Skip to main content

Interior Point and Semidefinite Approaches in Combinatorial Optimization

  • Chapter

Abstract

Conic programming, especially semidefinite programming (SDP), has been regarded as linear programming for the 21st century. This tremendous excitement was spurred in part by a variety of applications of SDP in integer programming (IP) and combinatorial optinmization, and the development of efficient primal-dual interior-point rnethods (IPMs) and various first order approaches for the solution of large scale SDPs. This survey presents an up to date account of semidefinite and interior point approaches in solving NP-hard combinatorial optimnization problenis to optimality, and also in developing approximation algorithms for some of them. The interior point approaches discussed in the survey have been applied directly to non-convex formulations of IPs; they appear in a cutting plane framework to solving IPs, and finally as a subroutine to solving SDP relaxations of IPs. The surveyed approaches include non-convex potential reduction methods, interior point cutting plane methods, primal-dual IPMs and first-order algorithms for solving SDPs, branch and out approaches based on SDP relaxations of IPs, approximation algorithms based on SDP formulations, and finally methods employing successive convex approximations of the underlying combinatorial optimization problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alizadeh, F. and Goldfarb, D. (2003). Second-order cone programming. Mathematical Programming, 95:3–51.

    Article  MathSciNet  Google Scholar 

  • Alizadeh, F., Haeberly, J.P.A., and Overton, M.L. (1998). Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results. SIAM Journal on Optimization, 8:746–751.

    Article  MathSciNet  Google Scholar 

  • Andersen, E.D., Gondzio, J., Mészáros, Cs., and Xu, X. (1996). Implementation of interior point methods for large scale linear programming. In: T. Terlaky (ed.), Interior Point Methods for Linear Programming, pp. 189–252. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • Anjos, M.F. (2004). An improved semidefinite programming relaxation for the satisfiability problem. Mathematical Programming, to appear.

    Google Scholar 

  • Anjos, M.F. and Wolkowicz, H. (2002a). Geometry of semidefinite maxcut relaxations via matrix ranks. Journal of Combinatorial Optimization, 6:237–270.

    Article  MathSciNet  Google Scholar 

  • Anjos, M.F. and Wolkowicz, H. (2002b). Strengthened semidefinite relaxations via a second lifting for the maxcut problem. Discrete Applied Mathematics, 119:79–106.

    Article  MathSciNet  Google Scholar 

  • Anstreicher, K.M. (1997). On Vaidya's volumetric cutting plane method for convex programming. Mathematics of Operations Research, 22:63–89.

    MATH  MathSciNet  Google Scholar 

  • Anstreicher, K.M. (1999). Towards a practical volumetric cutting plane method for convex prograniming. SIAM Journal on Optimization, 9:190–206.

    Article  MathSciNet  Google Scholar 

  • Anstreicher, K.M. (2000). The volumetric barrier for semidefinite programming. Mathematics of Operations Research, 25:365–380.

    Article  MATH  MathSciNet  Google Scholar 

  • Arora, S. and Lund, C. (1996). Hardness of approximations. In: D. Hochbaum (ed.), Approximation Algorithms for NP-hard Problems, Chapter 10. PWS Publishing.

    Google Scholar 

  • Atkinson, D.S. and Vaidya, P.M. (1995). A cutting plane algorithm for convex programming that uses analytic centers. Mathematical Programming, 69:1–43.

    MathSciNet  Google Scholar 

  • Avis, D. (2003). On the complexity of testing hypermetric, negative type, k-gonal and gap inequalities. In: J. Akiyama, M. Kano (eds.), Discrete and Computational Geometry, pp. 51–59. Lecture Notes in Computer Science, vol. 2866, Springer.

    Google Scholar 

  • Avis, D. and Grishukhin, V.P. (1993). A bound on the k-gonality of facets of the hypermetric cone and related complexity problems. Computational Geometry: Theory & Applications, 2:241–254.

    MathSciNet  Google Scholar 

  • Bahn, O., Du Merle, O., Goffin, J.L., and Vial, J.P. (1997). Solving nonlinear multicommodity network flow problems by the analytic center cutting plane method. Mathematical Programming, 76:45–73.

    Google Scholar 

  • Balas, E., Ceria, S., and Cornuejols, G. (1993). A lift and project cutting plane algorithm for mixed 0–1 programs. Mathematical Prograrnming, 58:295–324.

    Article  MathSciNet  Google Scholar 

  • Barahona, F. (1983). The maxcut problem in graphs not contractible to K 5. Operations Research Letters, 2:107–111.

    Article  MATH  MathSciNet  Google Scholar 

  • Barahona, F. and Mahjoub, A.R. (1986). On the cut polytope. Mathematical Programming, 44:157–173.

    MathSciNet  Google Scholar 

  • Benson, H.Y. and Vanderbei, R.J. (2003). Solving problems with semidefinite and related constraints using interior-point methods for nonlinear programming. Mathematical Programming, 95:279–302.

    Article  MathSciNet  Google Scholar 

  • Benson, S.J., Ye, Y., and Zhang, X. (2000). Solving large-scale semidefinite programs for combinatorial optimization. SIAM Journal on Optimization, 10:443–461.

    Article  MathSciNet  Google Scholar 

  • Bomze, I., Dur, M., De Klerk, E., Roos, C., Quist, A.J., and Terlaky, T. (2000). On copositive programming and standard quadratic optimization problems. Journal of Global Optimization, 18:301–320.

    Article  Google Scholar 

  • Bomze, I. and De Klerk, E. (2002). Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. Journal of Global Optimization, 24:163–185.

    Article  Google Scholar 

  • Borchers, B. (1999). CSDP: A C library for semidefinite programming. Optimization Methods and Software, 11:613–623.

    MATH  MathSciNet  Google Scholar 

  • Burer, S. (2003). Semidefinite programming in the space of partial positive semidefinite matrices. SIAM Journal on Optimization, 14:139–172.

    Article  MATH  MathSciNet  Google Scholar 

  • Burer, S. and Monteiro, R.D.C. (2003a). A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Mathematical Programming, 95:329–357.

    Article  MathSciNet  Google Scholar 

  • Burer, S. and Monteiro, R.D.C. (2003b). Local minima and convergence in low-rank semidefinite programming. Technical Report, Department of Management Sciences, University of Iowa.

    Google Scholar 

  • Burer, S., Monteiro, R.D.C., and Zhang, Y. (2002a). Solving a class of semidefinite programs via nonlinear programming. Mathematical Programming, 93:97–102.

    Article  MathSciNet  Google Scholar 

  • Burer, S., Monteiro, R.D.C., and Zhang, Y. (2002b). Rank-two relaxation heuristics for max-cut and other binary quadratic programs. SIAM Journal on Optimization, 12:503–521.

    Article  MathSciNet  Google Scholar 

  • Burer, S., Monteiro, R.D.C., and Zhang, Y. (2002c). Maximum stable set formulations and heuristics based on continuous optimization. Mathematical Programming, 94:137–166.

    Article  MathSciNet  Google Scholar 

  • Burer, S., Monteiro, R.D.C., and Zhang, Y. (2003). A computational study of a gradient based log-barrier algorithm for a class of largescale SDPs. Mathematical Programming, 95:359–379.

    Article  MathSciNet  Google Scholar 

  • Chvátal, V. (1983). Linear Programming. W.H. Freeman and Company.

    Google Scholar 

  • Conn, A.R., Gould, N.I.M., and Toint, P.L. (2000). Trust-Region Methods. MPS-SIAM Series on Optimization, SIAM, Philadelphia, PA.

    Google Scholar 

  • De Klerk, E. (2002). Aspects of Semidefinite Progranmming: Interior Point Algorithms and Selected Applications. Applied Optimization Series, vol. 65, Kluwer Academic Publishers.

    Google Scholar 

  • De Klerk, E. (2003). Personal communication.

    Google Scholar 

  • De Klerk, E., Laurent, M., and Parrilo, P. (2004a). On the equivalence of algebraic approaches to the minimization of forms on the simplex. In: D. Henrion and A. Garulli (eds.), Positive Polynomials in Control, LNCIS, Springer, to appear.

    Google Scholar 

  • De Klerk, E. and Pasechnik, D. (2002). Approximating the stability number of graph via copositive programming. SIAM Journal on Opmization, 12:875–892.

    Article  Google Scholar 

  • De Klerk, E., Pasechnik, D.V., and Warners, J.P. (2004b). Approximate graph coloring and max-k-cut algorithms based on the theta function. Journal of Combinatorial Optimization, to appear.

    Google Scholar 

  • De Klerk, E., Roos, C., and Terlaky, T. (1998). Infeasible-start semidefinite programming algorithms via self-dual embeddings. Fields Institute Communications, 18:215–236.

    Google Scholar 

  • De Klerk, E. and Van Maaren, H. (2003). On semidefinite programming relaxations of 2+p-SAT. Annals of Mathematics of Artificial Intelligence, 37:285–305.

    Article  Google Scholar 

  • De Klerk, E., Warners, J., and Van Maaren, H. (2000). Relaxations of the satisfiability problein using semidefinite programming. Journal of Automated Reasoning, 24:37–65.

    Article  MathSciNet  Google Scholar 

  • Deza, M.M. and Laurent, M. (1997). Geornetry of Cuts and Metrics. Springer-Verlag, Berlin.

    Google Scholar 

  • Elhedhli, S. and Goffin, J.L. (2004). The integration of an interior-point cutting plane method within a branch-and-price algorithm. Mathematical Programming, to appear.

    Google Scholar 

  • Feige, U. and Goemans, M. (1995). Approximating the value of two prover proof systems withe applications to MAX-2SAT and MAX-DICUT. Proceedings of the 3rd Isreal Symposium on Theory of Computing and Systems, pp. 182–189. Association for Computing Machinery, New York.

    Google Scholar 

  • Frieze, A. and Jerrum, M.R. (1997). Improved approximation algorithms for max k-cut and max bisection. Algorithmica, 18:61–77.

    MathSciNet  Google Scholar 

  • Fukuda, M., Kojima, M., Murota, K., and Nakata, K. (2000). Exploiting sparsity in semidefinite programming via matrix comrpletion I: General framework. SIAM Journal on Optimization, 11:647–674.

    Article  MathSciNet  Google Scholar 

  • Fukuda, M., Kojima, M., and Shida, M. (2002). Lagrangian dual interiorpoint methods for semidefinite programs. SIAM Journal on Optimization, 12:1007–1031.

    Article  MathSciNet  Google Scholar 

  • Garey, M.R., and Johnson, D.S. (1979). Computers and Intractability: A Guid to the Theory of NP-Completeness. W.H. Freeman & Company, San Francisco, CA.

    Google Scholar 

  • Goemans, M. and Williamson, D.P. (1995). Improved approximation algorithms for max cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42:1115–1145.

    Article  MathSciNet  Google Scholar 

  • Goemans, M. and Williamson, D.P. (2001). Approximation algorithms for MAX-3-CUT and other problems via complex semidefinite programming. In: Proceedings of the 33rd Annual ACM Symposiurn on Theory of Computing, pp. 443–452. Association for Computing Machinery, New York.

    Google Scholar 

  • Goffin, J.L., Gondzio, J., Sarkissian, R., and Vial, J.P. (1997). Solving nonlinear multicommodity flow problems by the analytic center cutting plane method. Mathematical Programming, 76:131–154.

    Article  MathSciNet  Google Scholar 

  • Goffin, J.L., Luo, Z.Q., and Ye, Y. (1996). Complexity analysis of an interior point cutting plane method for convex feasibility problems. SIAM Journal on Optimization, 6:638–652.

    Article  MathSciNet  Google Scholar 

  • Goffin, J.L. and Vial, J.P. (2000). Multiple cuts in the analytic center cutting plane method. SIAM Journal on Optimization, 11:266–288.

    Article  MathSciNet  Google Scholar 

  • Goffin, J.L. and Vial, J.P. (2002). Convex nondifferentiable optimization: A survey focused on the analytic center cutting plane method. Optimization Methods and Software, 17:805–867.

    Article  MathSciNet  Google Scholar 

  • Gondzio, J., du Merle, O., Sarkissian, R., and Vial, J.P. (1996). ACCPM–A library for convex optimization based on an analytic center cutting plane method. European Journal of Operations Research, 94:206–211.

    Article  Google Scholar 

  • Grone, B., Johnson, C.R., Marques de Sa, E., and Wolkowicz, H. (1984). Positive definite completions of partial Hermitian matrices. Linear Algebra and its Applications, 58:109–124.

    Article  MathSciNet  Google Scholar 

  • Grötschel, M., Lovász, L., and Schrijver, A. (1993). Geometric Algorithms and Combinatorial Optimization. Springer Verlag.

    Google Scholar 

  • Håstad, J. (1997). Some optimal inapproximability results. Proceedings of the 29th ACM Symposium on Theory and Computing, pp. 1–10.

    Google Scholar 

  • Helmberg, C. (2000a). Semidefinite Programming for Combinatorial Optimization. Habilitation Thesis, ZIB-Report ZR-00-34, Konrad-Zuse-Zentrum Berlin.

    Google Scholar 

  • Helmberg, C. (2000b). Fixing variables in semidefinite relaxations. SIAM Journal on Matrix Analysis and Applications, 21:952–969.

    Article  MATH  MathSciNet  Google Scholar 

  • Helmberg, C. (2003). Numerical evaluation of SBmethod. Mathematical Programming, 95:381–406.

    Article  MATH  MathSciNet  Google Scholar 

  • Helmberg, C. and Oustry, F. (2000). Bundle methods to minimize the maximum eigenvalue function. In: H. Wolkowicz, R. Saigal, and L. Vandenberghe (eds.), Handbook of Semidefinite Programming, pp. 307–337. Kluwer Academic Publishers.

    Google Scholar 

  • Helmberg, C. and Rendl, F. (1998). Solving quadratic (0,1) problems by semidefinite programs and cutting planes. Mathematical Programming, 82:291–315.

    MathSciNet  Google Scholar 

  • Helmnberg, C. and Rendl, F. (2000). A spectral bundle method for semidefinite programming. SIAM Journal on Optimization, 10:673–696.

    Article  MathSciNet  Google Scholar 

  • Helmberg, C., Rendi, F., Vanderbei, R., and Wolkowicz, H. (1996). An interior point method for semidefinite programming. SIAM Journal on Optimization, 6:673–696.

    Article  Google Scholar 

  • Helmberg, C. Semidefinite programming webpage. http://www-user.tu-chemnitz.de/~helmberg/semidef.html

    Google Scholar 

  • Henrion, D. and Lasserre, J. (2003a). Gloptipoly: Global optimization over polynomials with MATLAB and SeDuMi. Transactions on Mathematical Software, 29:165–194.

    Article  MathSciNet  Google Scholar 

  • Henrion, D. and Lasserre, J. (2003b). Detecting global optimality and extracting solutions in Globtipoly. Technical Report LAAS-CNRS. ??au]Interior-Point Methods Online. http://www-unix.mcs.anl.gov/otc/InteriorPoint

    Google Scholar 

  • Kamath, A.P., Karmarkar, N., Ramakrishnan, K.G., and Resende M.G.C. (1990). Computational experience with an interior point algorithm on the satisfiability problem. Annals of Operations Research, 25:43–58.

    Article  MathSciNet  Google Scholar 

  • Kamath, A.P., Karmarkar, N., Ramakrishnan, K.G., and Resende, M.G.C. (1992). A continuous approach to inductive inference. Mathematical Programming, 57:215–238.

    Article  MathSciNet  Google Scholar 

  • Karger, D., Motwani, R., and Sudan, M. (1998). Approximate graph coloring by semidefinite programming. Journal of the ACM, 45:246–265.

    Article  MathSciNet  Google Scholar 

  • Karloff, H. (1999). How good is the Goemans-Williamson MAX CUT algorithm? SIAM Journal on Computing, 29:336–350.

    Article  MATH  MathSciNet  Google Scholar 

  • Karloff, H. and Zwick, U. (1997). A 7/8 approximation algorithm for MAX 3SAT? In: Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer Science, pp. 406–415. IEEE Computer Science Press, Los Alamitos, CA.

    Google Scholar 

  • Karmarkar, N. (1984). A new polynomial time algorithm for linear programming. Combinatorica, 4:373–395.

    MATH  MathSciNet  Google Scholar 

  • Karmarkar, N. (1990). An interior point approach to NP-complete problems. Contemporary Mathematics, 114:297–308.

    MATH  MathSciNet  Google Scholar 

  • Karmarkar, N., Resende, M.G.C., and Ramakrishnan, K.G. (1991). An interior point approach to solve computationally difficult set covering problems. Mathematical Programming, 52:597–618.

    Article  MathSciNet  Google Scholar 

  • Kim, S. and Kojima, M. (2001). Second order cone programming relaxations of nonconvex quadratic optimization problems. Optimization Methods & Software, 15:201–224.

    MathSciNet  Google Scholar 

  • Kleinberg, J. and Goemans, M. (1998). The Lovász theta function and a semidefinite programming relaxation of vertex cover. SIAM Journal on Discrete Mathematics, 11:196–204.

    Article  MathSciNet  Google Scholar 

  • Kocvara, M. and Stingl, M. (2003). PENNON: A code for convex nonlinear and semidefinite programming. Optimization Methods & Software, 18:317–333.

    Article  MathSciNet  Google Scholar 

  • Kojima, M., Shindoh, S., and Hara, S. (1997). Interior-point methods for the monotone linear complementarity problem in symmetric matrices. SIAM Journal on Optimization, 7:86–125.

    Article  MathSciNet  Google Scholar 

  • Kojima, M. and Tuncel, L. (2000). Cones of matrices and successive convex relaxations of nonconvex sets. SIAM Journal on Optimization, 10:750–778.

    Article  MathSciNet  Google Scholar 

  • Krishnan, K. and Mitchell, J.E. (2003a). Properties of a cutting plane method for semidefinite programming. Technical Report, Department of Computational & Applied Mathematics, Rice University.

    Google Scholar 

  • Krishnan, K. and Mitchell, J.E. (2003b). An unifying survey of existing cutting plane methods for semidefinite programming. Optimization Methods & Software, to appear; AdvOL-Report No. 2004/1, Advanced Optimization Laboratory, McMaster University.

    Google Scholar 

  • Krishnan, K. and Mitchell, J.E. (2004). Semidefinite cut-and-price approaches for the maxcut problem. AdvOL-Report No. 2004/5, Advanced Optimization Laboratory, McMaster University.

    Google Scholar 

  • Krishnan, K., Pataki, G., and Zhang, Y. (2004). A non-polyhedral primal active set approach to semidefinite programming. Technical Report, Dept. of Computational & Applied Mathematics, Rice University, forthcoming.

    Google Scholar 

  • Lasserre, J.B. (2001). Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization, 11:796–817.

    Article  MATH  MathSciNet  Google Scholar 

  • Lasserre, J.B. (2002). An explicit exact SDP relaxation for nonlinear 0–1 programs. SIAM Journal on Optimization, 12:756–769.

    Article  MATH  MathSciNet  Google Scholar 

  • Laurent, M. (1998). A tour d'horizon on positive semidefinite and Euclidean distance matrix completion problems. In: Topics in Semidefinite and Interior Point Methods, The Fields Institute for Research in Mathematical Sciences, Communications Series, vol. 18, American Mathematical Society, Providence, RI, AMS.

    Google Scholar 

  • Laurent, M. (2003). A comparison of the Sherali-Adams, Lovász — Schrijver and Lasserre relaxations for 0–1 programming. Mathematics of Operations Research, 28:470–496.

    Article  MATH  MathSciNet  Google Scholar 

  • Laurent, M. (2004). Semidefinite relaxations for max-cut. In: M. Grötschel (ed.), The Sharpest Cut, Festschrift in honor of M. Padberg's 60th birthday, pp. 291–327. MPS-SIAM.

    Google Scholar 

  • Laurent, M. and Rendl, F. (2003). Semidefinite programming and integer programming. Technical Report PNA-R0210, CWI, Amsterdam.

    Google Scholar 

  • Lemaréchal, C. and Oustry, F. (1999). Semidefinite relaxations and Lagrangian duality with applications to combinatorial optimization. Technical Report RR-3710, INRIA Rhone-Alpes.

    Google Scholar 

  • Lovász, L. (1979). On the Shannon capacity of a graph. IEEE Transactions on Information Theory, 25:1–7.

    Article  MATH  Google Scholar 

  • Lovász, L. and Schrijver, A. (1991). Cones of matrices and set functions and 0–1 optimization. SIAM Journal on Optimization, 1:166–190.

    Article  MathSciNet  Google Scholar 

  • Luo, Z.Q. and Sun, J. (1998). An analytic center based column generation method for convex quadratic feasibility problems. SIAM Journal on Optimization, 9:217–235.

    Article  MathSciNet  Google Scholar 

  • Mahajan, S. and Hariharan, R. (1999). Derandomizing semidefinite programming based approximation algorithms. SIAM Journal on Computing, 28:1641–1663.

    Article  MathSciNet  Google Scholar 

  • Mitchell, J.E. (2000). Computational experience with an interior point cutting plane algorithm. SIAM Journal on Optimization, 10:1212–1227.

    Article  MATH  MathSciNet  Google Scholar 

  • Mitchell, J.E. (2003). Polynomial interior point cutting plane methods. Optimization Methods & Software, 18:507–534.

    Article  MATH  MathSciNet  Google Scholar 

  • Mitchell, J.E. (2001). Restarting after branching in the SDP approach to MAX-CUT and similar combinatorial optimization problems. Journal of Combinatorial Optimization, 5:151–166.

    Article  MATH  MathSciNet  Google Scholar 

  • Mitchell, J.E. and Borchers, B. (1996). Solving real-world linear ordering problems using a primal-dual interior point cutting plane method. Annals of Operations Research, 62:253–276.

    Article  MathSciNet  Google Scholar 

  • Mitchell, J.E., Pardalos, P., and Resende, M.G.C. (1998). Interior point methods for combinatorial optimization. Handbook of Combinatorial Optimization, Kluwer Academic Publishers, 1:189–297.

    MathSciNet  Google Scholar 

  • Mitchell, J.E. and Ramaswamy, S. (2000). A long step cutting plane algorithm for linear and convex programming. Annals of Operations Research, 99:95–122.

    Article  MathSciNet  Google Scholar 

  • Mitchell, J.E. and Todd, M.J. (1992). Solving combinatorial optimization problems using Karmarkar's algorithm. Mathematical Programming, 56:245–284.

    Article  MathSciNet  Google Scholar 

  • Mittleman, H.D. (2003). An independent benchmarking of SDP and SOCP software. Mathematical Programming, 95:407–430.

    Article  MathSciNet  Google Scholar 

  • Mokhtarian, F.S. and Goffin, J.L. (1998). A nonlinear analytic center cutting plane method for a class of convex programming problems. SIAM Journal on Optimization, 8:1108–1131.

    Article  MathSciNet  Google Scholar 

  • Monteiro, R.D.C. (1997). Primal-dual path following algorithms for semidefinite programming. SIAM Journal on Optimization, 7:663–678.

    Article  MATH  MathSciNet  Google Scholar 

  • Monteiro, R.D.C. (2003). First and second order methods for semidefinite programming. Mathematical Programmrning, 97:209–244.

    MATH  MathSciNet  Google Scholar 

  • Motzkin, T.S. and Strauss, E.G. (1965). Maxima for graphs and a new proof of a theorem of Turan. Canadian Journal of Mathematics, 17:533–540.

    Google Scholar 

  • Muramatsu, M. and Suzuki, T. (2002). A new second-order cone programming relaxation for maxcut problems. Journal of Operations Research of Japan, to appear.

    Google Scholar 

  • Murthy, K.G. and Kabadi, S.N. (1987). Some NP-complete problems in quadratic and linear programming. Mathematical Programming, 39:117–129.

    MathSciNet  Google Scholar 

  • Nakata, K. Fujisawa, K., Fukuda, M., Kojima, M., and Murota, K. (2003). Exploiting sparsity in semidefinite programming via matrix completion II: Implementation and numerical results. Mathematical Programming, 95:303–327.

    Article  MathSciNet  Google Scholar 

  • Nemirovskii, A.S. and Yudin, D.B. (1983). Problem Complexity and Method Efficiency in Optimization. John Wiley.

    Google Scholar 

  • Nesterov, Y.E. (1998). Semidefinite relaxation and nonconvex quadratic optimization. Optimization Methods and Software, 9:141–160.

    MATH  MathSciNet  Google Scholar 

  • Nesterov, Y.E. (2000). Squared functional systems and optimization problems. In: J.B.G. Frenk, C. Roos, T. Terlaky, and S. Zhang (eds.). High Performance Optimization, pp. 405–440. Kluwer Academic Publishers.

    Google Scholar 

  • Nesterov Y.E. and Nemirovskii, A. (1994). Interior-Point Polynormial Algorithms in Con'vex Programming. SIAM Studies in Applied Mathematics, SIAM, Philadelphia, PA.

    Google Scholar 

  • Nesterov, Y.E. and Todd, M.J. (1998). Primal dual interior point methods for self-scaled cones. SIAM Journal on Optimization, 8:324–364.

    Article  MathSciNet  Google Scholar 

  • Optimization Online. http://www.optimization-online.org

    Google Scholar 

  • Oskoorouchi, M. and Goffin, J.L. (2003a). The analytic center cutting plane method with semidefinite cuts. SIAM Journal on Optimization, 13:1029–1053.

    Article  MathSciNet  Google Scholar 

  • Oskoorouchi, M. and Goffin, J.L. (2003b). An interior point cutting plane method for convex feasibility problems with second order cone inequalities. Mathematics of Operations Research, to appear; Technical Report, College of Business Administration, California State University, San Marcos.

    Google Scholar 

  • Oustry, F. (2000). A second order bundle method to minimize the maximum eigenvalue function. Mathematical Programming, 89:1–33.

    Article  MATH  MathSciNet  Google Scholar 

  • Papadimitriou, C.H. and Steiglitz, K. (1982). Combinatorial Optimization: Algorithms and Complexity. Prentice Hall.

    Google Scholar 

  • Parrilo, P.A. (2000). Structured Semidefinite Programs and Semialgebraic Methods in Robustness and Optimization. Ph.D. Thesis, California Institute of Technology.

    Google Scholar 

  • Parrilo, P.A. (2003). Semidefinite programming relaxations for semialgebraic problems. Mathematical Programming, 96:293–320.

    Article  MATH  MathSciNet  Google Scholar 

  • Pataki, G. (1996a). Cone-LPs and semidefinite programs: geometry and simplex type method. Proceedings of the 5th IPCO Conference, pp. 162–174. Lecture Notes in Computer Science, vol. 1084, Springer.

    MathSciNet  Google Scholar 

  • Pataki, G. (1996b). Cone Programming and Nonsmooth Optimization: Geometry and Algorithms. Ph.D. Thesis, Graduate School of Industrial Administration, Carnegie Mellon University.

    Google Scholar 

  • Pataki, G. (1998). On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues. Mathematics of Operations Research, 23:339–358.

    Article  MATH  MathSciNet  Google Scholar 

  • Poljak, S., Rendl, F., and Wolkowicz, H. (1995). A recipe for semidefinite relaxations for {0, 1}-quadratic programming. Journal of Global Optimization, 7:51–73.

    Article  MathSciNet  Google Scholar 

  • Poljak, S. and Tuza, Z. (1994). The expected relative error of the polyhedral approximation of the maxcut problem. Operations Research Letters, 16:191–198.

    Article  MathSciNet  Google Scholar 

  • Porkoláb, L. and Khachiyan, L. (1997). On the complexity of semidefinite programs. Journal of Global Optimization, 10:351–365.

    Article  Google Scholar 

  • Powers, V. and Reznick, B. (2001). A new bound for Polya's theorem with applications to polynomials positive on polyhedra. Journal of Pure and Applied Algebra, 164:221–229.

    Article  MathSciNet  Google Scholar 

  • Prajna, S., Papachristodoulou, A., and Parrilo, P.A. (2002). SOS-TOOLS: Sum of squares optimization toolbox for MATLAB. http://www.cds.caltech.edu/sostools.

    Google Scholar 

  • Putinar, M. (1993). Positive polynomials on compact semi-algebraic sets. Indiana University Mathematics Journal, 42:969–984.

    Article  MATH  MathSciNet  Google Scholar 

  • Quist, A.J., De Klerk, E., Roos, C., and Terlaky, T. (1998). Copositive relaxations for general quadratic programming. Optirmization Methods and Software, 9: 185–209.

    Google Scholar 

  • Ramana, M. (1993). An Algorithrnic Analysis of Multiquadratic and Semidefinite Programming Problems. Ph.D. Thesis, The John Hopkins University.

    Google Scholar 

  • Ramana, M. (1997). An exact duality theory for semidefinite programming and its complexity implications. Mathernatical Programming, 77:129–162.

    Article  MATH  MathSciNet  Google Scholar 

  • Ramana, M., Tuncel, L., and Wolkowicz, H. (1997). Strong duality for semidefinite programming. SIAM Journal on Optimization, 7:641–662.

    Article  MathSciNet  Google Scholar 

  • Rendl, F. and Sotirov, R. (2003). Bounds for the quadratic assignment problem using the bundle method. Technical Report, University of Klagenfurt, Universitaetsstrasse 65–67, Austria.

    Google Scholar 

  • Renegar, J. (2001). A Mathematical View of Interior-Point Methods in Convex Optimization. MPS-SIAM Series on Optimization.

    Google Scholar 

  • Roos, C., Terlaky, T., and Vial, J.P. (1997). Theory and Algorithms for Linear Optimization: An Interior Point Approach. John Wiley & Sons, Chichester, England.

    Google Scholar 

  • Schrijver, A. (1979). A comparison of the Delsarte and Lovász bounds. IEEE Transactions on Information Theory, 25:425–429.

    Article  MATH  MathSciNet  Google Scholar 

  • Schrijver, A. (1986). Theory of Linear and Integer Programming. Wiley-Interscience, New York.

    Google Scholar 

  • Seymour, P.D. (1981). Matroids and multicommodity flows. European Journal of Combinatorics, 2:257–290.

    MATH  MathSciNet  Google Scholar 

  • Sherali, H.D. and Adams, W.P. (1990). A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM Journal on Discrete Mathematics, 3:411–430.

    Article  MathSciNet  Google Scholar 

  • Shor, N. (1998). Nondifferentiable Optimization and Polynomial Problems. Kluwer Academic Publishers.

    Google Scholar 

  • Sturm, J.F. (1997). Primal-Dual Interior Point Approach to Semidefinite Programming. Tinbergen Institute Research Series, vol. 156, Thesis Publishers, Amsterdam, The Netherlands; Also in: Frenk et al. (eds.), High Performance Optimization, Kluwer Academic Publishers.

    Google Scholar 

  • Sturm, J.F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11–12:625–653.

    MathSciNet  Google Scholar 

  • Sun, J., Toh, K.C., and Zhao, G.Y. (2002). An analytic center cutting plane method for the semidefinite feasibility problem. Mathematics of Operations Research, 27:332–346.

    Article  MathSciNet  Google Scholar 

  • Terlaky, T. (ed.) (1996). Interior Point Methods of Mathematical Programming. Kluwer Academic Publishers.

    Google Scholar 

  • Todd, M.J. (1999). A study of search directions in interior point methods for semidefinite programming. Optimization Methods and Software, 12:1–46.

    MATH  MathSciNet  Google Scholar 

  • Todd, M.J. (2001). Semidefinite optimization. Acta Numerica, 10:515–560.

    Article  MathSciNet  Google Scholar 

  • Todd, M.J., Toh, K.C., and Tütüncü, R.H. (1998). On the Nesterov — Todd direction in semidefinite programming. SIAM Journal on Optimization, 8:769–796.

    Article  MathSciNet  Google Scholar 

  • Toh, K.C. (2003). Solving large scale semidefinite programs via an iterative solver on the augmented system. SIAM Journal on Optimization, 14:670–698.

    Article  MATH  MathSciNet  Google Scholar 

  • Toh, K.C. and Kojima, M. (2002). Solving some large scale semidefinite programs via the conjugate residual method. SIAM Journal on Optimization, 12:669–691.

    Article  MathSciNet  Google Scholar 

  • Toh, K.C., Zhao, G.Y., and Sun, J. (2002). A multiple-cut analytic center cutting plane method for semidefinite feasibility problems. SIAM Journal on Optimization, 12:1026–1046.

    MathSciNet  Google Scholar 

  • Tütüncü, R.H., Toh, K.C., and Todd, M.J. (2003). Solving semidefinite-quadratic-linear programs using SDPT3. Mathematical Programming, 95:189–217.

    Article  MathSciNet  Google Scholar 

  • Vaidya, P.M. A new algorithm for minimizing convex functions over convex sets. Mathematical Programming, 73:291–341, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  • Vandenberghe, L. and Boyd, S. (1996). Semidefinite programming. SIAM Review, 38:49–95.

    Article  MathSciNet  Google Scholar 

  • Vavasis, S.A. (1991). Nonlinear Optimization. Oxford Science Publications, New York.

    Google Scholar 

  • Warners, J.P., Jansen, B., Roos, C., and Terlaky, T. (1997a). A potential reduction approach to the frequency assignment problem. Discrete Applied Mathematics, 78:252–282.

    Article  MathSciNet  Google Scholar 

  • Warners, J.P., Jansen, B., Roos, C., and Terlaky, T. (1997b). Potential reduction approaches for structured combinatorial optimization problems. Operations Research Letters, 21:55–65.

    Article  MathSciNet  Google Scholar 

  • Wright, S.J. (1997). Primal-Dual Interior Poznt Methods. SIAM, Philadelphia, PA.

    Google Scholar 

  • Wolkowicz, H., Saigal, R., and Vandenberghe, L. (2000). Handbook on Semidefinite Programming, Kluwer Academic Publishers.

    Google Scholar 

  • Ye, Y. (1997). Interior Point Algorithms: Theory and Analysis. John Wiley & Sons, New York.

    Google Scholar 

  • Ye, Y. (1999). Approximating quadratic programming with bound and quadratic constraints. Mathematical Programming, 84:219–226.

    MATH  MathSciNet  Google Scholar 

  • Ye, Y. (2001). A.699 approximation algorithm for max bisection. Mathematical Programming, 90:101–111.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, Y. (1998). On extending some primal-dual interior point algorithms from linear programming to semidefinite programming. SIAM Journal on Optimization, 8:365–386.

    Article  MATH  MathSciNet  Google Scholar 

  • Zwick, U. (1999). Outward rotations: A tool for rounding solutions of semidefinite programming relaxations, with applications to maxcut and other problems. Proceedings of 31st STOC, pp. 496–505.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Krishnan, K., Terlaky, T. (2005). Interior Point and Semidefinite Approaches in Combinatorial Optimization. In: Avis, D., Hertz, A., Marcotte, O. (eds) Graph Theory and Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/0-387-25592-3_5

Download citation

Publish with us

Policies and ethics