Skip to main content

The Measurement of Systolic Function in the Mammalian Heart

  • Chapter
  • 495 Accesses

4. Summary

The heart is a muscular pump that generates force in order to do work and pump volume. The major determinants of its ability to perform these functions are its size, mass, innate strength or contractility, preload and afterload. While all of these parameters should be kept in mind when assessing cardiac function, assessment of most pathologies and therapies rely on measuring contractility. Despite major advances in our understanding of cardiac function over the past 50 years, a simple, easily applied and accurate measure of contractility still eludes us. Easily applied measures lack sensitivity and accuracy while complex measures are cumbersome and difficult to apply. These principles must be kept in full view in order to avoid errors in assessing cardiac function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. Mirsky I: Assessment of passive elastic stiffness of cardiac muscle: Mathematical concepts, physiologic and clinical considerations, directions of future research. Prog Cardiovasc Dis 1976;18:277–308.

    Google Scholar 

  2. Yin FCP. Ventricular wall stress. Circ Res 1981:49;829.

    Google Scholar 

  3. Murge JP, Westerhof N, Giolma JP, Altobelli SA. Aortic input impedance in normal man: relationship to pressure wave forms. Circ 62:105–116, 1980.

    Google Scholar 

  4. Gordon AM, Huxley AF, Julian FJ. The variation in isometric tension with sarcomere length in vertebrate muscle fibers. J. Physiol. (Lond.) 184:170–192, 1966.

    Google Scholar 

  5. Carabello BA, Spann JF: 1988. The uses and limitations of end-systolic stressvolume relationships in chronic aortic regurgitation. In Gaasch WH, Levine JH, eds. Chronic Aortic Regurgitation. Boston, Kluwer, pp 33–49.

    Google Scholar 

  6. Chen C, Rodriguez L, Lethor JP, Levine RA, Semigran MS, Fifer MA, Weyman AE, Thomas JD. Continuous wave Doppler echocardiography for noninvasive assessment of left ventricular dP/dt and relaxation time constant from mitral regurgitant spectra in patients. J Am Coll Cardiol. 1994 Mar 15;23(4):970–6.

    Google Scholar 

  7. Grossman W, Mclaurin LP, Saltz S, et al. Changes in inotropic state of the left ventricle during isometric exercise. Br Heart J 1973;35:697, 1973.

    Google Scholar 

  8. Peterson KL, Skloven D, Ludbrook P, Uther JB, Ross J Jr. Comparison of isovolumic and ejection phase indices of myocardial performance in man. Circ. 1974;49:1088–1101.

    Google Scholar 

  9. Gleason WL, Braunwald E. Studies on the first derivative of the ventricular pressure pulse in man. J Clin Invest 1962;41:80, 1962.

    Google Scholar 

  10. Fifer MA, Gunther S, Grossman W, et al. Myocardial contractile function in aortic stenosis as determinted from the rate of stress development during isovolumic systole. Am J Cardiol. 1979;44:1318–1325.

    Article  Google Scholar 

  11. Nemoto S, Defreitas G, Mann DL, Carabello BA. Effects of changes in left ventricular contractility on indexes of contractility in mice. Am J Physiol Circ Physiol 283:H2504–H2510, 2002;10.1152/ajpheart.00765.2001.

    Google Scholar 

  12. Parakodeti V, Oh S, Oh BH, Mao L, Hongo M, Peterson K, Ross J Jr. Forcefrequency effect is a powerful determinant of myocardial contractility in the mouse. Am J Physiol Heart Circ Physiol 273:H1283–H1290, 1997.

    Google Scholar 

  13. Alpert Nr, Leavitt BJ, Ittleman FP, Hasenfuss G, Pieske B, Mulieri LA. A Mechanistic analysis of the force-frequency relation in non-failing and progressively failing human myocardium. Basic Res Cardiol. 1998;93Suppl 1:23–32.

    Google Scholar 

  14. Shimizu G, Hirota Y, Kita Y, Kawamura K, Saito T, Gaasch WH. Left ventricular midwall mechanics in systemic arterial hypertension. Myocardial function is depressed in pressure-overload hypertrophy. Circ. 1991 May;83(5):1676–84.

    Google Scholar 

  15. de Simone G, Devereux RB. Rationale of echocardiographic assessment of left ventricular wall stress and midwall mechanics in hypertensive heart disease. Eur J Echocardiogr. 2002 Sep;3(3):192–8.

    Google Scholar 

  16. Nixon JV, Murray RG, Leonard PD, Mitchell JH, Blomqvist CG. Effect of large variations in preload on left ventricular performance characteristics in normal subjects. Circ. 1982;65:698–703.

    Google Scholar 

  17. Carabello BA, Williams H, Gash AK, Kent R, Belber D, Maurer A, Siegel J, Blasius K, Spann JF: Hemodynamic predictors of outcome in patients undergoing valve replacement. Circ. 1986;74(6):1309–1316.

    Google Scholar 

  18. Koide M, Nagatsu M, Zile MR, Hamawaki M, Swindle MM, Keech G, DeFReyte G, Tagawa H, Cooper G 4th, Carabello BA. Premorbid determinants of left ventricular dysfunction in a novel model of gradually induced pressure overload in the adult canine. Circ. 1997 Mar 18;95(6):1601–10. Comment in: Circ. 1997 Mar 18;95(6):1349–51.

    Google Scholar 

  19. Sutherland GR, Stewart MJ, Groundstroem KWE, et al. Color Doppler myocardial imaging: a new technique for assessment of myocardial function. J Echocardiogr 1994;7:441–58.

    Google Scholar 

  20. Miyatake K, Yamagishi M, Tanaka N, et al. New method of evaluating left ventricular wall motion by color-coded tissue Doppler imaging: in vitro and in vivo studies. J Am Coll Cardiol 1995;25:717–24.

    Article  Google Scholar 

  21. Hoffmann, R, Altiok E, Nowak B, Heussen N, Kuhl H, Kaiser HJ, Bull U, Hanrath P. Strain rate measurement by Doppler echocardiography allows improved assessment of myocardial viability in patients with depressed left ventricular function. JACC Vol. 39, No. 3, 2002.

    Google Scholar 

  22. Lima JA, Jeremy R, Guier W, Bouton S, Zerhouni EA, McVeigh E, Buchalter MB, Weisfeldt ML, Shapiro EP, Weiss JL. Accurate systolic wall thickening by nuclear magnetic resounance imaging with tissue tagging: correlation with sonomicrometers in normal and ischemic myocardium. J Am Coll Cardiol. 1993 Jun;21(7):1741–51.

    Google Scholar 

  23. Yeon SB, Reichek N, Tallant BA, Lima JA, Calhoun LP, Clark NR, Hoffman EA, Ho KK, Axel L. Validation of in vivo myocardial strain measurement by magnet resonance tagging with sonomicrometry. J Am Coll Cardiol. 2001 Aug;38(2):555–61.

    Article  Google Scholar 

  24. Suga H, Sagawa K, Shoukas AA. Load independence of the instantaneous pressure-volume ratio of the canine left ventricular and effects of epinephrine and hear rate on the ratio. Circ Res. 1973;32:314–322.

    Google Scholar 

  25. Henry WL, Bonow RO, Borer JS, et al. Observations on the optimum time for operative intervention for aortic regurgitation: I. Evaluation of the results of aortic valve replacement in symptomatic patients. Circ. 1980;61:471–483.

    Google Scholar 

  26. Zile Mr, Gaasch WH, Carroll JD, Levine HF: 1984. Chronic mitral regurgitation: predicative value of preoperative echocardiographic indexes of left ventricular function and wall stress. J Am Coll Cardiol 3:235–242.

    Google Scholar 

  27. Wisenbaugh T, Skudicky D, Sareli P. Prediction of outcome after valve replacement for rheumatic mitral regurgitation in the era of chordal preservation. Circ. 1994 Jan;89(1):191–7.

    Google Scholar 

  28. Carabello BA. Cardiac Catheterization. Cardiology Vol 1 Physiology, Pharmacology, Diagnosis. 1988.

    Google Scholar 

  29. Glower D, Spratt J, Snow N, et al. Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circ. 1985;71:994–1009.

    Google Scholar 

  30. Sagawa K, Suga H, Shoukas AA, Bakalar KM: 1977. End-systolic pressure/volume ration: a new index of ventricular contractility. Am J Cardiol 40:748–753.

    Article  Google Scholar 

  31. Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res 1974;35:117–126.

    Google Scholar 

  32. Belcher P, Boerboom LE, Olinger GN: Standardization of end-systolic pressurevolume relation in the dog. Am J Physiol 1985;249:H547–H553.

    Google Scholar 

  33. Suga H, Yamada O, Goto Y, Igarashi Y, Yasumura Y, Nozawa T: Reconsideration of normalization of Emax for heart size. Heart Vessels 1986;2:67–73.

    Article  Google Scholar 

  34. Suga H, Hisano R, Goto Y, Yamada O: Normalization of end-systolic pressurecolume relation and Emax of different sized hearts. Jpn Circ J 1984;48:136–143.

    Google Scholar 

  35. Nakano K, Sugawara M, Ishihara K, Kanazawa S, Corin WJ, Denslow S, Biderman RWW, Carabello BA. Myocardial stiffness derived from end-systolic wall stress and logarithm of reciprocal of wall thickness: contractility index independent of ventricular size. Circ. 1990;82:1352–1361.

    Google Scholar 

  36. Urabe Y, Mann DL, Kent RL, Nakano K, Tomanek RJ, Carabello BA, Cooper G 4th. Cellular and ventricular contractile dysfunction in experimental canine mitral regurgitation. Circ Res. 1992 Jan;70(1):131–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Carabello, B.A. (2006). The Measurement of Systolic Function in the Mammalian Heart. In: Dib, N., Taylor, D.A., Diethrich, E.B. (eds) Stem Cell Therapy and Tissue Engineering for Cardiovascular Repair. Springer, Boston, MA. https://doi.org/10.1007/0-387-30939-X_18

Download citation

  • DOI: https://doi.org/10.1007/0-387-30939-X_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25788-4

  • Online ISBN: 978-0-387-30939-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics