. Hunt (1998). Energy Fuels 12, 1290.

    Article  CAS  Google Scholar 

  13. Rodgers, R.P. and A.G. Marshall (2006). Petroleomics: Advanced Characterization of Petroleum Derived Materials by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FR-ICR MS). In: Mullins, O.C., E.Y. Sheu, A. Hammami, and A.G. Marshall (eds.) Asphaltene, Heavy Oils and Petroleomics. Springer, New York.

    Google Scholar 

  14. Zajac, G.W., N. K. Sethi, and J. T. Joseph (1994). Scanning Microsc. 8, 463.

    CAS  Google Scholar 

  15. Sharma, A., H. Groenzin, A. Tomita, and O.C. Mullins (2002). Energy Fuels 16, 490.

    Article  CAS  Google Scholar 

  16. Calemma, V., P. Iwanski, M. Nali, R. Scotti, and L. Montanari (1995). Energy Fuels 9, 225.

    Article  CAS  Google Scholar 

  17. Bergmann, U., H. Groenzin, O. C. Mullins, P. Glatzel, J. Fetzer, and S.P. Cramer (2003). Chem. Phys. Let. 369, 184.

    Article  CAS  Google Scholar 

  18. Seki, H. and F. Kumata (2000). Energy Fuels 14, 980.

    Article  CAS  Google Scholar 

  19. Ruiz-Morales, Y. (2002). J. Phys. Chem. A 106, 11283.

    Article  CAS  Google Scholar 

  20. Clar, E. (1964). Polycyclic Hydrocarbons. Vol. 1, Academic, London.

    Google Scholar 

  21. Clar, E. (1964). Polycyclic Hydrocarbons. Vol. 2, Academic, London.

    Google Scholar 

  22. Clar, E. (1972). The Aromatic Sextet. Wiley, London.

    Google Scholar 

  23. Randic, M. (2003). Chem. Rev. 103, 3449.

    Article  CAS  Google Scholar 

  24. Randic, M., H. Hosoya, and K. Nakada (1995). Polycyclic Aromat. Compd. 4, 249.

    Article  CAS  Google Scholar 

  25. Moran, D., F. Stahl, H.F. Bettinger, H.F. Schaefer, and P.v.R. Schleyer (2003). J. Am. Chem. Soc. 125, 6746.

    Article  CAS  Google Scholar 

  26. Belloli, R.C. (1983). J. Chem. Ed. 60, 191.

    Article  Google Scholar 

  27. Ruiz-Morales, Y. (2004). J. Phys. Chem. A. 108, 10873.

    Article  CAS  Google Scholar 

  28. Dias, J.R. (1994). Polycyclic Aromat. Compd. 4, 87.

    Article  CAS  Google Scholar 

  29. Dias, J.R. (1993). J. Mol. Struct. (THEOCHEM) 284, 11.

    Article  Google Scholar 

  30. Dias, J.R. (1991). J. Mol. Struct. (THEOCHEM) 230, 155.

    Article  Google Scholar 

  31. Dias, J.R. (1990). Theor. Chim. Acta. 77, 143.

    Article  CAS  Google Scholar 

  32. Dias, J.R. (1999). Polycyclic Aromat. Compd. 14–15, 63.

    Article  Google Scholar 

  33. Dias, J.R. (1985). Acc. Chem. Res. 18, 241.

    Article  CAS  Google Scholar 

  34. Schleyer, P.v.R., C. Maerker, A. Dransfeld, H. Jiao, and N.J.R.v.E. Hommes (1996). J. Am. Chem. Soc. 118, 6317.

    Article  CAS  Google Scholar 

  35. Schleyer, P.v.R., H. Jiao, N.J.R.v.E Hommes, V.G Malkin, and O.L Malkina (1997). J. Am. Chem. Soc. 119, 12669.

    Article  CAS  Google Scholar 

  36. Schleyer, P.v.R., M. Manoharan, Z.-X. Wang, B. Kiran, H. Jiao, R. Puchta, and N.J.R.v.E. Hommes (2001). Org. lett. 3, 2465.

    Article  CAS  Google Scholar 

  37. Sun, H., P. Ren, and J. R. Fried (1998). Comput. Theor. Polym. Sci. 8, 229.

    Article  CAS  Google Scholar 

  38. Sun, H. (1998). J. Phys. Chem. B. 102, 7338.

    Article  CAS  Google Scholar 

  39. Molecular Simulation Incorporated (1999). Cerius2 Modeling Environment. Release 4.0. Molecular Simulations Incorporated, San Diego, CA.

    Google Scholar 

  40. Eichinger, B.E., D. Rigby, and J. Stein (2002). Polymer, 43, 599.

    Article  CAS  Google Scholar 

  41. Kaduk, J.A. and J.A. Hanko (2001). J. Appl. Crystallogr, 34, 720.

    Article  Google Scholar 

  42. Fraaije, J.G.E.M., B.A.C. van Vlimmeren, N.M. Maurits, M. Postma, O.A. Ever, C. Hoffman, P. Altevogt, and G. Goldbeck-Wood (1997). J. Chem. Phys. 106, 4260.

    Article  CAS  Google Scholar 

  43. Spyriouni, T. and C. Vergelati (2001). Macromolecules 34, 5306.

    Article  CAS  Google Scholar 

  44. Stewart, J.J.P. (1989). J. Comp. Chem. 10, 209.

    Article  CAS  Google Scholar 

  45. Stewart, J.J.P. (1989). J. Comp. Chem. 10, 221.

    Article  CAS  Google Scholar 

  46. Dewar, M.J.S., E.G. Zoebisch, and E.F. Healy (1985). J. Amer. Chem. Soc., 107, 3902.

    Article  CAS  Google Scholar 

  47. Mora-Diez, N. and R.J. Boyd (2000). J. Phys. Chem. A, 104, 1020.

    Article  CAS  Google Scholar 

  48. Zerner, M.C., P. Correa de Mello, and M. Hehenberger (1982). Int. J. Quantum Chem. 21, 251.

    Article  Google Scholar 

  49. Frisch, M.J., G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A.; Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Jr., Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strahl, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, E.G. Johnson, W. Chen, M.W. Wong, J.L. Andres, M. Head-Gordon, E.S. Replogle, and J.A. Pople (1998). Gaussian 98, Revision A.7. Gaussian, Inc., Pittsburgh, PA.

    Google Scholar 

  50. Ditchfield, R. (1974). Mol. Phys. 27, 789.

    Article  CAS  Google Scholar 

  51. Wolinski, K., J.F. Hinton, and P. Pulay (1990). J. Am. Chem. Soc. 112, 8251.

    Article  CAS  Google Scholar 

  52. Becke, A. (1988). Phys. Rev. A. 38, 3098.

    Article  CAS  Google Scholar 

  53. Lee, C., W. Yang, and R. G. Parr (1988). Phys. Rev. B. 37, 785.

    Article  CAS  Google Scholar 

  54. Chesnut, D.B. (1994). In: G.A. Webb (ed.) Annual Reports on NMR Spectroscopy. Vol. 29, Academic Press.

    Google Scholar 

  55. Kutzelnigg, W., U. Fleischer, and M. Schindler (1990). NMR Basic Principles and Progress. Vol. 23, Springer-Verlag, Berlin, p. 165.

    Google Scholar 

  56. Foresman, J.B. and A. Frisch (1996). Exploring Chemistry with Electronic Structure Methods. Gaussian, Inc., Pittsburgh, PA.

    Google Scholar 

  57. Siegmann, K., H. Hepp, and K. Sattler (1995). Combust. Sei. Technol. 109, 165.

    Article  CAS  Google Scholar 

  58. Siegmann, K. and K. Sattler (2000). J Chem. Phys. 112, 698.

    Article  CAS  Google Scholar 

  59. Berlman, L.B. (1971). Handbook of Fluorescence Specta of Aromatic Compounds. Academic Press.

    Google Scholar 

  60. George, G.A. and G.C. Moms (1968). J. Mol. Spectrosc. 26, 647.

    Article  Google Scholar 

  61. Salama, F. and L. J. Allamandola (1991). J. Chem. Phys. 94, 6964.

    Article  CAS  Google Scholar 

  62. Sadtler Research Laboratories Inc. (1975). The Sadtler Handbook of Ultraviolet Spectra. Sadtler Research Laboratories, Inc., Philadelphia, PA.

    Google Scholar 

  63. McKay, J.F. and D.R. Latham (1972). Anal. Chem. 44, 2132.

    Article  CAS  Google Scholar 

  64. Karcher, W., R.J. Fordham, J. Dubois, P.G.M. Glaude, and J.A.M. Ligthart (eds.) (1990). Spectral Atlas of Polycyclic Aromatic Compounds. Dordrech, Reidel.

    Google Scholar 

  65. Acree, WE., Jr. and S.A. Tucker (1991). Polycyclic Aromatic Compounds 2, 75.

    Article  CAS  Google Scholar 

  66. Nakashima, K., S. Yashuda, Y Ozaki, and I. Noda (2000). J. Phys. Chem. A. 104, 9113.

    Article  CAS  Google Scholar 

  67. Roos, B.O., K. Andersson, and M.P. Fülscher (1992). Chem. Phys. Lett. 192, 5.

    Article  CAS  Google Scholar 

  68. Garrat, P.J. (1996). Aromaticity. John Wiley and Sons, p. 39.

    Google Scholar 

  69. Heinecke, E., D. Hartmann, R. Müller, and A. Hese (1998). J. Chem. Phys. 109, 906.

    Article  CAS  Google Scholar 

  70. Halasinski, T.M., D.M. Hudgins, F. Salama, and L.J. Allamandola (2000). J. Chem. Phys. A. 104, 7484.

    Article  CAS  Google Scholar 

  71. Waris, R., K.W. Street, Jr., W.E. Acree, Jr., and J.C. Fetzer (1989). Appl. Spectrosc. 43, 845.

    Article  CAS  Google Scholar 

  72. Trickey, S.B., G.H.F. Diercksen, and F. Müller-Plathe (1967). UV Atlas of Organic Compounds. Plenum.

    Google Scholar 

  73. Canuto, S., M.C. Zemer, and G.H.F. Diercksen (1991). Astrophys. J. 337, 150.

    Article  Google Scholar 

  74. Fleischer, U., W. Kutzelnigg, P.; Lazzareti, and V. Mühlenkamp (1994). J. Am. Chem. Soc. 116, 5298.

    Article  CAS  Google Scholar 

  75. Patchkovskii, S. and W. Thiel (2000). J. Mol. Model. 6, 67.

    Article  CAS  Google Scholar 

  76. Schleyer, P.v.R. (2001). Chem. Rev. 101, 1115.

    Article  CAS  Google Scholar 

  77. Watson, M.D., A. Fechtenkötter, and K. Müllen (2001). Chem. Rev. 101, 1267.

    Article  CAS  Google Scholar 

  78. Masuda, K., O. Okuma, T. Nishizawa, M. Kanaji, and T. Matsumura (1996). Fuel 75, 295.

    Article  CAS  Google Scholar 

  79. Hamaguchi, H. and T. Nishizawa (1992). Fuel 71, 798.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ruiz-Morales, Y. (2007). Molecular Orbital Calculations and Optical Transitions of PAHs and Asphaltenes. In: Mullins, O.C., Sheu, E.Y., Hammami, A., Marshall, A.G. (eds) Asphaltenes, Heavy Oils, and Petroleomics. Springer, New York, NY. https://doi.org/10.1007/0-387-68903-6_4

Download citation

Publish with us

Policies and ethics