Skip to main content

Asphyxia

  • Chapter
Therapeutic Hypothermia

Abstract

The first resuscitation societies, founded in the mid-18th century, were organized networks of rescuers responding primarily to drowning victims. In the 19th century, the development of general anesthesia and its attendant airway mishaps generated additional enthusiasm for preventing, understanding, and treating asphyxia. Thus, asphyxia was the main focus of early resuscitation science. More recently however, sudden collapse, primarily as a result of cardiac arrhythmia, has become the focus of resuscitation research and interventions. Reasons for focusing on sudden arrhythmic death include: 1) arrhythmia is more common than asphyxia as a cause of death in adults, 2) when the collapse is sudden and witnessed there is a precise epidemiologic definition for start and duration of ischemia, and 3) defibrillators for treatment of ventricular fibrillation (VF) or ventricular tachycardia (VT) have been developed and deployed worldwide. In addition, prospective clinical trials are strengthened by the selection of relatively homogenous patient populations and the use of discrete, measurable outcomes (e.g. defibrillation). Accordingly, the recently performed clinical trials of induced hypothermia following cardiac arrest (discussed in Chapter 2) excluded asphyxial arrest and limited enrollment to a highly-selected population of patients resuscitated from VF/VT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Safar P, Paradis NA. Asphyxial Cardiac Arrest. In: Paradis NA, Halperin HR, Nowak RM, editors. Cardiac Arrest: The Science and Practice of Resuscitation Medicine. Baltimore: Williams and Wilkins, 1999: 702–726.

    Google Scholar 

  2. Kuisma M, Suominen P, Korpela R. Paediatric out-of-hospital cardiac arrests—epidemiology and outcome. Resuscitation 1995; 30:141–150.

    Article  PubMed  CAS  Google Scholar 

  3. Sirbaugh PE, Pepe PE, Shook JE, et al. A prospective, population-based study of the demographics, epidemiology, management, and outcome of out-of-hospital pediatric cardiopulmonary arrest. Ann Emerg Med 1999; 33:174–184.

    Article  PubMed  CAS  Google Scholar 

  4. Young KD, Seidel JS. Pediatric cardiopulmonary resuscitation: a collective review. Ann Emerg Med 1999; 33:195–205.

    Article  PubMed  CAS  Google Scholar 

  5. Kuisma M, Alaspaa A. Out-of-hospital cardiac arrests of non-cardiac origin. Epidemiology and outcome. Eur Heart J 1997; 18:1122–1128.

    PubMed  CAS  Google Scholar 

  6. Arai T, Watanabe T, Nagaro T, Matsuo S. Blood-brain barrier impairment after cardiac resuscitation. Crit Care Med 1981; 9:444–448.

    Article  PubMed  CAS  Google Scholar 

  7. Schleien CL, Koehler RC, Shaffner DH, et al. Blood-brain barrier disruption after cardiopulmonary resuscitation in immature swine. Stroke 1991; 22:477–483.

    PubMed  CAS  Google Scholar 

  8. Pluta R, Lossinsky AS, Wisniewski HM, Mossakowski MJ. Early blood-brain barrier changes in the rat following transient complete cerebral ischemia induced by cardiac arrest. Brain Res 1994; 633:41–52.

    Article  PubMed  CAS  Google Scholar 

  9. Negovsky VA. Postresuscitation disease. Crit Care Med 1988; 16:942.

    Article  PubMed  CAS  Google Scholar 

  10. Cerchiari EL, Safar P, Klein E. Cardiovascular function and neurologic outcome after cardiac arrest in dogs. The cardiovascular post-resuscitation syndrome. Resuscitation1993; 25:9.

    Article  PubMed  CAS  Google Scholar 

  11. Safar P. Effects of the postresuscitation syndrome on cerebral recovery from cardiac arrest. Crit Care Med 1988; 13:932.

    Article  Google Scholar 

  12. Bottiger BW, Krumnikl JJ, Gass P, et al. The cerebral ‘no-reflow’ phenomenon after cardiac arrest in rats— influence of low-flow reperfusion. Resuscitation 1997; 34:79–87.

    Article  PubMed  CAS  Google Scholar 

  13. Vaagenes P, Safar P, Diven W, et al. Brain enzyme levels in CSF after cardiac arrest and resuscitation in dogs: markers of damage and predictors of outcome. J Cereb Blood Flow Metab 1988; 8:262–275.

    PubMed  CAS  Google Scholar 

  14. Vaagenes P, Safar P, Moossy J, et al. Asphyxiation versus ventricular fibrillation cardiac arrest in dogs. Differences in cerebral resuscitation effects—a preliminary study. Resuscitation 1997; 35:41–52.

    Article  PubMed  CAS  Google Scholar 

  15. Morimoto Y, Kemmotsu O, Kitami K, et al. Acute brain swelling after out-of-hospital cardiac arrest: pathogenesis and outcome. Crit Care Med 1993; 21:104–110.

    Article  PubMed  CAS  Google Scholar 

  16. Hicks SD, DeFranco DB, Callaway CW. Hypothermia during reperfusion after asphyxial cardiac arrest improves functional recovery and selectively alters stress-induced protein expression. J Cereb Blood Flow Metab 2000; 20:520–530.

    Article  PubMed  CAS  Google Scholar 

  17. Hickey RW, Akino M, Strausbaugh S, De Courten-Myers GM. Use of the Morris water maze and acoustic startle chamber to evaluate neurologic injury after asphyxial cardiac arrest in rats. Pediatr Res 1996; 39:77–84.

    PubMed  CAS  Google Scholar 

  18. Kuboyama K, Safar P, Radovsky A, et al. Delay in cooling negates the beneficial effect of mild resuscitative cerebral hypothermia after cardiac arrest in dogs: a prospective, randomized study. Crit Care Med 1993; 21:1348–1358.

    Article  PubMed  CAS  Google Scholar 

  19. Katz LM, Callaway CW, Kagan VE, Kochanek PM. Electron spin resonance measure of brain antioxidant activity during ischemia/reperfusion. Neuroreport 1998; 9:1587–1593.

    Article  PubMed  CAS  Google Scholar 

  20. Katz LM, Wang Y, Rockoff S, Bouldin TW. Low-dose Carbicarb improves cerebral outcome after asphyxial cardiac arrest in rats. Ann Emerg Med 2002; 39:359–365.

    Article  PubMed  Google Scholar 

  21. Ooboshi H, Ibayashi S, Takano K, et al. Hypothermia inhibits ischemia-induced efflux of amino acids and neuronal damage in the hippocampus of aged rats. Brain Res 2000; 884:23–30.

    Article  PubMed  CAS  Google Scholar 

  22. Xiao F, Safar P, Radovsky A. Mild protective and resuscitative hypothermia for asphyxial cardiac arrest in rats. Am J Emerg Med 1998; 16:17–25.

    Article  PubMed  CAS  Google Scholar 

  23. Hachimi-Idrissi S, Corne L, Huyghens L. The effect of mild hypothermia and induced hypertension on long term survival rate and neurological outcome after asphyxial cardiac arrest in rats. Resuscitation 2001; 49:73–82.

    Article  PubMed  CAS  Google Scholar 

  24. Dietrich WD, Busto R, Alonso O, et al. Intraischemic but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats. J Cereb Blood Flow Metab 1993; 13:541–549.

    PubMed  CAS  Google Scholar 

  25. Callaway CW, Tadler SC, Katz LM, et al. Feasibility of external cranial cooling during out-of-hospital cardiac arrest. Resuscitation 2002; 52:159–165.

    Article  PubMed  Google Scholar 

  26. Laptook AR, Corbett RJ, Sterett R, et al. Quantitative relationship between brain temperature and energy utilization rate measured in vivo using 31P and 1H magnetic resonance spectroscopy. Pediatr Res 1995; 38:919–925.

    PubMed  CAS  Google Scholar 

  27. Katsura K, Minamisawa H, Ekholm A, et al. Changes of labile metabolites during anoxia in moderately hypo-and hyperthermic rats: correlation to membrane fluxes of K+. Brain Res 1992; 590:6–12.

    Article  PubMed  CAS  Google Scholar 

  28. Astrup J, Rehncrona S, Siesjo BK. The increase in extracellular potassium concentration in the ischemic brain in relation to the preischemic functional activity and cerebral metabolic rate. Brain Res 1980; 199:161–174.

    Article  PubMed  CAS  Google Scholar 

  29. Ekholm A, Katsura K, Kristian T, et al. Coupling of cellular energy state and ion homeostasis during recovery following brain ischemia. Brain Res 1993; 604:185–191.

    Article  PubMed  CAS  Google Scholar 

  30. Lamanna JC, Griffith JK, Cordisco BR, et al. Rapid recovery of rat brain intracellular pH after cardiac arrest and resuscitation. Brain Res 1995; 687:175–181.

    Article  PubMed  CAS  Google Scholar 

  31. Hoxworth JM, Xu K, Zhou Y, et al. Cerebral metabolic profile, selective neuron loss, and survival of acute and chronic hyperglycemic rats following cardiac arrest and resuscitation. Brain Res 1999; 821:467–479.

    Article  PubMed  CAS  Google Scholar 

  32. Globus MY, Busto R, Lin B, et al. Detection of free radical activity during transient global ischemia and recirculation: effects of intraischemic brain temperature modulation. J Neurochem 1995; 65:1250–1256.

    Article  PubMed  CAS  Google Scholar 

  33. Nakane M, Kubota M, Nakagomi T, et al. Rewarming eliminates the protective effect of cooling against delayed neuronal death. Neuroreport 2001; 12:2439–2442.

    Article  PubMed  CAS  Google Scholar 

  34. Asai S, Zhao H, Kohno T, et al. Quantitative evaluation of extracellular glutamate concentration in postischemic glutamate re-uptake, dependent on brain temperature, in the rat following severe global brain ischemia. Brain Res 2000; 864:60–68.

    Article  PubMed  CAS  Google Scholar 

  35. Coimbra C, Wieloch T. Moderate hypothermia mitigates neuronal damage in the rat brain when initiated several hours following transient cerebral ischemia. Acta Neuropathol (Berl) 1994; 87:325–331.

    CAS  Google Scholar 

  36. Colbourne F, Li H, Buchan AM. Indefatigable CA1 sector neuroprotection with mild hypothermia induced 6 hours after severe forebrain ischemia in rats. J Cereb Blood Flow Metab 1999; 19:742–749.

    Article  PubMed  CAS  Google Scholar 

  37. Baena RC, Busto R, Dietrich WD, et al. Hyperthermia delayed by 24 hours aggravates neuronal damage in rat hippocampus following global ischemia. Neurology 1997; 48:768–773.

    PubMed  CAS  Google Scholar 

  38. Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002; 346:549–556.

    Article  Google Scholar 

  39. Zeiner A, Holzer M, Sterz F, et al. Hyperthermia after cardiac arrest is associated with an unfavorable neurologic outcome. Arch Intern Med 2001; 161:2007–2012.

    Article  PubMed  CAS  Google Scholar 

  40. Hickey RW, Ferimer H, Alexander HL, et al. Delayed, spontaneous hypothermia reduces neuronal damage after asphyxial cardiac arrest in rats. Crit Care Med 2000; 28:3511–3516.

    Article  PubMed  CAS  Google Scholar 

  41. Hickey RW, Kochanek PM, Ferimer H, et al. Induced hyperthermia exacerbates neurologic neuronal histologic damage after asphyxial cardiac arrest in rats. Crit Care Med 2003; 31:531–535.

    Article  PubMed  Google Scholar 

  42. Kelly S, Zhang ZJ, Zhao H, et al. Gene transfer of HSP72 protects cornu ammonis 1 region of the hippocampus neurons from global ischemia: influence of Bcl-2. Ann Neurol 2002; 52:160–167.

    Article  PubMed  CAS  Google Scholar 

  43. Hicks SD, Parmele KT, DeFranco DB, et al. Hypothermia differentially increases extracellular signal-regulated kinase and stress-activated protein kinase/c-Jun terminal kinase activation in the hippocampus during reperfusion after asphyxial cardiac arrest. Neuroscience 2000; 98:677–685.

    Article  PubMed  CAS  Google Scholar 

  44. D’Cruz BJ, Fertig KC, Filiano AJ, et al. Hypothermic reperfusion after cardiac arrest augments brain-derived neurotrophic factor activation. J Cereb Blood Flow Metab 2002; 22:843–851.

    Article  PubMed  CAS  Google Scholar 

  45. Beck T, Lindholm D, Castren E, Wree A. Brain-derived neurotrophic factor protects against ischemic cell damage in rat hippocampus. J Cereb Blood Flow Metab 1994; 14:689–692.

    PubMed  CAS  Google Scholar 

  46. Han BH, Holtzman DM. BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci 2000; 20:5775–5781.

    PubMed  CAS  Google Scholar 

  47. Kiprianova I, Freiman TM, Desiderato S, et al. Brain-derived neurotrophic factor prevents neuronal death and glial activation after global ischemia in the rat. J Neurosci Res 1999; 56:21–27.

    Article  PubMed  CAS  Google Scholar 

  48. White BC, Grossman LI, O’Neil BJ, et al. Global brain ischemia and reperfusion. Ann Emerg Med 1996; 27:588–594.

    Article  PubMed  CAS  Google Scholar 

  49. Friedman LK, Ginsberg MD, Belayev L, et al. Intraischemic but not postischemic hypothermia prevents non-selective hippocampal downregulation of AMPA and NMDA receptor gene expression after global ischemia. Brain Res Mol Brain Res 2001; 86:34–47.

    Article  PubMed  CAS  Google Scholar 

  50. Colbourne F, Grooms SY, Zukin RS, et al. Hypothermia rescues hippocampal CA1 neurons and attenuates down-regulation of the AMPA receptor GluR2 subunit after forebrain ischemia. Proc Natl Acad Sci USA 2003; 100:2906–2910.

    Article  PubMed  CAS  Google Scholar 

  51. Aoki M, Tamatani M, Taniguchi M, et al. Hypothermic treatment restores glucose regulated protein 78 (GRP78) expression in ischemic brain. Brain Res Mol Brain Res2001; 95:117–128.

    Article  PubMed  CAS  Google Scholar 

  52. Ginsberg MD, Sternau LL, Globus MY, et al. Therapeutic modulation of brain temperature: relevance to ischemic brain injury. Cerebrovasc Brain Metab Rev 1992; 4:189–225.

    PubMed  CAS  Google Scholar 

  53. Ginsberg MD, Busto R. Combating hyperthermia in acute stroke: a significant clinical concern. Stroke 1998; 29:529–534.

    PubMed  CAS  Google Scholar 

  54. Hickey RW, Kochanek PM, Ferimer H.N., Graham SH. Hypothermia and hyperthermia in children following resuscitation from cardiac arrest. Pediatrics 2000; 106:118–122.

    Article  PubMed  CAS  Google Scholar 

  55. Siebke H, Rod T, Breivik H, Link B. Survival after 40 minutes; submersion without cerebral sequeae. Lancet 1975; 1:1275–1277.

    Article  PubMed  CAS  Google Scholar 

  56. Schmidt U, Fritz KW, Kasperczyk W, Tscherne H. Successful resuscitation of a child with severe hypothermia after cardiac arrest of 88 minutes. Prehospital Disaster Med1995; 10:60–62.

    PubMed  CAS  Google Scholar 

  57. Young RS, Zalneraitis EL, Dooling EC. Neurological outcome in cold water drowning. JAMA 1980; 244:1233.

    Article  PubMed  CAS  Google Scholar 

  58. Walpoth BH, Walpoth-Aslan BN, Mattle HP, et al. Outcome of survivors of accidental deep hypothermia and circulatory arrest treated with extracorporeal blood warming. N Engl J Med 1997; 337:1500–1505.

    Article  PubMed  CAS  Google Scholar 

  59. Dean JM, McComb JG. Intracranial pressure monitoring in severe pediatric near-drowning. Neurosurgery 1981; 9:627–630.

    Article  PubMed  CAS  Google Scholar 

  60. Frewen TC, Swedlow DB, Watcha M, et al. Outcome in severe Reye syndrome with early pentobarbital coma and hypothermia. J Pediatr 1982; 100:663–665.

    Article  PubMed  CAS  Google Scholar 

  61. Oakes DD, Sherck JP, Maloney JR, Charters AC, III. Prognosis and management of victims of near-drowning. J Trauma 1982; 22:544–549.

    Article  PubMed  CAS  Google Scholar 

  62. Bruce D, Shut L, Sutton LN. Brain resuscitation in children: Fact or fantasy? Concepts Pediatr Neurosurg 4, 219–229. 1983.

    Google Scholar 

  63. Bohn DJ, Biggar WD, Smith CR, et al. Influence of hypothermia, barbiturate therapy, and intracranial pressure monitoring on morbidity and mortality after near-drowning. Crit Care Med 1986; 14:529–534.

    Article  PubMed  CAS  Google Scholar 

  64. Battin MR, Penrice J, Gunn TR, Gunn AJ. Treatment of term infants with head cooling and mild systemic hypothermia (35.0 degrees C and 34.5 degrees C) after perinatal asphyxia. Pediatrics 2003; 111:244–251.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Hickey, R.W., Callaway, C.W. (2005). Asphyxia. In: Tisherman, S.A., Sterz, F. (eds) Therapeutic Hypothermia. Molecular and Cellular Biology of Critical Care Medicine, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-387-25403-X_8

Download citation

  • DOI: https://doi.org/10.1007/0-387-25403-X_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25402-9

  • Online ISBN: 978-0-387-25403-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics