Skip to main content

Multi-Objective Optimization

  • Chapter
Search Methodologies

Abstract

Many real-world search and optimization problems are naturally posed as non-linear programming problems having multiple objectives. Due to the lack of suitable solution techniques, such problems were artificially converted into a single-objective problem and solved. The difficulty arose because such problems give rise to a set of trade-off optimal solutions (known as Pareto-optimal solutions), instead of a single optimum solution. It then becomes important to find not just one Pareto-optimal solution, but as many of them as possible. This is because any two such solutions constitutes a trade-off among the objectives and users would be in a better position to make a choice when many such trade-off solutions are unveiled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babu, B. and Jehan, M. M. L., 2003, Differential evolution for multiobjective optimization, in: Proc. 2003 Congress on Evolutionary Computation (CEC’2003), Canberra, Australia, Vol. 4, IEEE, Piscataway, NJ, pp. 2696–2703.

    Chapter  Google Scholar 

  • Bagchi, T., 1999, Multiobjective Scheduling by Genetic Algorithms, Kluwer, Boston, MA.

    Google Scholar 

  • Balicki, J. and Kitowski, Z., 2001, Multicriteria evolutionary algorithm with tabu search for task assignment, in: Proc. 1st Int. Conf. on Evolutionary Multi-Criterion Optimization (EMO-01), pp. 373–384.

    Google Scholar 

  • Bleuler, S., Brack, M. and Zitzler, E., 2001, Multiobjective genetic programming: Reducing bloat using spea2, in: Proc. 2001 Congress on Evolutionary Computation, pp. 536–543.

    Google Scholar 

  • Chankong, V. and Haimes, Y. Y., 1983, Multiobjective Decision Making Theory and Methodology, North-Holland, New York.

    MATH  Google Scholar 

  • Chattopadhyay, A. and Seeley, C., 1994, A simulated annealing technique for multi-objective optimization of intelligent structures, Smart Mater. Struct. 3:98–106.

    Article  Google Scholar 

  • Coello, C. A. C., 2000, Treating objectives as constraints for single objective optimization, Eng. Optim. 32:275–308.

    Google Scholar 

  • Coello, C. A. C., 2003, http://www.lania.mx/ccoello/EMOO/+

    Google Scholar 

  • Coello, C. A. C. and Toscano, G., 2000, A micro-genetic algorithm for multiobjective optimization, Technical Report Lania-RI-2000-06, Laboratoria Nacional de Informatica Avanzada, Xalapa, Veracruz, Mexico.

    Google Scholar 

  • Coello, C. A. C, VanVeldhuizen, D. A. and Lamont, G., 2002, Evolutionary Algorithms for Solving Multi-Objective Problems, Kluwer, Boston, MA.

    MATH  Google Scholar 

  • Coello Coello, C. A. and Salazar Lechuga, M., 2002, MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization. in: Congress on Evolutionary Computation (CEC’2002), Vol. 2, IEEE, Piscataway, NJ, pp. 1051–1056.

    Google Scholar 

  • Cormen, T. H., Leiserson, C. E. and Rivest, R. L., 1990, Introduction to Algorithms, Prentice-Hall, New Delhi.

    Google Scholar 

  • Corne, D., Knowles, J. and Oates, M., 2000, The Pareto envelope-based selection algorithm for multi-objective optimization, in: Proc. 6th Int. Conf. on Parallel Problem Solving from Nature (PPSN-VI), pp. 839–848.

    Google Scholar 

  • Coverstone-Carroll, V., Hartmann, J. W. and Mason, W. J., 2000, Optimal multi-objective low-thurst spacecraft trajectories, Comput. Methods Appl. Mech. Eng. 186:387–402.

    Article  MATH  Google Scholar 

  • Deb, K., 1995, Optimization for Engineering Design: Algorithms and Examples, Prentice-Hall, New Delhi.

    Google Scholar 

  • Deb, K., 1999, Solving goal programming problems using multi-objective genetic algorithms, in: Proc. Congress on Evolutionary Computation, pp. 77–84.

    Google Scholar 

  • Deb, K., 2001, Multi-objective Optimization Using Evolutionary Algorithms, Wiley, Chichester.

    MATH  Google Scholar 

  • Deb, K., 2003, Unveiling innovative design principles by means of multiple conflicting objectives, Eng. Optim. 35:445–470.

    Article  Google Scholar 

  • Deb, K., Agrawal, S., Pratap, A. and Meyarivan, T., 2002a, A fast and elitist multi-objective genetic algorithm: NSGA-II, IEEE Trans. Evol Comput. 6:182–197.

    Article  Google Scholar 

  • Deb, K., Jain, P., Gupta, N. and Maji, H., 2002b, Multi-objective placement of VLSI components using evolutionary algorithms, KanGAL Technical Report No. 2002006, Kanpur Genetic Algorithms Laboratory, Kanpur, India. Also IEEE Trans. Components Packaging Technol., to appear.

    Google Scholar 

  • Deb, K. and Jain, S., 2002, Running performance metrics for evolutionary multi-objective optimization, in: Proc. 4th Asia-Pacific Conf. on Simulated Evolution and Learning (SEAL-02), pp. 13–20.

    Google Scholar 

  • Deb, K. and Jain, S., 2003, Multi-speed gearbox design using multi-objective evolutionary algorithms, ASME Trans. Mech. Design 125:609–619.

    Article  Google Scholar 

  • Deb, K., Mitra, K., Dewri, R. and Majumdar, S., 2004, Towards a better understanding of the epoxy polymerization process using multi-objective evolutionary computation, Chem. Eng. Sci. 59:4261–4277.

    Article  Google Scholar 

  • Deb, K., Mohan, M. and Mishra, S., 2003a, Towards a quick computation of well-spread Pareto-optimal solutions, in: Proc. 2nd Evolutionary Multi-Criterion Optimization (EMO-03) Conf., Lecture Notes in Computer Science, Vol. 2632, Springer, Berlin, pp. 222–236.

    Google Scholar 

  • Deb, K., Thiele, L., Laumanns, M. and Zitzler, E., 2002c, Scalable multiobjective optimization test problems, in: Proc. Congress on Evolutionary Computation (CEC-2002), pp. 825–830.

    Google Scholar 

  • Deb, K. and Tiwari, S., 2004, Multi-objective optimization of a leg mechanism using genetic algorithms, KanGAL Technical Report No. 2004005, Kanpur Genetic Algorithms Laboratory, Kanpur, India.

    Google Scholar 

  • Deb, K., Zope, P. and Jain, A., 2003b, Distributed computing of Pareto-optimal solutions using multi-objective evolutionary algorithms, in: Proc. 2nd Evolutionary Multi-Criterion Optimization (EMO-03) Conf., Lecture Notes in Computer Science, Vol. 2632, Springer, Berlin, pp. 535–549.

    Google Scholar 

  • Ehrgott, M., 2000, Multicriteria Optimization, Springer, Berlin.

    MATH  Google Scholar 

  • Fonseca, C, Fleming, P., Zitzler, E., Deb, K. and Thiele, L., 2003, Proc. 2nd Evolutionary Multi-Criterion Optimization (EMO-03) Conf., Lecture Notes in Computer Science, Vol. 2632, Springer, Berlin.

    Google Scholar 

  • Goldberg, D. E., 1989, Genetic Algorithms for Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Gravel, M., Price, W. L. and Gagné, C., 2002, Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic, Eur. J. Oper. Res. 143:218–229.

    Article  MATH  Google Scholar 

  • Haimes, Y. Y., Lasdon, L. S. and Wismer, D. A., 1971, On a bicriterion formulation of the problems of integrated system identification and system optimization, IEEE Trans. Syst., Man Cybernet. 1:296–297.

    Article  MATH  MathSciNet  Google Scholar 

  • Hansen, M. P., 1997, Tabu search in multi-objective optimization: MOTS, Paper presented at The 13th Int. Conf. on Multi-Criterion Decision Making (MCDM’97), University of Cape Town.

    Google Scholar 

  • Jensen, M. T., 2003a, Guiding single-objective optimization using multiobjective methods, in: Applications of Evolutionary Computing. Evoworkshops 2003, Lecture Notes in Computer Science, Vol. 2611, G. R. Raidl et al., ed., Springer, Berlin, pp. 199–210.

    Google Scholar 

  • Jensen, M. T., 2003b, Reducing the run-time complexity of multi-objective EAs, IEEE Trans. Evol Comput. 7:503–515.

    Article  Google Scholar 

  • Khor, E. F., Tan, K. C. and Lee, T. H., 2001, Tabu-based exploratory evolutionary algorithm for effective multi-objective optimization, in Proc. Evolutionary Multi-Objective Optimization (EMO-01), pp. 344–358.

    Google Scholar 

  • Knowles, J. D. and Corne, D. W., 2000, Approximating the non-dominated front using the Pareto archived evolution strategy, Evol. Comput. J. 8:149–172.

    Article  Google Scholar 

  • Kumral, M., 2003, Application of chance-constrained programming based on multi-objective simulated annealing to solve a mineral blending problem, Eng. Optim. 35:661–673.

    Article  Google Scholar 

  • Kung, H. T., Luccio, F. and Preparata, F. P., 1975, On finding the maxima of a set of vectors, J. Assoc. Comput. Machinery 22:469–476.

    MATH  MathSciNet  Google Scholar 

  • Laumanns, M., Thiele, L., Deb, K. and Zitzler, E., 2002, Combining convergence and diversity in evolutionary multi-objective optimization, Evol. Comput. 10:263–282.

    Article  Google Scholar 

  • Laumanns, M., Thiele, L. and Zitzler, E., 2004, Running time analysis of multi-objective evolutionary algorithms on pseudo-Boolean functions. IEEE Trans. Evol. Comput. 8:170–182.

    Article  Google Scholar 

  • Loughlin, D. H. and Ranjithan, S., 1997, The neighborhood constraint method: A multi-objective optimization technique, in: Proc. 7th Int. Conf. on Genetic Algorithms, pp. 666–673.

    Google Scholar 

  • McMullen, P. R., 2001, An ant colony optimization approach to addessing a JIT sequencing problem with multiple objectives, Artif. Intell. Eng. 15:309–317.

    Article  Google Scholar 

  • Miettinen, K., 1999, Nonlinear Multiobjective Optimization, Kluwer, Boston, MA.

    MATH  Google Scholar 

  • Mostaghim, S. and Teich, J., 2003, Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO), in: 2003 IEEE Swarm Intelligence Symp. Proc., Indianapolis, IN, IEEE, Piscataway, NJ, pp. 26–33.

    Chapter  Google Scholar 

  • Osyczka, A., 2002, Evolutionary Algorithms for Single and Multicriteria Design Optimization, Physica, Heidelberg.

    MATH  Google Scholar 

  • Parks, G. and Suppapitnarm, A., 1999, Multiobjective optimization of PWR reload core designs using simulated annealing, in: Proc. Int. Conf. on Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications, Vol. 2, Madrid, Spain, pp. 1435–1444.

    Google Scholar 

  • Rudolph, G., 1998, Evolutionary search for minimal elements in partially ordered finite sets, in: Proc. 7th Annual Conf on Evolutionary Programming, Berlin, Springer, pp. 345–353.

    Chapter  Google Scholar 

  • Rudolph, G. and Agapie, A., 2000, Convergence properties of some multiobjective evolutionary algorithms, in: Proc. 2000 Congress on Evolutionary Computation (CEC2000), pp. 1010–1016.

    Google Scholar 

  • Srinivas, N. and Deb, K., 1994, Multi-objective function optimization using non-dominated sorting genetic algorithms, Evol. Comput. J. 2:221–248.

    Google Scholar 

  • Surry, P. D., Radcliffe, N. J. and Boyd, I. D., 1995, A multi-objective approach to constrained optimisation of gas supply networks: The COMOGA method, in: Evolutionary Computing, AISB Workshop, Springer, Berlin, pp. 166–180.

    Google Scholar 

  • Veldhuizen, D. V. and Lamont, G. B., 2000, Multiobjective evolutionary algorithms: analyzing the state-of-the-art, Evol. Comput. J. 8:125–148.

    Article  Google Scholar 

  • Zitzler, E., 1999, Evolutionary algorithms for multi-objective optimization: methods and applications, Ph.D. Thesis, Swiss Federal Institute of Technology ETH, Zürich, Switzerland.

    Google Scholar 

  • Zitzler, E., Deb, K., Thiele, L., Coello, C. A. C. and Corne, D., 2001a, Proc. 1st Evolutionary Multi-Criterion Optimization (EMO-01) Conf., Lecture Notes in Computer Science, Vol. 1993, Springer, Berlin.

    Google Scholar 

  • Zitzler, E., Laumanns, M. and Thiele, L., 2001b, SPEA2: Improving the strength Pareto evolutionary algorithm for multi-objective optimization, in: Giannakoglou, K. C., Tsahalis, D. T., Périaux, J., Papailiou, K. D. and Fogarty, T., eds, Proc. Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, Athens, Greece, International Centre for Numerical Methods in Engineering (Cmine), pp. 95–100.

    Google Scholar 

  • Zitzler, E. and Thiele, L., 1998, An evolutionary algorithm for multi-objective optimization: The strength Pareto approach, Technical Report No. 43, Computer Engineering and Networks Laboratory, Switzerland.

    Google Scholar 

  • Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M. and da Fonseca, V. G., 2003, Performance assessment of multiobjective optimizers: an analysis and review, IEEE Trans. Evol. Comput. 7:117–132.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Deb, K. (2005). Multi-Objective Optimization. In: Burke, E.K., Kendall, G. (eds) Search Methodologies. Springer, Boston, MA. https://doi.org/10.1007/0-387-28356-0_10

Download citation

Publish with us

Policies and ethics