Skip to main content

Mechanisms of Active Solubilization of Stable Protein Aggregates by Molecular Chaperones

  • Chapter
Protein Misfolding, Aggregation, and Conformational Diseases

Part of the book series: Protein Reviews ((PRON,volume 4))

Abstract

Protein destabilization by mutations or external stresses may lead to misfolding and aggregation in the cell. Often, damage is not limited to a simple loss of function, but the hydrophobic exposure of aggregate surfaces may impair membrane functions and promote the aggregation of other proteins. Such a “proteinacious infectious” behavior is not limited to prion diseases. It is associated to most protein-misfolding neurodegenerative diseases and to aging in general. With the molecular chaperones and proteases, cells have evolved powerful tools that can specifically recognize and act upon misfolded and aggregated proteins. Whereas some chaperones passively prevent aggregate formation and propagation, others actively unfold and solubilize stable aggregates. In particular, ATPase chaperones and proteases serve as an intracellular defense network that can specifically identify and actively remove by refolding or degradation potentially infectious cytotoxic aggregates. Here we discuss two types of molecular mechanisms by which ATPase chaperones may actively solubilize stable aggregates: (1) unfolding by power strokes, using the Hsp100 ring chaperones, and (2) unfolding by random movements of individual Hsp70 molecules. In bacteria, fungi, and plants, the two mechanisms are key for reducing protein damages from abiotic stresses. In animals devoid of Hsp100, Hsp70 appears as the core element of the chaperone network, preventing the formation and actively removing disease-causing protein aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anfinsen, C.B. (1973). Principles that govern the folding of protein chains. Science 181:223–230.

    Article  PubMed  CAS  Google Scholar 

  • Benaroudj, N., and Goldberg, A.L. (2000). PAN, the proteasome-activating nucleotidase from archaebacteria, is a proteinunfolding molecular chaperone. Nat. Cell Biol. 2:833–839.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Zvi, A.P., and Goloubinoff, P. (2001). Review: mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones. J. Struct. Biol. 135:84–93.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Zvi, A.P., and Goloubinoff, P. (2002). Proteinaceous infectious behavior in non-pathogenic proteins is controlled by molecular chaperones. J. Biol. Chem. 277:49422–49427.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Zvi, A.P., Chatellier, J., Fersht, A.R., and Goloubinoff, P. (1998). Minimal and optimal mechanisms for GroE-mediated protein folding. Proc. Natl. Acad. Sci. USA 95:15275–15280.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Zvi A., De Los Rios, P., Dietler, G., and Goloubinoff, P. (2004). Active solubilization and refolding of stable protein aggregates by cooperative unfolding action of individual HSP70 chaperones. J. Biol. Chem. 279:37298–37303.

    Article  PubMed  CAS  Google Scholar 

  • Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolph, R., Schmid, F.X., and Kiefhaber, T. (1991). GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30:1586–1591.

    Article  PubMed  CAS  Google Scholar 

  • Corsi, A.K., and Schekman, R. (1997). The lumenal domain of Sec63p stimulates the ATPase activity of BiP and mediates BiP recruitment to the translocon in Saccharomyces cerevisiae. J. Cell Biol. 137:1483–1493.

    Article  PubMed  CAS  Google Scholar 

  • Cyr, M.D. (1995). Cooperation of the molecular chaperone Ydj1 with specific Hsp70 homologs to suppress protein aggregation. FEBS Lett. 359:129–132.

    Article  PubMed  CAS  Google Scholar 

  • Deuerling, E., Schulze-Specking, A., Tomoyasu, T., Mogk, A., and Bukau, B. (1999). Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400:693–696.

    Article  PubMed  CAS  Google Scholar 

  • Diamant, S., and Goloubinoff, P. (1998). Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration. Biochemistry 37:9688–9694.

    Article  PubMed  CAS  Google Scholar 

  • Diamant, S., Ben-Zvi, A.P., Bukau, B., and Goloubinoff, P. (2000). Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J. Biol. Chem. 275:21107–21113.

    Article  PubMed  CAS  Google Scholar 

  • Diamant, S., Eliahu, N., Rosenthal, D., and Goloubinoff, P. (2001). Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J. Biol. Chem. 276:39586–39591.

    Article  PubMed  CAS  Google Scholar 

  • Diamant, S., Rosenthal, D., Azem, A., Eliahu, N., Ben-Zvi, A.P., and Goloubinoff, P. (2003). Dicarboxylic amino acids and glycine-betaine regulate chaperone-mediated protein-disaggregation under stress. Mol. Microbiol. 49:401–410.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, R.J. (2000). Chaperone substrates inside the cell. Trends Biochem. Sci. 25:210–212.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, R.J. (2001). Molecular chaperones: inside and outside the Anfinsen cage. Curr. Biol. 11:R1038–R1040.

    Article  PubMed  CAS  Google Scholar 

  • Fandrich, M., and Dobson, C.M. (2002). The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. EMBO J. 21:5682–5690.

    Article  PubMed  Google Scholar 

  • Farr, G.W., Furtak, K., Rowland, M.B., Ranson, N.A., Saibil, H.R., Kirchhausen, T., and Horwich, A.L. (2000). Multivalent binding of nonnative substrate proteins by the chaperonin GroEL. Cell 100:561–573.

    Article  PubMed  CAS  Google Scholar 

  • Forreiter, C., Kirschner, M., and Nover, L. (1997). Stable transformation of an Arabidopsis cell suspension culture with firefly luciferase providing a cellular system for analysis of chaperone activity in vivo. Plant Cell. 9:2171–2181.

    Article  PubMed  CAS  Google Scholar 

  • Frydman, J. (2001). Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70:603–647.

    Article  PubMed  CAS  Google Scholar 

  • Glover, J.R., and Lindquist, S. (1998). Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82.

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff, P., Christeller, J.T., Gatenby, A.A., and Lorimer, G.H. (1989a). Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature 342:884–889.

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff, P., Gatenby, A.A., and Lorimer, G.H. (1989b). GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337:44–47.

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff, P., Mogk, A., Ben-Zvi, A.P., Tomoyasu, T., and Bukau, B. (1999). Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96:13732–13737.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, C.J., Hayer-Hartl, M., Di Liberto, M., Hartl, F., and Kuriyan, J. (1997). Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276:431–435.

    Article  PubMed  CAS  Google Scholar 

  • Hartl, F.U., and Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858.

    Article  PubMed  CAS  Google Scholar 

  • Holl, N.B., Rudolph, R., Schmidt, M., and Buchner, J. (1991). Reconstitution of a heat shock effect in vitro: influence of GroE on the thermal aggregation of alpha-glucosidase from yeast. Biochemistry 30:11609–11614.

    Article  Google Scholar 

  • Horst, M., Azem, A., Schatz, G., and Glick, B.S. (1997). What is the driving force for protein import into mitochondria? Biochim. Biophys. Acta 1318:71–78.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz, J. (1992). Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. U A 89:10449–10453.

    Article  CAS  Google Scholar 

  • Hoskins, J.R., Singh, S.K., Maurizi, M.R., and Wickner, S. (2000). Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP. Proc. Natl. Acad. Sci. USA 97:8892–8897.

    Article  PubMed  CAS  Google Scholar 

  • Jaenicke, R. (1995). Folding and association versus misfolding and aggregation of proteins. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 348:97–105.

    Article  PubMed  CAS  Google Scholar 

  • Jana, N.R., and Nukina, N. (2003). Recent advances in understanding the pathogenesis of polyglutamine diseases: involvement of molecular chaperones and ubiquitin-proteasome pathway. J. Chem. Neuroanat. 26:95–101.

    Article  PubMed  CAS  Google Scholar 

  • Jana, N.R., Tanaka, M., Wang, G., and Nukina, N. (2000). Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum. Mol. Genet. 9:2009–2018.

    Article  PubMed  CAS  Google Scholar 

  • Jaroniec, C.P., MacPhee, C.E., Astrof, N.S., Dobson, C.M., and Griffin, R.G. (2002). Molecular conformation of a peptide fragment of transthyretin in an amyloid fibril. Proc. Natl. Acad. Sci. USA 99:16748–16753.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y.I., Burton, R.E., Burton, B.M., Sauer, R.T., and Baker, T.A. (2000). Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5:639–648.

    Article  PubMed  CAS  Google Scholar 

  • Kopito, R.R. (2000). Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10:524–530.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S., Sowa, M.E., Watanabe, Y.H., Sigler, P.B., Chiu, W., Yoshida, M., and Tsai, F.T. (2003). The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell 115:229–240.

    Article  PubMed  CAS  Google Scholar 

  • Martin, J., and Hartl, F.-U. (1997). The effect of macromolecular crowding on chaperonin-mediated protein folding. Proc. Natl. Acad. Sci. USA 94:1107–1112.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Aparicio, E., Yamamoto, A., Hernandez, F., Hen, R., Avila, J., and Lucas, J.J. (2001). Proteasomal-dependent aggregate reversal and absence of cell death in a conditional mouse model of Huntington’s disease. J. Neurosci. 21:8772–8781.

    PubMed  CAS  Google Scholar 

  • Matouschek, A., Azem, A., Ratliff, K., Glick, B.S., Schmid, K., and Schatz, G. (1997). Active unfolding of precursor proteins during mitochondrial protein import. EMBO J. 16:6727–6736.

    Article  PubMed  CAS  Google Scholar 

  • Mogk, A., and Bukau, B. (2004). Molecular chaperones: structure of a protein disaggregase. Curr. Biol. 14:R78–R80.

    Article  PubMed  CAS  Google Scholar 

  • Mogk, A., Tomoyasu, T., Goloubinoff, P., Rudiger, S., Roder, D., Langen, H., and Bukau, B. (1999). Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 18:6934–6949.

    Article  PubMed  CAS  Google Scholar 

  • Navon, A., and Goldberg, A.L. (2001). Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol. Cell 8:1339–1349.

    Article  PubMed  CAS  Google Scholar 

  • Neupert, W., and Brunner, M. (2002). The protein import motor of mitochondria. Nat. Rev. Mol. Cell. Biol. 3:555–565.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, E., Akita, M., Davila-Aponte, J., and Keegstra, K. (1997). Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone. EMBO J. 16:935–946.

    Article  PubMed  CAS  Google Scholar 

  • Parsell, D.A., Kowal, A.S., Singer, M.A., and Lindquist, S. (1994). Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372:475–478.

    Article  PubMed  CAS  Google Scholar 

  • Perutz, M.F., Finch, J.T., Berriman, J., and Lesk, A. (2002). Amyloid fibers are water-filled nanotubes. Proc. Natl. Acad. Sci. USA 99:5591–5595.

    Article  PubMed  CAS  Google Scholar 

  • Roseman, A.M., Chen, S., White, H., Braig, K., and Saibil, H.R. (1996). The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 87:241–251.

    Article  PubMed  CAS  Google Scholar 

  • Rouiller, I., DeLaBarre, B., May, A.P., Weis, W.I., Brunger, A.T., Milligan, R.A., and Wilson-Kubalek, E.M. (2002). Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle. Nat. Struct. Biol. 9:950–957.

    Article  PubMed  CAS  Google Scholar 

  • Rudiger, S., Buchberger, A., and Bukau, B. (1997). Interaction of Hsp70 chaperones with substrates. Nat. Struct. Biol. 4:342–349.

    Article  PubMed  CAS  Google Scholar 

  • Sakahira, H., Breuer, P., Hayer-Hartl, M.K., and Hartl, F.U. (2002). Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc. Natl. Acad. Sci. USA 99:16412–16418.

    Article  PubMed  CAS  Google Scholar 

  • Schaffitzel, E., Rudiger, S., Bukau, B., and Deuerling, E. (2001). Functional dissection of trigger factor and DnaK: interactions with nascent polypeptides and thermally denatured proteins. Biol. Chem. 382:1235–1243.

    Article  PubMed  CAS  Google Scholar 

  • Schliwa, M., and Woehlke, G. (2003). Molecular motors. Nature 422:759–765.

    Article  PubMed  CAS  Google Scholar 

  • Schönfeld, H.-J., Schmidt, D., Schröder, H., and Bukau, B. (1995). The DnaK chaperone system of Escherichia coli: quaternary structures and interactions of the DnaK and GrpE components. J. Biol. Chem. 270:2183–2189.

    Article  PubMed  Google Scholar 

  • Schröder, H., Langer, T., Hartl, F.-U., and Bukau, B. (1993). DnaK, DnaJ, GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12:4137–4144.

    PubMed  Google Scholar 

  • Shtilerman, M., Lorimer, G.H., and Englander, S.W. (1999). Chaperonin function: folding by forced unfolding. Science 284:822–825.

    Article  PubMed  CAS  Google Scholar 

  • Singh, S.K., Grimaud, R., Hoskins, J.R., Wickner, S., and Maurizi, M.R. (2000). Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Proc. Natl. Acad. Sci. USA 97:8898–8903.

    Article  PubMed  CAS  Google Scholar 

  • Skowyra, D., Georgopoulos, C., and Zylicz, M. (1990). The E. coli dnaK gene product, the hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner. Cell 62:939–944.

    Article  PubMed  CAS  Google Scholar 

  • Slepenkov, S.V., and Witt, S.N. (2002). The unfolding story of the Escherichia coli Hsp70 DnaK: is DnaK a holdase or an unfoldase? Mol. Microbiol. 45:1197–1206.

    Article  PubMed  CAS  Google Scholar 

  • Tomoyasu, T., Mogk, A., Langen, H., Goloubinoff, P., and Bukau, B. (2001). Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol. Microbiol. 40:397–413.

    Article  PubMed  CAS  Google Scholar 

  • van den Berg, B., Ellis, R.J., and Dobson, C.M. (1999). Effects of macromolecular crowding on protein folding and aggregation. EMBO J. 18:6927–6933.

    Article  PubMed  Google Scholar 

  • Veinger, L., Diamant, S., Buchner, J., and Goloubinoff, P. (1998). The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273:11032–11037.

    Article  PubMed  CAS  Google Scholar 

  • Viitanen, P.V., Lubben, T.H., Reed, J., Goloubinoff, P., O’Keefe, D.P., and Lorimer, G.H. (1990). Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are K+ dependent. Biochemistry 29:5665–5671.

    Article  PubMed  CAS  Google Scholar 

  • Walter, S., Lorimer, G.H., and Schmid, F.X. (1996). A thermodynamic coupling mechanism for GroEL-mediated unfolding. Proc. Natl. Acad. Sci. USA 93:9425–9430.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, Y.H., and Yoshida, M. (2004). Trigonal DnaK-DnaJ complex vs free DnaK and DnaJ; heat stress converts the former to the latter and only the latter can do disaggregation in cooperation with ClpB. J. Biol. Chem. 279:15723–15727.

    Article  PubMed  CAS  Google Scholar 

  • Weber-Ban, E.U., Reid, B.G., Miranker, A.D., and Horwich, A.L. (1999). Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401:90–93.

    Article  PubMed  CAS  Google Scholar 

  • Weibezahn, J., Tessarz, P., Schlieker, C., Zahn, R., Maglica, Z., Lee, S., Zentgraf, H., Weber-Ban, E.U., Dougan, D.A., Tsai, F.T., Mogk, A., and Bukau, B. (2004) Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119:653–665.

    Article  PubMed  CAS  Google Scholar 

  • Weissman, J.S., Hohl, C.M., Kovalenko, O., Kashi, Y., Chen, S., Braig, K., Saibil, H.R., Fenton, W.A., and Horwich, A.L. (1995). Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83:577–587.

    Article  PubMed  CAS  Google Scholar 

  • Wiech, H., Buchner, J., Zimmermann, R., and Jakob, U. (1992). Hsp90 chaperones protein folding in vitro. Nature 358:169–170.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Z., Horwich, A.L., and Sigler, P.B. (1997). The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, A., Lucas, J.J., and Hen, R. (2000). Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 101:57–66.

    Article  PubMed  CAS  Google Scholar 

  • Zahn, R., Buckle, A.M., Perrett, S., Johnson, C.M., Corrales, F.J., Golbik, R., and Fersht, A.R. (1996a). Chaperone activity and structure of monomeric polypeptide binding domains of GroEL. Proc. Natl. Acad. Sci. USA 93:15024–15029.

    Article  PubMed  CAS  Google Scholar 

  • Zahn, R., Perrett, S., and Fersht, A.R. (1996b). Conformational states bound by the molecular chaperones GroEL and secB: a hidden unfolding (annealing) activity. J. Mol. Biol. 261:43–61.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Beuron, F., and Freemont, P.S. (2002). Machinery of protein folding and unfolding. Curr. Opin. Struct. Biol. 12:231–238.

    Article  PubMed  Google Scholar 

  • Zhu, M., Li, J., and Fink, A.L. (2003). The association of alpha-synuclein with membranes affects bilayer structure, stability, and fibril formation. J. Biol. Chem. 278:40186–40197.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, X., Zhao, X., Burkholder, W.F., Gragerov, A., Ogata, C.M., Gottesman, M.E., and Hendrickson, W.A. (1996). Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272:1606–1614.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Goloubinoff, P., Ben-Zvi, A.P. (2006). Mechanisms of Active Solubilization of Stable Protein Aggregates by Molecular Chaperones. In: Uversky, V.N., Fink, A.L. (eds) Protein Misfolding, Aggregation, and Conformational Diseases. Protein Reviews, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-387-25919-8_9

Download citation

Publish with us

Policies and ethics