Skip to main content

EPR Spectroscopy of Function In Vivo

Origins, Achievements, And Future Possibilities

  • Chapter
Biomedical EPR, Part A: Free Radicals, Metals, Medicine, and Physiology

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 23))

Abstract

EPR can be used to study free radicals in vivo, environmental and biophysical parameters in cells and tissues, and to report metabolism, physiology, and biochemistry. The authors have attempted to judge which of these types of measurements will be productive for studies in animals and in humans. It is envisioned that a large number of in vivo applications of EPR will grow in importance as well as in technical capability in the near future. The most likely clinical applications will be oximetry and radiation dosimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

17. References

  • Ardenkjaer-Larsen, J. H., Laursen, I., Leunbach, I., Ehnholm, G., Wistrand, L. G., Petersson, J. S., and Golman, K. (1998) EPR and DNP properties of certain novel single electron contrast agents intended for oximetric imaging, J. Magn. Reson. 133, 1–12.

    CAS  PubMed  Google Scholar 

  • Bhujwalla, Z. M., McCoy, C. L., Glickson, J. D., Gillies, R. J., and Stubbs, M. (1998) Estimations of intra-and extracellular volume and pH by 31P magnetic resonance spectroscopy: effect of therapy on RIF-1 tumours, Br. J. Cancer 78, 606–611.

    CAS  PubMed  Google Scholar 

  • Borbat, P. P., Costa-Filho, A. J., Earle, K. A., Moscicki, J. K., and Freed, J. H. (2001) Electron spin resonance in studies of membranes and proteins, Science 291, 266–269.

    Article  CAS  PubMed  Google Scholar 

  • Brady, J. M., Aarestad, N. O., and Swartz, H. M. (1968) In vivo dosimetry by electron spin resonance spectroscopy, Health Physics 15, 43–47.

    CAS  PubMed  Google Scholar 

  • Buettner, G. R., and Mason, R. P. (1990) Spin-trapping methods for detecting superoxide and hydroxyl free radicals in vitro and in vivo, Methods Enzymol, 186, 127–133.

    CAS  PubMed  Google Scholar 

  • Cafiso, D. S. (1989) Electron paramagnetic resonance methods for measuring pH gradients, transmembrane potentials, and membrane dynamics, Methods Enzymol. 172, 331–345.

    CAS  PubMed  Google Scholar 

  • Chen, K., and Swartz, H. M. (1989) The products of the reduction of doxyl stearates in cells are hydroxylamines as shown by oxidation by 15N-perdeuterated tempone, Biochim. Biophys. Acta, 992, 131–133.

    CAS  PubMed  Google Scholar 

  • Collier, J., and Vallance, P. (1989) Second messenger role for NO widens to nervous and immune systems, Trends Pharmacol. Sci. 10, 427–431.

    Article  CAS  PubMed  Google Scholar 

  • Dobruicki, J. W., Sutherland, R. M., and Swartz, H. M. (1991) Non-perturbing test for cytotoxicity in isolated cells and spheroids, using electron paramagnetic resonance, Magn. Reson. Med. 19, 42–55.

    Google Scholar 

  • Eckburg, J. J., Chato, J. C., Liu, K. J., Grinstaff, M. W., Swartz, H. M., Suslick, K. S., and Auteri, F. P. (1996) The measurement of temperature with electron paramagnetic resonance spectroscopy, J. Biomech. Eng. 118, 193–200.

    CAS  PubMed  Google Scholar 

  • Fujii, H., and Berliner, L. J. (1999) In vivo EPR evidence for free radical adducts of nifedipine, Magn. Reson. Med. 42, 691–694.

    CAS  PubMed  Google Scholar 

  • Fujii, H., Zhao, B., Koscielniak, J., and Berliner, L. J. (1994) In vivo EPR studies of the metabolic fate of nitrosobenzene in the mouse, Magn. Reson. Med. 31, 77–80.

    CAS  PubMed  Google Scholar 

  • Fujii, S., and Yoshimura, T. (2000) Detection and imaging of endogenously produced nitric oxide with electron paramagnetic resonance spectroscopy Antioxid. Redox Signal, 2, 879–901.

    CAS  Google Scholar 

  • Gallez, B., Bacic, G., Goda, F., Jiang, J., O’Hara, J. A., Dunn, J. F., and Swartz, H. M. (1996a) Use of nitroxides for assessing perfusion, oxygenation, and viability of tissues: in vivo EPR and MRI studies, Magn. Reson. Med. 35, 97–106.

    CAS  PubMed  Google Scholar 

  • Gallez, B., Baudelet, C., and Debuyst, R. (2000) Free radicals in licorice-flavored sweets can be detected noninvasively using low frequency electron paramagnetic resonance after oral administration to mice, J. Nutr. 130, 1831–1833.

    CAS  PubMed  Google Scholar 

  • Gallez, B., Mader, K., and Swartz, H. M. (1996b) Noninvasive measurement of the pH inside the gut by using pH-sensitive nitroxides. An in vivo EPR study, Magn. Reson. Med. 36, 694–697.

    CAS  PubMed  Google Scholar 

  • Galster, H. (1991) pH Measurements: Fundamentals, Methods, Applications, Instrumentation, VCH, Weinhein.

    Google Scholar 

  • Glasgow, B. J., Gasymov, O. K., Abduragimov, A. R., Yusifov, T. N., Altenbach, C., and Hubbell, W. L. (1999) Side chain mobility and ligand interactions of the G strand of tear lipocalins by site-directed spin labeling, Biochemistry 38, 13707–13716.

    Article  CAS  PubMed  Google Scholar 

  • Grinberg, O. Y., Smirnov, A. I., and Swartz, H. M. (2001) High spatial resolution multi-site EPR oximetry. The use of convolution-based fitting method, J. Magn. Reson. 152, 247–258.

    Article  CAS  PubMed  Google Scholar 

  • Gualtieri, G., Colacicchi, S., Sgattoni, R., and Giannoni, M. (2001) The Chernobyl accident: EPR dosimetry on dental enamel of children, Appl. Radiat. Isot. 55, 71–79.

    Article  CAS  PubMed  Google Scholar 

  • Halpern, H. J., Chandramouli, G. V., Barth, E. D., Yu, C., Peric, M., Grdina, D. J., and Teicher, B. A. (1999) Diminished aqueous microviscosity of tumors in murine models measured with in vivo radio frequency electron paramagnetic resonance, Cancer Res. 59, 5836–5841.

    CAS  PubMed  Google Scholar 

  • Halpern, H. J., Yu, C., Barth, E., Peric, M., and Rosen, G. M. (1995) In situ detection, by spin trapping, of hydroxyl radical markers produced from ionizing radiation in the tumor of a living mouse, Proc. Natl. Acad. Sci. USA, 92, 796–800.

    CAS  PubMed  Google Scholar 

  • He, G., Samouilov, A., Kuppusamy, P., and Zweier, J. L. (2001) In vivo EPR imaging of the distribution and metabolism of nitroxide radicals in human skin, J. Magn. Reson. 148, 155–164.

    Article  CAS  PubMed  Google Scholar 

  • He, G., Samouilov, A., Kuppusamy, P., and Zweier, J. L. (2002) In vivo imaging of free radicals: applications from mouse to man, Mol Cell Biochem. 234–235, 359–367.

    PubMed  Google Scholar 

  • Herrling, T. E., Groth, N. K., and Fuchs, J. (1996) Biochemical EPR imaging of skin, Appl. Magn. Reson. 11, 471–486.

    CAS  Google Scholar 

  • Hockel, M., Schlenger, K., Mitze, M., Schaffer, U., and Vaupel, P. (1996) Hypoxia and radiation response in human tumors, Semin. Radiat. Oncol. 6, 3–9.

    PubMed  Google Scholar 

  • Jackson, S. K., Madhani, M., Thomas, M., Timmins, G. S., and James, P. E. (2001) Applications of in vivo electron paramagnetic resonance (EPR) spectroscopy: measurements of pO2 and NO in endotoxin shock, Toxicol. Lett. 120, 253–257.

    Article  CAS  PubMed  Google Scholar 

  • James, P.E., Grinberg, O.Y., Goda, F., O’Hara, J.A. and Swartz, H.M. (1997) Gloxy: An oxygen-sensitive coal for accurate measurement of low oxygen tensions in biological systems, Magn. Reson. Med. 38, 48–58.

    CAS  PubMed  Google Scholar 

  • James, P. E., Jackson, S. K., Grinberg, O., and Swartz, H. M. (1995) The effects of endotoxin on oxygen consumption of various cell types in vitro: An EPR oximetry study, Free Rad. Biol. Med. 18, 641–647.

    Article  CAS  PubMed  Google Scholar 

  • James, P. E., Miyake, M., and Swartz, H. M. (1999) Simultaneous measurement of PO2 NO and from tissue by in vivo EPR, Nitric Oxide, 3, 292–301.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, J. J., Liu, K. J., Jordan, S. J., Swartz, H. M., and Mason, R. P. (1996) Detection of free radical metabolite formation using in vivo EPR spectroscopy: evidence of rat hemoglobin thiyl radical formation following administration of phenylhydrazine, Arch. Biochem. Biophys. 330, 266–270.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, J., Liu, K. J., Shi, X., and Swartz, H. M. (1995) Detection of short-lived free radicals by low frequency ESR spin trapping in whole living animals: Evidence of sulfur trioxide anion free radical generation in vivo, Arch. Biochem. Biophys. 319, 570–573.

    Article  CAS  PubMed  Google Scholar 

  • Joseph, J., Kalyanaraman, B., and Hyde, J.S. (1993) Trapping of nitric oxide by nitronyl nitroxides, an electron spin resonance investigation. Biochem. Biophys. Res. Commun. 192, 926–934.

    Article  CAS  PubMed  Google Scholar 

  • Khramtsov, V. V., Marsh, D., Weiner, L., Grigoriev, I. A., and Volodarsky, L. B. (1982) Proton exchange in stable nitroxyl radicals. EPR study of the pH of aqueous solutions, Chem. Phys. Lett. 91, 69–72.

    Article  CAS  Google Scholar 

  • Khramtsov, V. V. and Volodarsky, L. B. (1998) Use of Imidazoline Nitroxides in Studies of Chemical Reactions. ESR Measurements of the Concentration and Reactivity of Protons, Thiols, and Nitric Oxide. Biol. Magn. Reson. 14, 109–180.

    CAS  Google Scholar 

  • Khramtsov, V. V., and Weiner, L. M. (1988) Proton exchange in stable nitroxyl radicals: pH-sensitive spin probes, Imidazoline Nitroxides, Vol. II, CRC Press, Boca Raton, FL, 37–80.

    Google Scholar 

  • Khramtsov, V. V., Yelinova, V. I., Glazachev, Yu. I., Reznikov, V. A., and Zimmer, G. (1997) Quantitative determination and reversible modification of thiols using imidazolidine biradical disulfide label, J. Biochem. Biophys. Methods 35, 115–128.

    Article  CAS  PubMed  Google Scholar 

  • Knecht, K. T., and Mason, R. P. (1993) In vivo spin trapping of xenobiotic free radical metabolites, Arch. Biochem. Biophys. 303, 185–194.

    CAS  PubMed  Google Scholar 

  • Kocherginsky, N., and Swartz, H. M. (1995) Nitroxide Spin Labels, Reactions in Biology and Chemistry, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Komarov, A., Mattson, D., Jones, M. M., Singh, P. K., and Lai, C.S. (1993) In vivo spin trapping of nitric oxide in mice, Biochem. Biophys. Res. Commun. 195, 1191–1198.

    Article  CAS  PubMed  Google Scholar 

  • Kotake, Y., Moore, D. R., Sang, H., and Reinke, L. A. (1999) Continuous monitoring of in vivo nitric oxide formation using EPR analysis in biliary flow, Nitric Oxide 3, 114–122.

