Skip to main content

Carburized and Hydrogen Diffusion Analysis

  • Chapter
  • 2811 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kiefner J. Effects of flowing products on line weld ability, Oil and Gas Journal, pp 49–54, July 18 1988

    Google Scholar 

  2. Kiefner J. and Fischer R. Models aid in pipeline repair welding procedure, Oil and Gas Journal, pp 41–547, March 7 1988

    Google Scholar 

  3. Zhang C. and Goldak J.A. Computer simulation of 3D hydrogen diffusion in low alloy stcel weldment, HW Doc. IX-1662-92

    Google Scholar 

  4. Liubov B. Em Diffuzionnye protsessy v neodnorodnykh tverdykh sredakh, (diffusion processes in inhomogeneous solids), Moscow Nauka, 1981.

    Google Scholar 

  5. Kurz W. and Fisher R. Fundamentals of Solidification, Trans. Tech. Publications, Switzerland-Germany-UK-USA, 1989

    Google Scholar 

  6. Umantsev A.R., Vinogradov V.V. and V.T. Borisov V.T. Mathematical model of growth of dendrites in a super cooled melt. Sov. Phys. Crystallogr. 30: #3, pp 262–265, 1985

    Google Scholar 

  7. Artemev A. and Goldak J.A. Cellular simulation of the dendrite growth in Al-Si alloys, Canadian Metal. Quart, Vol.36, pp 57–64, 1997

    Article  Google Scholar 

  8. PRC-185-9515, PRC Project: Repair of Pipelines by Direct Deposition of Weld Metal-Further Studies, August 3 1995

    Google Scholar 

  9. Henwood C. Bibby M.J., Goldak J.A. and Watt D.F. Coupled transient heat transfer microstructure weld computations, Acta Metal, Vol. 36, No. 11, pp 3037–3046, 1988

    Article  Google Scholar 

  10. Goldak J.A., Mocanita M., Aldea V., Zhou J., Downey D., Dorling D. Predicting burn-through when welding on pressurized pipelines, Proceedings of PVP’2000, 2000 ASME Pressure Vessels and Piping Conference, Seattle Washington USA, July 23–27 2000

    Google Scholar 

  11. Artemev A., Goldak J. and Mocanita M. Carburization during welding on pressurized natural gas pipelines, ICES’2K, Los Angles CA USA, Aug. 21–25 2000

    Google Scholar 

  12. Goldak J., Breiguine V., Dai N., Zhou J. Thermal stress analysis in welds for hot cracking, AMSE, Pressure Vessels and Piping Division PVP, Proceeding of the 1996 ASME PVP Conf., July 21–26, Montreal.

    Google Scholar 

  13. Goldak J.A., Breiguine V., Dai N., Zhou J. Thermal stress analysis in welds for hot cracking, Editor H. Cerjak H., 3rd Seminar, Numerical Analysis of Weld ability, Graz, Austria, Sept. 25–26 1995.

    Google Scholar 

  14. Watt D. F., Coon L., Bibby M. J., Goldak J.A. and Henwood C. Modeling microstructural development in weld heat affected zones, Acta Metal, Vol. 36, no 11, pp 3029–3035, 1988.

    Article  Google Scholar 

  15. Goldak J. A., Gu M., Zhang W., Dai N., Artemev A., Gravellie B., Glover A. and Smallman C. Modeling the slit test for assessing sensitivity to hydrogen cracking, International Conference Proceedings on modeling and Control of Joining Processes, Orlando Florida USA, Dec. 8–10 1993

    Google Scholar 

  16. Goldak J.A., Breiguine V., Dai N., Hughes E. and Zhou J. Thermal Stress Analysis in Solids Near the Liquid Region in Welds. Mathematical Modeling of Weld Phenomena, 3 Ed. By Cerjak H., The Institute of Materials, pp 543–570, 1997

    Google Scholar 

  17. Crank J. Mathematics of Diffusion, 1975

    Google Scholar 

  18. Larche F.C. and Cahn J.W. The effect of self-stress on diffusion in solids, Act Mct., Vol. 30, pp 1835–1845, 1982

    Article  Google Scholar 

  19. Sofronis P. and Birnbaum H.K. Hydrogen enhanced localized plasticity: A mechanism for hydrogen related fracture, Fatigue and fracture of aerospace structural materials, ASME, Vol. 36, pp 15–30, 1993

    Google Scholar 

  20. Bai Q., Chu W. and Hsiao C. Partial molar strain field of hydrogen in alpha-Fe, Scripta Metallurgica, Vol. 21, pp 613–618, 1987

    Article  Google Scholar 

  21. Alefeld G. and Volkl J. Hydrogen in Metals I; Basic Properties, Springer Verlag, Berlin Germany, 1978

    Google Scholar 

  22. Yurioka N., Suzuki H. and Ohshita S. Determination of necessary preheating temperature in steel welding, welding Journal AWS, Vol. 62, No. 6, pp 147s–154s, 1983

    Google Scholar 

  23. Bibby M.J., Goldak J.A., Jefferson I. and Bowker J. A methodology for computing heat affected zone hardness, microstructure and preheat temperature, Computer Technology in Welding, Cambridge UK, June 8–9 1988

    Google Scholar 

  24. Zhang C. Numerical simulation of the hydrogen accumulation at the microscopic scale in a low-alloy steel weldment, 3rd International Seminar on Numerical Analysis of Weldability, Graz Seggau Austria, Sept. 24–27 1995

    Google Scholar 

  25. Streitenberger P. and Koch M. Stress-driven diffusion of impurities near crack-like singularities and mechanisms of dynamic intergranular embrittlement, 5th International Seminar on Numerical Analysis of Weldability, Graz Seggau Austria, Oct. 1999

    Google Scholar 

  26. Dubois D. et al: Numerical simulation of a welding operation: Calculation of residual stresses and hydrogen diffusion. Int. Conf. on Pressure Vessel Tech. San Francisco, Sept. 9–14 1984.

    Google Scholar 

  27. Rauh H., Hippsley A. and Bullogh R. The effect of mixed-mode loading on stress-driven solute segregation during high-temperature brittle intergranular fracture, Acta Met., 37(1), pp 269–279, 1989

    Article  Google Scholar 

  28. Bibby M.J., Yurioka N., Gianetto J.A. and Chan B. Predictive methods for managing hydrogen in welding applications; Hydrogen Management for Welding Applications Proceedings of International Workshop, Ottawa Canada, October 6–8, 1998

    Google Scholar 

  29. Yurioka N., Suzuki H., Ohshita S. and Saito S. Determination of necessary preheating temperature in steel welding, Welding Journal, Vol. 62, No. 6, pp 147s–153s, 1983

    Google Scholar 

  30. Wang W.W., Lui S. and Olson D.L. Consequences of weld under matching and over matching; Non-uniform hydrogen distribution, Materials Engineering Proceedings of the 15th International Conference on Offshore Mechanics and Artic Engineering, ASME Part 3 (of 6), Vol. 3, pp 403–409, 1996

    MATH  Google Scholar 

  31. Wang W.W., Wong R., Liu S. and Olson D.L. Use of martensite start temperature for hydrogen control, Welding and Weld Automation in Shipbuilding Proceedings, TMS Materials Week 95, Cleveland, pp 17–31, 1995

    Google Scholar 

  32. Olson D.L., Liu S., Wang W., Pieters R.R.G.M. and Ibarra S. Martensite start temperature as a weldability index, Proceedings of 4th International Conference on Trends in Welding Research, ASM International, Materials Park, Ohio USA, pp 615–620, 1996

    Google Scholar 

  33. Olson D. L., Maroef I, Lensing C., Smith R.D., Wang W.W., Lui S., Wilderman T. and Eberhart M. Hydrogen management in high strength steel weldments, Proceedings of Hydrogen Management in Steels Weldments, Melbourne Australia, Pub. Defence and Technology Organization and Welding Technology Institute of Australia, ISBN 0 7311 0809 4, pp 1–20, 1997

    Google Scholar 

  34. Yurioka N and Suzuki H. Hydrogen assisted cracking in C-Mn and low alloy steel weldments, International Materials Reviews, Institute of Metals and ASM International, Vol. 35, No. 4, pp 217–250, 1990

    Google Scholar 

  35. Yurioka N., Okumura M., Ohshita S. and Shoja S. On the method of determining preheating temperature necessary to avoid cold cracking in steel welding, HW Doc. X1-E-10-81, 24 pgs, 1981

    Google Scholar 

  36. Armero F. and Love E. An ALE finite clement method for finite strain plasticity, ECCM European Conference on Computational Mechanics, Cracow Poland, June 26–29 2001

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Carburized and Hydrogen Diffusion Analysis. In: Computational Welding Mechanics. Springer, Boston, MA. https://doi.org/10.1007/0-387-23288-5_6

Download citation

  • DOI: https://doi.org/10.1007/0-387-23288-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23287-4

  • Online ISBN: 978-0-387-23288-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics