Skip to main content

Vertebrate Hair Cells: Modern and Historic Perspectives

  • Chapter
  • 930 Accesses

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 27))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong CE, Roberts WM (1998) Electrical properties of frog saccular hair cells: distortion by enzymatic dissociation. J Neurosci 18:2962–2973.

    PubMed  CAS  Google Scholar 

  • Art JJ, Fettiplace R (1987) Variation of membrane properties in hair cells isolated from the turtle cochlea. J Physiol 385: 207–242.

    PubMed  CAS  Google Scholar 

  • Art JJ, Fettiplace R, Fuchs PA (1984) Synaptic hyperpolarization and inhibition of turtle cochlear hair cells. J Physiol 356:525–550.

    PubMed  CAS  Google Scholar 

  • Benser ME, Marquis RE, Hudspeth AJ (1996) Rapid, active hair bundle movements in hair cells from the bullfrog’s sacculus. J Neurosci 16:5629–5643.

    PubMed  CAS  Google Scholar 

  • Block SM (1992) Biophysical principles of sensory transduction. In: Corey DP, Roper SD (eds), Sensory Transduction. New York: The Rockefeller University Press, pp. 1–17.

    Google Scholar 

  • Boeda B, El Amraoui A, Bahloul A, Goodyear R, Daviet L, Blanchard S, Perfettini I, Fath KR, Shorte S, Reiners J, Houdusse A, Legrain P, Wolfrum U, Richardson G, Petit C (2002) Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO J 21:6689–6699.

    Article  PubMed  CAS  Google Scholar 

  • Brown MC, Nuttall AL, Masta RI (1983) Intracellular recordings from cochlear inner hair cells: effects of stimulation of the crossed olivocochlear efferents. Science 222:69–72.

    PubMed  CAS  Google Scholar 

  • Brown SD, Steel KP (1994) Genetic deafness—progress with mouse models. Hum Mol Genet 3:1453–1456.

    PubMed  CAS  Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196.

    PubMed  CAS  Google Scholar 

  • Bryant J, Goodyear RJ, Richardson GP (2002) Sensory organ development in the inner ear: molecular and cellular mechanisms. Br Med Bull 63:39–57.

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M (1997) A molecular model for mechanosensation in Caenorhabditis elegans. Biol Bull 192:125.

    PubMed  CAS  Google Scholar 

  • Chalfie M, Sulston J (1981) Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev Biol 82:358–370.

    Article  PubMed  CAS  Google Scholar 

  • Chan DK, Hudspeth AJ (2005) Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat Neurosci 8:149–155.

    Article  PubMed  CAS  Google Scholar 

  • Chang W, Brigande JV, Fekete DM, Wu DK (2004) The development of semicircular canals in the inner ear: role of FGFs in sensory cristae. Development 131:4201–4211.

    Article  PubMed  CAS  Google Scholar 

  • Coffin A, Kelley MW, Manley GA, Popper AN (2004) Evolution of sensory hair cells. In: Manley GA, Popper AN, and Fay RR (eds), Evolution of the Vertebrate Auditory System. New York: Springer-Verlag, pp. 55–94.

    Google Scholar 

  • Corey DP, Hudspeth AJ (1979) Response latency of vertebrate hair cells. Biophys J 26:499–506.

    Article  PubMed  CAS  Google Scholar 

  • Corey DP, Hudspeth AJ (1980) Mechanical stimulation and micromanipulation with piezoelectric bimorph elements. J Neurosci Methods 3:183–202.

    Article  PubMed  CAS  Google Scholar 

  • Corey DP, Hudspeth AJ (1983) Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci 3:962–976.

    PubMed  CAS  Google Scholar 

  • Corey DP, Sotomayor M (2004) Hearing: tightrope act. Nature 428:901–903.

    Article  PubMed  CAS  Google Scholar 

  • Corey DP, Garcia-Añoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH, Duggan A, Géléoc GS, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730.

    Article  PubMed  CAS  Google Scholar 

  • Correia MJ, Lang DG (1990) An electrophysiological comparison of solitary type I and type II vestibular hair cells. Neurosci Lett 116:106–111.

    Article  PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1981) An electrical tuning mechanism in turtle cochlear hair cells. J Physiol 312:377–422.

    PubMed  CAS  Google Scholar 

  • Dallos P, Hallworth R, Evans BN (1993) Theory of electrically driven shape changes of cochlear outer hair cells. J Neurophysiol 70:299–323.

    PubMed  CAS  Google Scholar 

  • Davis H (1983) An active process in cochlear mechanics. Hear Res 9:79–90.

    Article  PubMed  CAS  Google Scholar 

  • Denk W, Webb WW, Hudspeth AJ (1989) Mechanical properties of sensory hair bundles are reflected in their Brownian motion measured with a laser differential interferometer. Proc Natl Acad Sci USA 86:5371–5375.

    Article  PubMed  CAS  Google Scholar 

  • Di Palma F, Holme RH, Bryda EC, Belyantseva IA, Pellegrino R, Kachar B, Steel KP, Noben-Trauth K (2001) Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nat Genet 27:103–107.

    Article  PubMed  Google Scholar 

  • Drenckhahn D, Schäfer T, Prínz M (1985) Actin, myosin, and associated proteins in the vertebrate auditory and vestibular organs. Immunochemical and biochemical studies. In: Drescher DG (ed), Auditory Biochemistry. Springfield, IL: Charles C. Thomas, pp. 312–335.

    Google Scholar 

  • Eisen MD, Spassova M, Parsons TD (2004) Large releasable pool of synaptic vesicles in chick cochlear hair cells. J Neurophysiol 91:2422–2428.

    Article  PubMed  Google Scholar 

  • Engström H, Engström B (1978) Structure of the hairs on cochlear sensory cells. Hear Res 1:49–66.

    Article  PubMed  Google Scholar 

  • Fettiplace R, Crawford AC (1978) The coding of sound pressure and frequency in cochlear hair cells of the terrapin. Proc R Soc Lond B 203:209–218.

    PubMed  CAS  Google Scholar 

  • Fettiplace R, Fuchs PA (1999) Mechanisms of hair cell tuning. Annu Rev Physiol 61:809–834.

    Article  PubMed  CAS  Google Scholar 

  • Flock A (1971) Sensory transduction in hair cells. In: Loewenstein WR (ed), Handbook of Sensory Physiology, Vol. 1. Berlin: Springer-Verlag, pp. 396–441.

    Google Scholar 

  • Flock A, Russell I (1976) Inhibition by efferent nerve fibres: action on hair cells and afferent synaptic transmission in the lateral line canal organ of the burbot Lota lota. J Physiol 257:45–62.

    PubMed  CAS  Google Scholar 

  • Fridberger A, de Monvel JB, Zheng J, Hu N, Zou Y, Ren T, Nuttall A (2004) Organ of corti potentials and the motion of the basilar membrane. J Neurosci 24:10057–10063.

    Article  PubMed  CAS  Google Scholar 

  • Frolenkov GI, Belyantseva IA, Friedman TB, Griffith AJ (2004) Genetic insights into the morphogenesis of inner ear hair cells. Nat Rev Genet 5:489–498.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs PA, Murrow BW (1992) Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. J Neurosci 12:800–809.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Nagai T, Evans MG (1988) Electrical tuning in hair cells isolated from the chick cochlea. J Neurosci 8:2460–2467.

    PubMed  CAS  Google Scholar 

  • Gillespie PG, Hudspeth AJ (1994) Pulling springs to tune transduction: adaptation by hair cells. Neuron 12:1–9.

    Article  PubMed  Google Scholar 

  • Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413:194–202.

    Article  PubMed  CAS  Google Scholar 

  • Gitter AH, Preyer S (1991) [A brief history of hearing research. III. icroscopic anatomy]. Laryngorhinootologie 70:417–421.

    PubMed  CAS  Google Scholar 

  • Glowatzki E, Fuchs PA (2002) Transmitter release at the hair cell ribbon synapse. Nat Neurosci 5:147–154.

    Article  PubMed  CAS  Google Scholar 

  • Gold T (1948) Hearing. ii. The physical basis of the action of the cochlea. Proc R Soc Lond [Biol] 135:492–498.

    Article  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100.

    Article  PubMed  CAS  Google Scholar 

  • Hardie RC, Minke B (1993) Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci 16:371–376.

    Article  PubMed  CAS  Google Scholar 

  • Harris GG, Frishkopf LS, Flock A (1970) Receptor potentials from hair cells of the lateral line. Sci 167:76–79.

    CAS  Google Scholar 

  • Hawkins JE (2004) Sketches of otohistory. Part 3: Alfonso Corti. Audiol Neurootol 9:259–264.

    Article  PubMed  Google Scholar 

  • He DZ, Jia S, Dallos P (2004) Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea. Nature 429:766–770.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N (1978) The ultrastructure of the basilar papilla of the chick. J Comp Neurol 181:361–374.

    Article  PubMed  CAS  Google Scholar 

  • Hirono M, Denis CS, Richardson GP, Gillespie PG (2004) Hair cells require phospha-tidylinositol 4,5-bisphosphate for mechanical transduction and adaptation. Neuron 44:309–320.

    Article  PubMed  CAS  Google Scholar 

  • Holt JR, Gillespie SK, Provance DW, Shah K, Shokat KM, Corey DP, Mercer JA, Gillespie PG (2002) A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108:371–381.

    Article  PubMed  CAS  Google Scholar 

  • Housley GD, Ashmore JF (1992) Ionic currents of outer hair cells isolated from the guinea-pig cochlea. J Physiol 448:73–98.

    PubMed  CAS  Google Scholar 

  • Howard J, Bechstedt S (2004) Hypothesis: a helix of ankyrin repeats of the NOMPCTRP ion channel is the gating spring of mechanoreceptors. Curr Biol 14:R224–R226.

    Article  PubMed  CAS  Google Scholar 

  • Howard J, Hudspeth AJ (1987) Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog’s saccular hair cell. Proc Natl Acad Sci USA 84:3064–3068.

    Article  PubMed  CAS  Google Scholar 

  • Howard J, Hudspeth AJ (1988) Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron 1:189–199.

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411.

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Corey DP (1978) Controlled bending of high-resistance glass microelectrodes. Am J Physiol 234:C56–C57.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Jacobs R (1979) Stereocilia mediate transduction in vertebrate hair cells. Proc Natl Acad Sci USA 76:1506–1509.

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Lewis RS (1988a) A model for electrical resonance and frequency tuning in saccular hair cells of the bull-frog, Rana catesbeiana. J Physiol 400:275–297.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Lewis RS (1988b) Kinetic analysis of voltage-and ion-dependent conductances in saccular hair cells of the bull-frog, Rana catesbeiana. J Physiol 400:237–274.

    PubMed  CAS  Google Scholar 

  • Jaramillo F, Markin VS, Hudspeth AJ (1993) Auditory illusions and the single hair cell. Nature 364:527–529.

    Article  PubMed  CAS  Google Scholar 

  • Jones SM, Erway LC, Johnson KR, Yu H, Jones TA (2004) Gravity receptor function in mice with graded otoconial deficiencies. Hear Res 191:34–40.

    Article  PubMed  Google Scholar 

  • Kennedy HJ, Crawford AC, Fettiplace R (2005) Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature 433:880–883.

    Article  PubMed  CAS  Google Scholar 

  • Kernan M, Zuker CS (1995) Genetic approaches to mechanosensory transduction. Curr Opin Neurobiol 5:443–448.

    Article  PubMed  CAS  Google Scholar 

  • Kros CJ, Marcotti W, van Netten SM, Self TJ, Libby RT, Brown SD, Richardson GP, Steel KP (2002) Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nat Neurosci 5:41–47.

    Article  PubMed  CAS  Google Scholar 

  • Lewis RS, Hudspeth AJ (1983) Voltage-and ion-dependent conductances in solitary vertebrate hair cells. Nature 304:538–541.

    Article  PubMed  CAS  Google Scholar 

  • Li M, Tian Y, Fritzsch B, Gao J, Wu X, Zuo J (2004) Inner hair cell Cre-expressing transgenic mouse. Genesis 39:173–177.

    Article  PubMed  CAS  Google Scholar 

  • Liberman MC, Gao J, He DZ, Wu X, Jia S, Zuo J (2002) Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419:300–304.

    Article  PubMed  CAS  Google Scholar 

  • Lindau M, Neher E (1988) Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflügers Arch 411:137–146.

    Article  PubMed  CAS  Google Scholar 

  • Marcotti W, Johnson SL, Holley MC, Kros CJ (2003) Developmental changes in the expression of potassium currents of embryonic, neonatal and mature mouse inner hair cells. J Physiol 548:383–400.

    Article  PubMed  CAS  Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185.

    Article  PubMed  CAS  Google Scholar 

  • Moran MM, Xu H, Clapham DE (2004) TRP ion channels in the nervous system. Curr Opin Neurobiol 14:362–369.

    Article  PubMed  CAS  Google Scholar 

  • Moser T, Beutner D (2000) Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proc Natl Acad Sci U S A 97:883–888.

    Article  PubMed  CAS  Google Scholar 

  • Müller U, Littlewood-Evans A (2001) Mechanisms that regulate mechanosensory hair cell differentiation. Trends Cell Biol 11:334–342.

    Article  PubMed  Google Scholar 

  • Mulroy MJ, Altmann DW, Weiss TF, Peake WT (1974) Intracellular electric responses to sound in a vertebrate cochlea. Nature 249:482–485.

    Article  PubMed  CAS  Google Scholar 

  • Ohmori H (1984) Studies of ionic currents in the isolated vestibular hair cell of the chick. J Physiol 350:561–581.

    PubMed  CAS  Google Scholar 

  • Parsons TD, Lenzi D, Almers W, Roberts WM (1994) Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: capacitance measurements in saccular hair cells. Neuron 13:875–883.

    Article  PubMed  CAS  Google Scholar 

  • Pazour GJ, Witman GB (2003) The vertebrate primary cilium is a sensory organelle. Curr Opin Cell Biol 15:105–110.

    Article  PubMed  CAS  Google Scholar 

  • Pickles JO, Corey DP (1992) Mechanoelectrical transduction by hair cells. Trends Neurosci 15:254–259.

    Article  PubMed  CAS  Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Wirbelthiere. Vol. 1. Stockholm: Samson and Wallin.

    Google Scholar 

  • Retzius G (1884) Das Gehörorgan der Wirbelthiere. Vol. 2. Stockholm: Samson and Wallin.

    Google Scholar 

  • Ricci AJ, Crawford AC, Fettiplace R (2000) Active hair bundle motion linked to fast transducer adaptation in auditory hair cells. J Neurosci 20:7131–7142.

    PubMed  CAS  Google Scholar 

  • Ricci AJ, Crawford AC, Fettiplace R (2003) Tonotopic variation in the conductance of the hair cell mechanotransducer channel. Neuron 40:983–990.

    Article  PubMed  CAS  Google Scholar 

  • Russell IJ, Sellick PM (1977) Tuning properties of cochlear hair cells. Nature 267:858–860.

    Article  PubMed  CAS  Google Scholar 

  • Ryan A, Dallos P, McGee T (1979) Psychophysical tuning curves and auditory thresholds after hair cell damage in the chinchilla. J Acoust Soc Am 66:370–378.

    Article  PubMed  CAS  Google Scholar 

  • Schacht J, Hawkins JE (2004) Sketches of otohistory part 4: a cell by any other name: cochlear eponyms. Audiol Neurootol 9:317–327.

    Article  PubMed  Google Scholar 

  • Shepherd GM, Corey DP (1994) The extent of adaptation in bullfrog saccular hair cells. J Neurosci 14:6217–6229.

    PubMed  CAS  Google Scholar 

  • Sidi S, Friedrich RW, Nicolson T (2003) NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Sci 301:96–99.

    Article  CAS  Google Scholar 

  • Siemens J, Lillo C, Dumont RA, Reynolds A, Williams DS, Gillespie PG, Müller U (2004) Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428:950–955.

    Article  PubMed  CAS  Google Scholar 

  • Söllner C, Rauch GJ, Siemens J, Geisler R, Schuster SC, Muller U, Nicolson T (2004) Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature 428:955–959.

    Article  PubMed  CAS  Google Scholar 

  • Spoendlin H (1970) Vestibular labyrinth. In: Bischoff A (ed), Ultrastructure of the Peripheral Nervous System and Sense Organs. Saint Louis, MO: C.V. Mosby Company.

    Google Scholar 

  • Spoendlin H (1972) Innervation densities of the cochlea. Acta Otolaryngol (Stockh) 73:235–248.

    PubMed  CAS  Google Scholar 

  • Sukharev S, Corey DP (2004) Mechanosensitive channels: multiplicity of families and gating paradigms. Sci STKE 219:re4.

    Google Scholar 

  • Tilney LG, Tilney MS, Cotanche DA (1988) Actin filaments, stereocilia, and hair cells of the bird cochlea. V. How the staircase pattern of stereociliary lengths is generated. J Cell Biol 106:355–365.

    Article  PubMed  CAS  Google Scholar 

  • Tilney LG, Tilney MS, DeRosier DJ (1992) Actin filaments, stereocilia, and hair cells: how cells count and measure. Annu Rev Cell Biol 8:257–274.

    Article  PubMed  CAS  Google Scholar 

  • Vetter DE, Liberman MC, Mann J, Barhanin J, Boulter J, Brown MC, Saffiote-Kolman J, Heinemann SF, Elgoyhen AB (1999) Role of alpha9 nicotinic ACh receptor subunits in the development and function of cochlear efferent innervation. Neuron 23:93–103.

    Article  PubMed  CAS  Google Scholar 

  • von Gersdorff H, Matthews G (1994) Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature 367:735–739.

    Article  Google Scholar 

  • Walker RG, Willingham AT, Zuker CS (2000) A Drosophila mechanosensory transduction channel. Sci 287:2229–2243.

    Article  CAS  Google Scholar 

  • Warr WB (1978) The olivocochlear bundle: its origins and terminations in the cat. In: Naunton RF, Fernández C (eds), Evoked Electrical Activity in the Auditory Nervous System. New York: Academic Press, pp. 43–65.

    Google Scholar 

  • Wersäll J (1956) Studies on the structure and innervation of the sensory epithelium of the crista ampullares in the guinea pig. Acta Otolaryngol 126(Suppl.):1–85.

    Google Scholar 

  • Wever EG, Bray CW (1930) Action currents in the auditory nerve in response to acoustical stimulation. Proc Natl Acad Sci USA 16:344–350.

    Article  PubMed  CAS  Google Scholar 

  • Wu Y-C, Art JJ, Goodman MB, Fettiplace R (1995) A kinetic description of the calcium-activated potassium channel and its application to electrical tuning of hair cells. Prog Biophys Mol Biol 63:131–158.

    Article  PubMed  CAS  Google Scholar 

  • Yau K-W, Baylor DA (1989) Cyclic GMP-activated conductance of retinal photoreceptor cells. Annu Rev Neurosci 12:289–327.

    Article  PubMed  CAS  Google Scholar 

  • Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000a) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155.

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Sekerkova G, Vranich K, Tilney LG, Mugnaini E, Bartles JR (2000b) The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell 102:377–385.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Eatock, R.A. (2006). Vertebrate Hair Cells: Modern and Historic Perspectives. In: Eatock, R.A., Fay, R.R., Popper, A.N. (eds) Vertebrate Hair Cells. Springer Handbook of Auditory Research, vol 27. Springer, New York, NY. https://doi.org/10.1007/0-387-31706-6_1

Download citation

Publish with us

Policies and ethics