Skip to main content

A Zinc Ribbon Motif Is Essential for the Formation of Functional Tetrameric Protein Kinase CK2

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Protein kinase CK2 plays an essential role in the regulation of many cellular functions. The enzyme is an heterotetrameric complex formed by the association of two catalytic α/α′ subunits with two regulatory β subunits. High-resolution structure of the CK2β subunit revealed the presence of a zinc binding motif made by three-stranded antiparallel β sheets and two “knuckles” (Cys-X4-Cys and Cys-X2-Cys) contained in the invariant motif CPX3C-X22-CPXC. This zinc binding motif belongs to the sub-family of zinc ribbon domains. CK2β exist as a dimer in which the zinc ribbon motif makes many hydrophobic interactions with the zinc ribbon motif of the other monomer forming the protein-protein interface. Importantly, functional and biochemical studies have indicated that the integrity of the zinc binding motif which is pivotal in the formation of the CK2β homodimer, is also instrumental for the regulatory functions of this important protein.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunter T. Signaling-2000 and beyond. Cell 2000; 100(1):113–27.

    Article  PubMed  CAS  Google Scholar 

  2. Allende JE, Allende CC. Protein kinases. 4. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J 1995; 9(5):313–23.

    PubMed  CAS  Google Scholar 

  3. Guerra B, Issinger OG. Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis 1999; 20(2):391–408.

    Article  PubMed  CAS  Google Scholar 

  4. Litchfield DW. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 2003; 369 (Pt 1):1–15.

    Article  PubMed  CAS  Google Scholar 

  5. Meggio F, Pinna LA. One-thousand-and-one substrates of protein kinase CK 2? FASEB J 2003;17(3):349–68.

    Article  PubMed  CAS  Google Scholar 

  6. Padmanabha R, Chen-Wu JL, Hanna DE et al. Isolation, sequencing, and disruption of the yeast CKA2 gene: casein kinase II is essential for viability in Saccharomyces cerevisiae. Mol. Cell Biol 1990; 10(8):4089–99.

    CAS  Google Scholar 

  7. Xu X, Toselli PA, Russell LD et al. Globozoospermia in mice lacking the casein kinase II alpha’ catalytic subunit. Nat Genet 1999; 23(1):118–21.

    Article  PubMed  CAS  Google Scholar 

  8. Fraser AG, Kamath RS, Zipperlen P et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 2000; 408(6810):325–30.

    Article  PubMed  CAS  Google Scholar 

  9. Buchou T, Vernet M, Blond O et al. Disruption of the regulatory Beta subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Mol Cell Biol 2003; 23(3):908–15.

    Article  PubMed  CAS  Google Scholar 

  10. Landesman-Bollag E, Song DH, Romieu-Mourez R et al. Protein kinase CK2: signaling and tumorigenesis in the mammary gland. Mol Cell Biochem 2001; 227(1–2):153–65.

    Article  PubMed  CAS  Google Scholar 

  11. Seldin DC, Leder P. Casein kinase II alpha transgene-induced murine lymphoma: relation to theileriosis in cattle. Science 1995; 267(5199):894–7.

    Article  PubMed  CAS  Google Scholar 

  12. Ahmed K, Gerber DA, Cochet C. Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol 2002; 12(5):226–30.

    Article  PubMed  CAS  Google Scholar 

  13. Lozeman FJ, Litchfield DW, Piening C et al. Isolation and characterization of human cDNA clones encoding the alpha and the alpha’ subunits of casein kinase II. Biochemistry 1990; 29(36):8436–47.

    Article  PubMed  CAS  Google Scholar 

  14. Maridor G, Park W, Krek W et al. Casein kinase II. cDNA sequences, developmental expression, and tissue distribution of mRNAs for alpha, alpha’, and beta subunits of the chicken enzyme. J Biol Chem 1991; 266(4):2362–8.

    PubMed  CAS  Google Scholar 

  15. Shi X, Potvin B, Huang T et al. A novel casein kinase 2 alpha-subunit regulates membrane protein traffic in the human hepatoma cell line HuH-7. J Biol Chem 2001; 276(3):2075–82.

    Article  PubMed  CAS  Google Scholar 

  16. Xu X, Rich ES, Jr, Seldin DC. Murine protein kinase CK2 alpha’: cDNA and genomic cloning and chromosomal mapping. Genomics 1998; 48(1):79–86.

    Article  PubMed  CAS  Google Scholar 

  17. Niefind K, Guerra B, Pinna LA et al. Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 A resolution. EMBO J 1998; 17(9):2451–62.

    Article  PubMed  CAS  Google Scholar 

  18. Jauch E, Melzig J, Brkulj M et al. In vivo functional analysis of Drosophila protein kinase casein kinase 2 (CK2) beta-subunit. Gene 2002; 298(1):29–39.

    Article  PubMed  CAS  Google Scholar 

  19. Chantalat L, Leroy D, Filhol O et al. Crystal structure of the human protein kinase CK2 regulatory subunit reveals its zinc finger-mediated dimerization. EMBO J 1999; 18(11):2930–40.

    Article  PubMed  CAS  Google Scholar 

  20. Leroy D, Heriche JK, Filhol O et al. Binding of polyamines to an autonomous domain of the regulatory subunit of protein kinase CK2 induces a conformational change in the holoenzyme. A proposed role for the kinase stimulation. J Biol Chem 1997; 272(33):20820–7.

    Article  PubMed  CAS  Google Scholar 

  21. Boldyreff B, Meggio F, Pinna LA et al. Reconstitution of normal and hyperactivated forms of casein kinase-2 by variably mutated beta-subunits. Biochemistry 1993; 32(47):12672–7.

    Article  PubMed  CAS  Google Scholar 

  22. Krishna SS, Majumdar I, Grishin NV. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 2003; 31(2):532–50.

    Article  PubMed  CAS  Google Scholar 

  23. Laity JH, Lee BM, Wright PE. Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 2001; 11(1):39–46.

    Article  PubMed  CAS  Google Scholar 

  24. Mackay JP, Crossley M. Zinc fingers are sticking together. Trends Biochem Sci 1998; 23(1):1–4.

    Article  PubMed  CAS  Google Scholar 

  25. Qian X, Gozani SN, Yoon H et al. Novel zinc finger motif in the basal transcriptional machinery: three-dimensional NMR studies of the nucleic acid binding domain of transcriptional elongation factor TFIIS. Biochemistry 1993; 32(38):9944–59.

    Article  PubMed  CAS  Google Scholar 

  26. Zhu W, Zeng Q, Colangelo CM et al. The N-terminal domain of TFIIB from Pyrococcus furiosus forms a zinc ribbon. Nat Struct Biol 1996; 3(2):122–4.

    Article  PubMed  CAS  Google Scholar 

  27. Wang B, Jones DN, Kaine BP et al. High-resolution structure of an archaeal zinc ribbon defines a general architectural motif in eukaryotic RNA polymerases. Structure 1998; 6(5):555–69.

    Article  PubMed  CAS  Google Scholar 

  28. Grishin NV. C-terminal domains of Escherichia coli topoisomerase I belong to the zinc-ribbon superfamily. J Mol Biol 2000; 299(5):1165–77.

    Article  PubMed  CAS  Google Scholar 

  29. Filhol O, Cochet C, Wedegaertner P et al. Coexpression of both alpha and beta subunits is required for assembly of regulated casein kinase II. Biochemistry 1991; 30(46):11133–40.

    Article  PubMed  CAS  Google Scholar 

  30. Marin O, Meggio F, Sarno S et al. Physical dissection of the structural elements responsible for regulatory properties and intersubunit interactions of protein kinase CK2 beta-subunit. Biochemistry 1997; 36(23):7192–8.

    Article  PubMed  CAS  Google Scholar 

  31. Meggio F, Boldyreff B, Marin O et al. Role of the beta subunit of casein kinase-2 on the stability and specificity of the recombinant reconstituted holoenzyme. Eur J Biochem 1992; 204(1):293–7.

    Article  PubMed  CAS  Google Scholar 

  32. Chen M, Cooper JA. The beta subunit of CKII negatively regulates Xenopus oocyte maturation. Proc Natl Acad Sci USA 1997; 94(17):9136–40.

    Article  PubMed  CAS  Google Scholar 

  33. Sugano S, Andronis C, Ong MS et al. The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. Proc Natl Acad Sci U S A 1999; 96(22):12362–6.

    Article  PubMed  CAS  Google Scholar 

  34. Luscher B, Litchfield DW. Biosynthesis of casein kinase II in lymphoid cell lines. Eur J Biochem 1994; 220(2):521–6.

    Article  PubMed  CAS  Google Scholar 

  35. Graham KC, Litchfield DW. The regulatory beta subunit of protein kinase CK2 mediates formation of tetrameric CK2 complexes. J Biol Chem 2000; 275(7):5003–10.

    Article  PubMed  CAS  Google Scholar 

  36. Niefind K, Guerra B, Ermakowa I et al. Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J 2001; 20(19):5320–31.

    Article  PubMed  CAS  Google Scholar 

  37. Meggio F, Ruzzene M, Sarno S et al. pCMB treatment reveals the essential role of cysteinyl residues in conferring functional competence to the regulatory subunit of protein kinase CK2. Biochem Biophys Res Commun 2000; 267(1):427–32.

    Article  PubMed  CAS  Google Scholar 

  38. Canton DA, Zhang C, Litchfield DW. Assembly of protein kinase CK2: investigation of complex formation between catalytic and regulatory subunits using a zinc-finger-deficient mutant of CK2beta. Biochem J 2001; 358 (Pt 1):87–94.

    Article  PubMed  CAS  Google Scholar 

  39. Martel V, Filhol O, Nueda A et al. Dynamic localization/association of protein kinase CK 2 subunits in living cells: a role in its cellular regulation? Ann N Y Acad Sci 2002; 973:272–7.

    Article  PubMed  CAS  Google Scholar 

  40. Filhol O, Nueda A, Martel V et al. Live-cell fluorescence imaging reveals the dynamics of protein kinase CK2 individual subunits. Mol Cell Biol 2003; 23(3):975–87.

    Article  PubMed  CAS  Google Scholar 

  41. Filhol O, Martiel JL, Cochet C. Protein kinase CK2: A new view of an old molecular complex. EMBO Reports 2004; 4:351–355.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Cochet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Filhol, O., Benitez, M.J., Cochet, C. (2005). A Zinc Ribbon Motif Is Essential for the Formation of Functional Tetrameric Protein Kinase CK2. In: Iuchi, S., Kuldell, N. (eds) Zinc Finger Proteins. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27421-9_18

Download citation

Publish with us

Policies and ethics