    Article  CAS  PubMed  Google Scholar 

  • Lai, C. S., and Komarov, A. M. (1994) Spin trapping of nitric oxide produced in vivo in septic-shock mice, FEBS Lett. 345, 120–124.

    Article  CAS  PubMed  Google Scholar 

  • Liu, K. J., Mader, K., Shi, X., and Swartz, H. M. (1997) Reduction of carcinogenic chromium (VI) on the skin of living rats, Magn. Reson. Med. 38, 524–526.

    CAS  PubMed  Google Scholar 

  • Liu, K. J., Miyake, M., Panz, T., and Swartz, H. M. (1999) Evaluation of DEPMPO as a spin trapping agent in biological systems, Free Rad. Biol. Med. 26, 714–721.

    Article  CAS  PubMed  Google Scholar 

  • Liu, K. J., and Shi, X. (2001) In vivo reduction of chromium (VI) and its related free radical generation, Mol. Cell Biochem. 222, 41–47.

    CAS  PubMed  Google Scholar 

  • Liu, K. J., Shi, X., Jiang, J., Goda, F., Dalai, N., and Swartz, H. M. (1996) Low frequency electron paramagnetic resonance investigation on metabolism of chromium (VI) by whole live mice, Ann. Clin. Lab. Science 26, 176–184.

    CAS  Google Scholar 

  • Mader, K. (1998) Pharmaceutical applications of in vivo EPR, Phys. Med. Biol. 43, 1931–1935.

    CAS  PubMed  Google Scholar 

  • Mader, K., Bacic, G., Domb, A., Elmalak, O., Langer, R., and Swartz, H. M. (1997) Noninvasive in vivo monitoring of drug release and polymer erosion from biodegradable polymers by EPR spectroscopy and NMR imaging, J. Pharm. Sci. 86, 126–134.

    CAS  PubMed  Google Scholar 

  • Mader, K., Bacic, G., and Swartz, H. M. (1995) In vivo detection of anthralin-derived free radicals in the skin of hairless mice by low-frequency electron paramagnetic resonance spectroscopy, J. Invest. Dermatol. 104, 514–517.

    Article  CAS  PubMed  Google Scholar 

  • Mader, K., Gallez, B., Liu, K. J., and Swartz, H. M. (1996a) Non-invasive in vivo characterization of release processes in biodegradable polymers by low-frequency electron paramagnetic resonance spectroscopy, Biomaterials 17, 457–461.

    Article  CAS  PubMed  Google Scholar 

  • Mader, K., Gallez, B., and Swartz, H. M. (1996b) In vivo EPR: An effective new tool for studying pathophysiology, physiology, and pharmacology, App. Rad. Isot. 47, 1663–1667.

    CAS  Google Scholar 

  • Marechal, X., Mordon, S., Devoisselle, J. M., Begu, S., Query, B., Neviere, R., Buys, B., Dhelin, G., Lesage, J. C, Mathieu, D., and Chopin, C. (1999) In vivo application of intestinal pH measurement using 2′,7′-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF) fluorescence imaging, Photochem. Photobiol. 70, 813–819.

    CAS  PubMed  Google Scholar 

  • Mignano, A. G., and Baldini, F. (1996) Biomedical sensors using optical fibres, Rep. Prog. Phys. 59, 1–28.

    Google Scholar 

  • Miyake, M., Liu, K. J., Walczak, T. M., and Swartz, H. M. (2000) In vivo EPR dosimetry of accidental exposures to radiation: experimental results indicating the feasibility of practical use in human subjects, Appl. Radiat. Isot. 52, 1031–1038.

    Article  CAS  PubMed  Google Scholar 

  • Nagano, T. and Yoshimura, T. (2002) Bioimaging of Nitric Oxide. Chem. Rev. 102, 1235–1269

    Article  CAS  PubMed  Google Scholar 

  • Nohl, H., Stolze, K., and Weiner, L. M. (1995) Noninvasive measurement of thiol levels in cells and isolated organs, Methods Enzymol. 251, 191–203.

    CAS  PubMed  Google Scholar 

  • Ojugo, A. S., McSheehy, P. M., McIntyre, D. J., McCoy, C., Stubbs, M., Leach, M. O., Judson, I. R., and Griffiths, J. R. (1999) Measurement of the extracellular pH of solid tumors in mice by magnetic resonance spectroscopy: a comparison of exogenous 19F and 31P probes, NMR Biomed. 12, 495–504.

    Article  CAS  PubMed  Google Scholar 

  • Packer, L. (1995) Biothiols Methods Enzymol. (ed.) 251, 529.

    Google Scholar 

  • Palmer, R. M., Ferrige, A. G., and Moncada, S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature 327, 524–526.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, T. J., Iwama, T., Halpern, H. J., and Rawal, V. H. (2002) General synthesis of persistent trityl radicals for EPR imaging of biological systems, J. Org. Chem. 67, 4635–4639.

    CAS  PubMed  Google Scholar 

  • Russell, D. A., Pottier, R. H., and Valenzeno, D. P. (1994) Continuous noninvasive measurement of in vivo pH in conscious mice, Photochem. Photobiol. 59, 309–313.

    CAS  PubMed  Google Scholar 

  • Sentjurc, M., Swartz, H. M., and Kocherginsky, N. (1995) Metabolism, toxicity, and distribution of spin traps, in Nitroxide Spin Labels, Reactions in Biology and Chemistry, CRC Press, Boca Raton, FL 199–206.

    Google Scholar 

  • Skvortsov, V. G., Ivannikov, A. I., Stepanenko, V. F., Tsyb, A. F., Khamidova, L. G., Kondrashov, A. E., and Tikunov, D. D. (2000) Application of EPR retrospective dosimetry for large-scale accidental situation, Appl. Radiat. Isot. 52, 1275–1282.

    Article  CAS  PubMed  Google Scholar 

  • Smirnov, A. I., Norby, S. W., Clarkson, R. B., Walczak, T., and Swartz, H. M. (1993) Simultaneous multi-site EPR spectroscopy in vivo, Magn. Reson. Med. 30, 213–220.

    CAS  PubMed  Google Scholar 

  • Stachowicz, W., Burlinska, G., Michalik, J., Dziedzic-Goclawska, A., and Ostrowski, K. (1993) Applications of EPR spectroscopy to radiation treated materials in medicine, dosimetry, and agriculture, Appl. Radiat. Isot. 44, 423–427.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki-Nishimura, T., and Swartz, H. M. (1998) Characterization of redox activity in resting and activated mast cells by reduction and reoxidation of lipophilic nitroxides, Gen. Pharmacol. 31, 617–623.

    CAS  PubMed  Google Scholar 

  • Swartz, H. M. (1989) Metabolically responsive contrast agents, in Advances in Magnetic Resonance Imaging, Feig, E., (Ed.), Ablex Publishing Company, Norwood, N.J., 49–71.

    Google Scholar 

  • Swartz, H. M. (1990) Principles of the metabolism of nitroxides and their implications for spin trapping, Free Rad. Res. Comms. 9, 399–405.

    CAS  Google Scholar 

  • Swartz, H.M. (2002a) The measurement of oxygen in vivo using EPR techniques, in Bialogical Magnetic Resonance-Volume 20: In vivo EPR (ESR): Theory and Applications. Berliner, L. J. (Ed.), Plenum Publishing Co., NY.

    Google Scholar 

  • Swartz, H. M. (2002b) Potential medical (clinical!!!) applications of EPR: overview and perspectives, in Biological Magnetic Resonance-Volume 20: In vivo EPR (ESR): Theory and Applications. Berliner, L.J. (Ed.), Plenum Publishing Co. NY.

    Google Scholar 

  • Swartz, H.M., and Berliner L. J. (1998) In vivo EPR, in Foundations of Modern EPR, World Scientific Publishing, Singapore/New Jersey/London. Eaton, S., Eaton, G., and Salikhov, K. (Eds), 361–378.

    Google Scholar 

  • Swartz, H.M., and Berliner, L. (2002) Introduction and in vivo EPR, in Biological Magnetic Resonance-Volume 20: In vivo EPR (ESR): Theory and Applications. Berliner, L.J. (Ed.), Plenum Publishing Co., NY.

    Google Scholar 

  • Swartz, H. M., Chen, K., Pals, M., Sentjurc, M., and Morse, P. D. 2nd, (1986) Hypoxiasensitive NMR contrast agents, Magn. Reson. Med. 3, 169–174.

    CAS  PubMed  Google Scholar 

  • Swartz, H. M., and Clarkson, R. B. (1998) The measurement of oxygen in vivo using EPR techniques, Phys. Med. Biol. 43, 1957–1975.

    Article  CAS  PubMed  Google Scholar 

  • Swartz, H. M., and Halpern, H. (1998) EPR studies of living animals and related model systems (In vivo EPR), in Spin Labeling: The Next Millenium, L.J. Berliner (Ed.), Plenum Publishing, New York, NY, 367–404.

    Google Scholar 

  • Swartz, H. M., Sentjurc, M., and Kocherginsky, N. (1995) Metabolism and distribution of nitroxides in tissues and organs, in Nitroxide Spin Labels, Reactions in Biology and Chemistry, CRC Press, Boca Raton, FL 149–152.

    Google Scholar 

  • Swartz, H. M., and Timmins, G. S., (2001) The metabolism of nitroxides in cells and tissues used to study functional biological systems in vitro and in vivo, in Free Radicals in Toxicology, Rhodes, C.J., Ed.

    Google Scholar 

  • Swartz, H.M., and Walczak, T. (1996) An overview of considerations and approaches for developing in vivo EPR for clinical applications, Res. Chem. Intermed. 22, 511–523.

    CAS  Google Scholar 

  • Swartz, H. M., and Walczak, T. (1998) Developing in vivo EPR oximetry for clinical use, Adv. Exp. Med. Biol 45, 243–252.

    Google Scholar 

  • Timmins, G. S., Liu, K. J., Bechara, E. J., Kotake, Y., and Swartz, H. M. (1999) Trapping of free radicals with direct in vivo EPR detection: a comparison of 5,5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO and SO4−, Free Rad. Biol. Med. 27, 329–333.

    Article  CAS  PubMed  Google Scholar 

  • Vanin, A. F. (1999) Iron diethyldithiocarbamate as spin trap for nitric oxide detection. Methods Enzymol. 301, 269–279.

    CAS  PubMed  Google Scholar 

  • Venkataraman, S., Martin, S. M., and Buettner, G. R. (2002) Electron Paramagnetic Resonance for Quantitation of Nitric Oxide in Aqueous Solutions. Nitric Oxide, Part D, Methods in Enzymology 359, 3–18.

    CAS  PubMed  Google Scholar 

  • Weiner, L. M. (1995) Quantitative determination of thiol groups in low and high molecular weight compounds by electron paramagnetic resonance, Methods Enzymol. 251, 87–105.

    CAS  PubMed  Google Scholar 

  • Weiner, L. M., Hu, H., and Swartz, H. M. (1991) Development of EPR method for measurement of cellular sulfhydryl groups, FEBS 290, 243–246.

    Article  CAS  Google Scholar 

  • Zweier, J. L., Fertmann, J., and Wei, G. (2001) Nitric oxide and peroxynitrite in postischemic myocardium, Antioxid. Redox Signal 3, 11–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Swartz, H.M., Khan, N. (2005). EPR Spectroscopy of Function In Vivo. In: Eaton, S.R., Eaton, G.R., Berliner, L.J. (eds) Biomedical EPR, Part A: Free Radicals, Metals, Medicine, and Physiology. Biological Magnetic Resonance, vol 23. Springer, Boston, MA. https://doi.org/10.1007/0-387-26741-7_9

Download citation

  • DOI: https://doi.org/10.1007/0-387-26741-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48506-0

  • Online ISBN: 978-0-387-26741-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics