Skip to main content

An Absolute Property of Four Mutually Tangent Circles

  • Chapter

Part of the book series: Mathematics and Its Applications ((MAIA,volume 581))

Abstract

When Bolyai János was forty years old, Philip Beecroft discovered that any tetrad of mutually tangent circles determines a complementary tetrad such that each circle of either tetrad intersects three circles of the other tetrad orthogonally. By careful examination of a new proof of this theorem, one can see that it is absolute in Bolyai’s sense. Beecroft’s double-four of circles is seen to resemble Schläfli’s double-six of lines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. H. F. Baker, A Geometrical Proof of the Theorem of a Double Six of Straight Lines, Proc. Royal Soc. A 84 (1911), p. 597.

    MATH  Google Scholar 

  2. H. F. Baker, The General Cubic Surface, Principles of Geometry, Vol 3, Solid Geometry, Cambridge University Press (1934), pp. 159 and 225.

    Google Scholar 

  3. P. Beecroft, The Concordent Circles, The Lady’s and Gentleman’s Diary, The Company of Stationers, London (1843).

    Google Scholar 

  4. H. S. Carslaw, The Elements of Non-Euclidean Plane Geometry and Trigonometry, Longmans, London (1916).

    MATH  Google Scholar 

  5. H. S. M. Coxeter, Introduction to Geometry (2 nd ed.), Wiley, New York (1969).

    MATH  Google Scholar 

  6. H. S. M. Coxeter, Inversive Geometry, in Educational Studies in Mathematics, Vol 3 (1971), pp. 310–321.

    Article  MATH  Google Scholar 

  7. H. S. M. Coxeter, A Geometriák Alapjai, Műszaki könyvkiadó, Budapest (1973).

    Google Scholar 

  8. H. L. Dorwart, The Schäfli Double-Six Configurations, C.R. Math Rep. Acad. Sci. Canada, Vol 15 (1993), pp. 54–58.

    MATH  MathSciNet  Google Scholar 

  9. J. Dougall, The Double-Six of Lines and a Theorem, in Euclidean Plane Geometry, Proc. Glasgow Math. Assoc., Vol 1 (1952), pp. 1–7.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Ichida, A Simple Proof of the Double-Six Theorem, Tohoku Math. Journ., Vol 32 (1929), pp. 52–53.

    MATH  Google Scholar 

  11. R. J. Lyons, A Proof of the Theorem of the Double-Six, Proc. Cambridge Philos. Society, Vol 37 (1941) pp. 433–434.

    Article  MATH  MathSciNet  Google Scholar 

  12. L. Schäfli, Theorie der vielfachen Kontinuität, Gesammelte Mathematische Abhandlungen, Band I, Verlag Birhäuser, Basel (1953).

    Google Scholar 

  13. L. Schäfli, An attempt to determine the twenty-seven lines upon a surface of the third order, and to devide such surfaces into species in reference to the reality of the lines upon the surface, Gesammelte Mathematische Abhandlungen, Band II, Verlag Birhäuser, Basel (1953).

    Google Scholar 

  14. B. Segre, Sulla costruzione delle bisestuple di nette, Rend. Acad. Naz. Lincei (6) Vol II (1930), pp. 448–449.

    Google Scholar 

  15. C. Yamashita, An Elementary and Purely Synthetic Proof for the Double-Six Theorem of Schäfli, Tohoku Math. Journ. (2), Vol 5 (1954), pp. 215–219.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Coxeter, H. (2006). An Absolute Property of Four Mutually Tangent Circles. In: Prékopa, A., Molnár, E. (eds) Non-Euclidean Geometries. Mathematics and Its Applications, vol 581. Springer, Boston, MA. https://doi.org/10.1007/0-387-29555-0_5

Download citation

Publish with us

Policies and ethics